1
|
Priya M, Gupta SK, Koundal A, Kapoor S, Tiwari S, Kidwai S, Sorio de Carvalho LP, Thakur KG, Mahajan D, Sharma D, Kumar Y, Singh R. Itaconate mechanism of action and dissimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2025; 122:e2423114122. [PMID: 39841148 PMCID: PMC11789021 DOI: 10.1073/pnas.2423114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Itaconate, an abundant metabolite produced by macrophages upon interferon-γ stimulation, possesses both antibacterial and immunomodulatory properties. Despite its crucial role in immunity and antimicrobial control, its mechanism of action and dissimilation are poorly understood. Here, we demonstrate that infection of mice with Mycobacterium tuberculosis increases itaconate levels in lung tissues. We also show that exposure to itaconate inhibits M. tuberculosis growth in vitro, in macrophages, and mice. We report that exposure to sodium itaconate (ITA) interferes with the central carbon metabolism of M. tuberculosis. In addition to the inhibition of isocitrate lyase (ICL), we demonstrate that itaconate inhibits aldolase and inosine monophosphate (IMP) dehydrogenase in a concentration-dependent manner. Previous studies have shown that Rv2498c from M. tuberculosis is the bona fide (S)-citramalyl-CoA lyase, but the remaining components of the pathway remain elusive. Here, we report that Rv2503c and Rv3272 possess itaconate:succinyl-CoA transferase activity, and Rv2499c and Rv3389c possess itaconyl-CoA hydratase activity. Relative to the parental and complemented strains, the ΔRv3389c strain of M. tuberculosis was attenuated for growth in itaconate-containing medium, in macrophages, mice, and guinea pigs. The attenuated phenotype of ΔRv3389c strain of M. tuberculosis is associated with a defect in the itaconate dissimilation and propionyl-CoA detoxification pathway. This study thus reveals that multiple metabolic enzymes are targeted by itaconate in M. tuberculosis. Furthermore, we have assigned the two remaining enzymes responsible for the degradation of itaconic acid into pyruvate and acetyl-CoA. Finally, we also demonstrate the importance of enzymes involved in the itaconate dissimilation pathway for M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Manisha Priya
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Sonu Kumar Gupta
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Anil Koundal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Srajan Kapoor
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh160036, India
| | - Snigdha Tiwari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Luiz Pedro Sorio de Carvalho
- Department of Chemistry, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL33458
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh160036, India
| | - Dinesh Mahajan
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Deepak Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Yashwant Kumar
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| |
Collapse
|
2
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Liu YS, Zhang C, Khoo BL, Hao P, Chua SL. Dual-species proteomics and targeted intervention of animal-pathogen interactions. J Adv Res 2024:S2090-1232(24)00383-7. [PMID: 39233003 DOI: 10.1016/j.jare.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Host-microbe interactions are important to human health and ecosystems globally, so elucidating the complex host-microbe interactions and associated protein expressions drives the need to develop sensitive and accurate biochemical techniques. Current proteomics techniques reveal information from the point of view of either the host or microbe, but do not provide data on the corresponding partner. Moreover, it remains challenging to simultaneously study host-microbe proteomes that reflect the direct competition between host and microbe. This raises the need to develop a dual-species proteomics method for host-microbe interactions. OBJECTIVES We aim to establish a forward + reverse Stable Isotope Labeling with Amino acids in Cell culture (SILAC) proteomics approach to simultaneously label and quantify newly-expressed proteins of host and microbe without physical isolation, for investigating mechanisms in direct host-microbe interactions. METHODS Using Caenorhabditis elegans-Pseudomonas aeruginosa infection model as proof-of-concept, we employed SILAC proteomics and molecular pathway analysis to characterize the differentially-expressed microbial and host proteins. We then used molecular docking and chemical characterization to identify chemical inhibitors that intercept host-microbe interactions and eliminate microbial infection. RESULTS Based on our proteomics results, we studied the iron competition between pathogen iron scavenger and host iron uptake protein, where P. aeruginosa upregulated pyoverdine synthesis protein (PvdA) (fold-change of 5.2313) and secreted pyoverdine, and C. elegans expressed ferritin (FTN-2) (fold-change of 3.4057). Targeted intervention of iron competition was achieved using Galangin, a ginger-derived phytochemical that inhibited pyoverdine production and biofilm formation in P. aeruginosa. The Galangin-ciprofloxacin combinatorial therapy could eliminate P. aeruginosa biofilms in a fish wound infection model, and enabled animal survival. CONCLUSION Our work provides a novel SILAC-based proteomics method that can simultaneously evaluate host and microbe proteomes, with future applications in higher host organisms and other microbial species. It also provides insights into the mechanisms dictating host-microbe interactions, offering novel strategies for anti-infective therapy.
Collapse
Affiliation(s)
- Yang Sylvia Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Special Administrative Region; City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Achi SC, McGrosso D, Tocci S, Ibeawuchi SR, Sayed IM, Gonzalez DJ, Das S. Proteome profiling identifies a link between the mitochondrial pathways and host-microbial sensor ELMO1 following Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592405. [PMID: 38746404 PMCID: PMC11092768 DOI: 10.1101/2024.05.03.592405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The host EnguLfment and cell MOtility protein 1 (ELMO1) is a cytosolic microbial sensor that facilitates bacterial sensing, internalization, clearance, and inflammatory responses. We have shown previously that ELMO1 binds bacterial effector proteins, including pathogenic effectors from Salmonella and controls host innate immune signaling. To understand the ELMO1-regulated host pathways, we have performed liquid chromatography Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the global quantification of proteins regulated by ELMO1 in macrophages during Salmonella infection. Comparative proteome analysis of control and ELMO1-depleted murine J774 macrophages after Salmonella infection quantified more than 7000 proteins with a notable enrichment in mitochondrial-related proteins. Gene ontology enrichment analysis revealed 19 upregulated and 11 downregulated proteins exclusive to ELMO1-depleted cells during infection, belonging to mitochondrial functions, metabolism, vesicle transport, and the immune system. By assessing the cellular energetics via Seahorse analysis, we found that Salmonella infection alters mitochondrial metabolism, shifting it from oxidative phosphorylation to glycolysis. Importantly, these metabolic changes are significantly influenced by the depletion of ELMO1. Furthermore, ELMO1 depletion resulted in a decreased ATP rate index following Salmonella infection, indicating its importance in counteracting the effects of Salmonella on immunometabolism. Among the proteins involved in mitochondrial pathways, mitochondrial fission protein DRP1 was significantly upregulated in ELMO1-depleted cells and in ELMO1-KO mice intestine following Salmonella infection. Pharmacological Inhibition of DRP1 revealed the link of the ELMO1-DRP1 pathway in regulating the pro-inflammatory cytokine TNF-α following infection. The role of ELMO1 has been further characterized by a proteome profile of ELMO1-depleted macrophage infected with SifA mutant and showed the involvement of ELMO1-SifA on mitochondrial function, metabolism and host immune/defense responses. Collectively, these findings unveil a novel role for ELMO1 in modulating mitochondrial functions, potentially pivotal in modulating inflammatory responses. Significance Statement Host microbial sensing is critical in infection and inflammation. Among these sensors, ELMO1 has emerged as a key regulator, finely tuning innate immune signaling and discriminating between pathogenic and non-pathogenic bacteria through interactions with microbial effectors like SifA of Salmonella . In this study, we employed Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the proteome alterations mediated by ELMO1 in macrophages following WT and SifA mutant Salmonella infection. Our findings highlight a substantial enrichment of host proteins associated with metabolic pathways and mitochondrial functions. Notably, we validated the mitochondrial fission protein DRP1 that is upregulated in ELMO1-depleted macrophages and in ELMO1 knockout mice intestine after infection. Furthermore, we demonstrated that Salmonella -induced changes in cellular energetics are influenced by the presence of ELMO1. This work shed light on a possible novel link between mitochondrial dynamics and microbial sensing in modulating immune responses.
Collapse
|
6
|
Brek T, Gohal GA, Yasir M, Azhar EI, Al-Zahrani IA. Meningitis and Bacteremia by Unusual Serotype of Salmonella enterica Strain: A Whole Genome Analysis. Interdiscip Perspect Infect Dis 2024; 2024:3554734. [PMID: 38558876 PMCID: PMC10980553 DOI: 10.1155/2024/3554734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Background Although meningitis caused by Salmonella species is relatively rare and accounts for <1% of the confirmed cases in neonates, it is associated with case complications and fatality rates up to 50-70% when compared to other forms of Gram-negative bacilli meningitis. Objectives We conducted an investigation into the first reported case of neonatal meningitis caused by nontyphoidal S. enterica in Jazan, a region in the southwestern part of Saudi Arabia. Methods CSF and blood culture were collected from a female neonate patient to confirm the presence of bacterial meningitis. WGS was conducted to find out the comprehensive genomic characterization of S. enterica isolate. Results A 3-week-old infant was admitted to a local hospital with fever, poor feeding, and hypoactivity. She was diagnosed with Salmonella meningitis and bacteremia caused by S. enterica, which was sensitive to all antimicrobials tested. WGS revealed the specific strain to be S. enterica serotype Johannesburg JZ01, belonging to ST515 and cgMLST 304742. Conclusions We presented a genomic report of rare case of NTS meningitis in an infant who is living in a rural town in Jazan region, Saudi Arabia. Further research is required to understand the impact of host genetic factors on invasive nontyphoidal Salmonella infection.
Collapse
Affiliation(s)
- Thamer Brek
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Public Health Laboratory, The Regional Laboratory and the Central Blood Bank, Jazan Health Directorate, Jazan, Saudi Arabia
| | - Gassem A. Gohal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Yasir
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I. Azhar
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Fei X, Schroll C, Huang K, Christensen JP, Christensen H, Lemire S, Kilstrup M, Thomsen LE, Jelsbak L, Olsen JE. The global transcriptomes of Salmonella enterica serovars Gallinarum, Dublin and Enteritidis in the avian host. Microb Pathog 2023; 182:106236. [PMID: 37419218 DOI: 10.1016/j.micpath.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Salmonella enterica serovar Gallinarum causes Fowl Typhoid in poultry, and it is host specific to avian species. The reasons why S. Gallinarum is restricted to avians, and at the same time predominately cause systemic infections in these hosts, are unknown. In the current study, we developed a surgical approach to study gene expression inside the peritoneal cavity of hens to shed light on this. Strains of the host specific S. Gallinarum, the cattle-adapted S. Dublin and the broad host range serovar, S. Enteritidis, were enclosed in semi-permeable tubes and surgically placed for 4 h in the peritoneal cavity of hens and for control in a minimal medium at 41.2 °C. Global gene-expression under these conditions was compared between serovars using tiled-micro arrays with probes representing the genome of S. Typhimurium, S. Dublin and S. Gallinarum. Among other genes, genes of SPI-13, SPI-14 and the macrophage survival gene mig-14 were specifically up-regulated in the host specific serovar, S. Gallinarum, and further studies into the role of these genes in host specific infection are highly indicated. Analysis of pathways and GO-terms, which were enriched in the host specific S. Gallinarum without being enriched in the two other serovars indicated that host specificity was characterized by a metabolic fine-tuning as well as unique expression of virulence associated pathways. The cattle adapted serovar S. Dublin differed from the two other serovars by a lack of up-regulation of genes encoded in the virulence associated pathogenicity island 2, and this may explain the inability of this serovar to cause disease in poultry.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China
| | - Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Jens P Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Mogens Kilstrup
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
9
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
10
|
Proteomics Profiling Reveals Regulation of Immune Response to Salmonella enterica Serovar Typhimurium Infection in Mice. Infect Immun 2023; 91:e0049922. [PMID: 36511704 PMCID: PMC9872662 DOI: 10.1128/iai.00499-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulation of the immune response to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection is a complex process, influenced by the interaction between genetic and environmental factors. Different inbred strains of mice exhibit distinct levels of resistance to S. Typhimurium infection, ranging from susceptible (e.g., C57BL/6J) to resistant (e.g., DBA/2J) strains. However, the underlying molecular mechanisms contributing to the host response remain elusive. In this study, we present a comprehensive proteomics profiling of spleen tissue from C57BL/6J and DBA/2J strains with different doses of S. Typhimurium infection by tandem mass tag labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (TMT-LC/LC-MS/MS). We identified and quantified 3,986 proteins, resulting in 475 differentially expressed proteins (DEPs) between C57BL/6J and DBA/2J strains. Functional enrichment analysis unveiled that the mechanisms of innate immune responses to S. Typhimurium infection could be associated with several signaling pathways, including the interferon (IFN) signaling pathway. We experimentally validated the roles of the IFN signaling pathway in the innate immune response to S. Typhimurium infection using an IFN-γ neutralization assay. We further illustrated the importance of macrophage and proinflammatory cytokines in the mechanisms underlying the resistance to S. Typhimurium using quantitative reverse transcription-PCR (qRT-PCR). Taken together, our results provided new insights into the genetic regulation of the immune response to S. Typhimurium infection in mice and might lead to the discovery of potential protein targets for controlling salmonellosis.
Collapse
|
11
|
Shikov AE, Belousova ME, Belousov MV, Nizhnikov AA, Antonets KS. Salmonella-Based Biorodenticides: Past Applications and Current Contradictions. Int J Mol Sci 2022; 23:ijms232314595. [PMID: 36498920 PMCID: PMC9736839 DOI: 10.3390/ijms232314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
12
|
Microbial Genetics and Clonal Dissemination of Salmonella enterica Serotype Javiana Isolated from Human Populations in Arkansas, USA. Pathogens 2022; 11:pathogens11101192. [PMID: 36297250 PMCID: PMC9611979 DOI: 10.3390/pathogens11101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Salmonella is estimated to cause over a million infections and ~400 deaths annually in the U.S. Salmonella enterica serotype Javiana strains (n = 409) that predominantly originated from the State of Arkansas over a six-year period (2003 to 2008) were studied. This period coincided with a rapid rise in the incidence of S. Javiana infections in the U.S. Children under the age of 10 displayed the highest prevalence of S. Javiana infections, regardless of sex or year of detection. Antimicrobial susceptibility to 15 different antimicrobials was assessed and 92% (n = 375) were resistant to at least one of the antimicrobials. Approximately 89% of the isolates were resistant to sulfisoxazole alone and 3% (n = 11) were resistant to different antimicrobials, including gentamicin, ciprofloxacin or ceftiofur. The pulsed-field gel electrophoresis (PFGE) analyses assessed the genotypic diversity and distribution of S. Javiana strains using XbaI restriction. Nine major clusters were identified and isolates from each group were digested with the restriction enzyme AvrII. Isolates with identical profiles of XbaI and AvrII were found to be disseminated in human populations. These distinct “types” of S. Javiana were persistent in human populations for multiple years. A subset of isolates (n = 19) with unique resistance phenotypes underwent plasmid and incompatibility (Inc) type analyses and the isolates resistant to more than one antimicrobial harbored multiple plasmids (<3 to 165 kb). Furthermore, these strains possessed 14 virulence genes, including pagC, cdtB, and iroN. The whole genome sequences (WGS) of 18 isolates that mostly originated from Arkansas from 2003 to 2011 were compared with isolates collected from different areas in the U.S. in 1999, indicating the perseverance of S. Javiana in disseminating antimicrobial resistance and virulence genes.
Collapse
|
13
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
15
|
Li IC, Wu HH, Chen ZW, Chou CH. Prevalence of IncFIB Plasmids Found among Salmonella enterica Serovar Schwarzengrund Isolates from Animal Sources in Taiwan Using Whole-Genome Sequencing. Pathogens 2021; 10:pathogens10081024. [PMID: 34451486 PMCID: PMC8399590 DOI: 10.3390/pathogens10081024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serovar Schwarzengrund is one of the most frequently isolated Salmonella serotypes responsible for human and poultry infections in Taiwan, and it has raised public health concerns. To better facilitate the understanding of transmission patterns and the dynamics of epidemics, sharing molecular data on pathogen profiles is urgently needed. The objectives of the current study were to determine and establish baseline data of S. enterica serovar Schwarzengrund isolates from 23 epidemiologically unrelated sources from year 2000 to 2018 and examine their phenotypic and genotypic characteristics. Genomic DNA of the Salmonella isolates was extracted and subjected to whole-genome sequencing using an Illumina platform. Results showed that all selected isolates exhibited multidrug resistance, and six of those were resistant to ciprofloxacin phenotypically. Genotypically, these isolates carried genes resistant to aminoglycoside (100%), phenicol (91.3%), β-lactams (69.5%), folate pathway antagonist (100%), tetracycline (82.6%), and fluoroquinolone (4.3%). Moreover, these isolates harbor integrons with five different gene cassettes identified for the first time, which are associated with resistance to trimethoprim, streptomycin, tetracycline, sulfonamide, chloramphenicol, and gentamicin. Furthermore, prevalence of IncFIB plasmid was found among studied isolates, which may increase its ability to colonize the chicken cecum and cause extra-intestinal disease. Salmonella pathogenicity islands SPI-1 to SPI-5, SPI-13, and SPI-14, as well as C63PI locus, were also detected in all isolates. This study demonstrated that a considerable high antimicrobial resistance with high virulence levels of Salmonella were found from animal sources. Sharing data on these pathogen profiles can not only help increase the reproducibility and accessibility of genomic analysis but can also support surveillance and epidemiological investigations for salmonellosis in the region.
Collapse
Affiliation(s)
- I-Chen Li
- Zoonoses Research Center, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 106, Taiwan;
| | - Hsiu-Hui Wu
- Animal Technology Research Center, Agricultural Technology Research Institute, No. 52, Kedong 2nd Road, Zhunan Township, Miaoli County 350, Taiwan;
| | - Zeng-Weng Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, No. 52, Kedong 2nd Road, Zhunan Township, Miaoli County 350, Taiwan;
- Correspondence: (Z.-W.C.); (C.-H.C.); Tel.: +886-37-585-851 (Z.-W.C.); +886-2-3366-3861 (C.-H.C.); Fax: +886-2-2364-9154 (C.-H.C.)
| | - Chung-Hsi Chou
- Zoonoses Research Center, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 106, Taiwan;
- Correspondence: (Z.-W.C.); (C.-H.C.); Tel.: +886-37-585-851 (Z.-W.C.); +886-2-3366-3861 (C.-H.C.); Fax: +886-2-2364-9154 (C.-H.C.)
| |
Collapse
|
16
|
Sertbas M, Ulgen KO. Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens. Front Cell Dev Biol 2020; 8:566702. [PMID: 33251208 PMCID: PMC7673413 DOI: 10.3389/fcell.2020.566702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogens give rise to a wide range of diseases threatening global health and hence drawing public health agencies' attention to establish preventative and curative solutions. Genome-scale metabolic modeling is ever increasingly used tool for biomedical applications including the elucidation of antibiotic resistance, virulence, single pathogen mechanisms and pathogen-host interaction systems. With this approach, the sophisticated cellular system of metabolic reactions inside the pathogens as well as between pathogen and host cells are represented in conjunction with their corresponding genes and enzymes. Along with essential metabolic reactions, alternate pathways and fluxes are predicted by performing computational flux analyses for the growth of pathogens in a very short time. The genes or enzymes responsible for the essential metabolic reactions in pathogen growth are regarded as potential drug targets, as a priori guide to researchers in the pharmaceutical field. Pathogens alter the key metabolic processes in infected host, ultimately the objective of these integrative constraint-based context-specific metabolic models is to provide novel insights toward understanding the metabolic basis of the acute and chronic processes of infection, revealing cellular mechanisms of pathogenesis, identifying strain-specific biomarkers and developing new therapeutic approaches including the combination drugs. The reaction rates predicted during different time points of pathogen development enable us to predict active pathways and those that only occur during certain stages of infection, and thus point out the putative drug targets. Among others, fatty acid and lipid syntheses reactions are recent targets of new antimicrobial drugs. Genome-scale metabolic models provide an improved understanding of how intracellular pathogens utilize the existing microenvironment of the host. Here, we reviewed the current knowledge of genome-scale metabolic modeling in pathogen cells as well as pathogen host interaction systems and the promising applications in the extension of curative strategies against pathogens for global preventative healthcare.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
17
|
The Salmonella LysR Family Regulator RipR Activates the SPI-13-Encoded Itaconate Degradation Cluster. Infect Immun 2020; 88:IAI.00303-20. [PMID: 32719152 DOI: 10.1128/iai.00303-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
Itaconate is a dicarboxylic acid that inhibits the isocitrate lyase enzyme of the bacterial glyoxylate shunt. Activated macrophages have been shown to produce itaconate, suggesting that these immune cells may employ this metabolite as a weapon against invading bacteria. Here, we demonstrate that in vitro, itaconate can exhibit bactericidal effects under acidic conditions similar to the pH of a macrophage phagosome. In parallel, successful pathogens, including Salmonella, have acquired a genetic operon encoding itaconate degradation proteins, which are induced heavily in macrophages. We characterized the regulation of this operon by the neighboring gene ripR in specific response to itaconate. Moreover, we developed an itaconate biosensor based on the operon promoter that can detect itaconate in a semiquantitative manner and, when combined with the ripR gene, is sufficient for itaconate-regulated expression in Escherichia coli Using this biosensor with fluorescence microscopy, we observed bacteria responding to itaconate in the phagosomes of macrophages and provide additional evidence that gamma interferon stimulates macrophage itaconate synthesis and that J774 mouse macrophages produce substantially more itaconate than the human THP-1 monocyte cell line. In summary, we examined the role of itaconate as an antibacterial metabolite in mouse and human macrophages, characterized the regulation of Salmonella's defense against it, and developed it as a convenient itaconate biosensor and inducible promoter system.
Collapse
|
18
|
Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. Proc Natl Acad Sci U S A 2020; 117:20235-20243. [PMID: 32753384 DOI: 10.1073/pnas.2006116117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
All cells require Mg2+ to replicate and proliferate. The macrophage protein Slc11a1 is proposed to protect mice from invading microbes by causing Mg2+ starvation in host tissues. However, the Mg2+ transporter MgtB enables the facultative intracellular pathogen Salmonella enterica serovar Typhimurium to cause disease in mice harboring a functional Slc11a1 protein. Here, we report that, unexpectedly, the Salmonella small protein MgtR promotes MgtB degradation by the protease FtsH, which raises the question: How does Salmonella preserve MgtB to promote survival inside macrophages? We establish that the Salmonella small protein MgtU prevents MgtB proteolysis, even when MgtR is absent. Like MgtB, MgtU is necessary for survival in Slc11a1 +/+ macrophages, resistance to oxidative stress, and growth under Mg2+ limitation conditions. The Salmonella Mg2+ transporter MgtA is not protected by MgtU despite sharing 50% amino acid identity with MgtB and being degraded in an MgtR- and FtsH-dependent manner. Surprisingly, the mgtB, mgtR, and mgtU genes are part of the same transcript, providing a singular example of transcript-specifying proteins that promote and hinder degradation of the same target. Our findings demonstrate that small proteins can confer pathogen survival inside macrophages by altering the abundance of related transporters, thereby furthering homeostasis.
Collapse
|
19
|
Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020; 9:pathogens9070581. [PMID: 32708900 PMCID: PMC7400052 DOI: 10.3390/pathogens9070581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
Collapse
|
20
|
Joerger RD. Salmonella enterica's "Choice": Itaconic Acid Degradation or Bacteriocin Immunity Genes. Genes (Basel) 2020; 11:genes11070797. [PMID: 32679707 PMCID: PMC7397319 DOI: 10.3390/genes11070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
Itaconic acid is an immunoregulatory metabolite produced by macrophages in response to pathogen invasion. It also exhibits antibacterial activity because it is an uncompetitive inhibitor of isocitrate lyase, whose activity is required for the glyoxylate shunt to be operational. Some bacteria, such as Yersinia pestis, encode enzymes that can degrade itaconic acid and therefore eliminate this metabolic inhibitor. Studies, primarily with Salmonella enterica subspecies enterica serovar Typhimurium, have demonstrated the presence of similar genes in this pathogen and the importance of these genes for the persistence of the pathogen in murine hosts. This minireview demonstrates that, based on Blast searches of 1063 complete Salmonella genome sequences, not all Salmonella serovars possess these genes. It is also shown that the growth of Salmonella isolates that do not possess these genes is sensitive to the acid under glucose-limiting conditions. Interestingly, most of the serovars without the three genes, including serovar Typhi, harbor DNA at the corresponding genomic location that encodes two open reading frames that are similar to bacteriocin immunity genes. It is hypothesized that these genes could be important for Salmonella that finds itself in strong competition with other Enterobacteriacea in the intestinal tract—for example, during inflammation.
Collapse
Affiliation(s)
- Rolf D Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
21
|
Combining Whole-Genome Sequencing and Multimodel Phenotyping To Identify Genetic Predictors of Salmonella Virulence. mSphere 2020; 5:5/3/e00293-20. [PMID: 32522778 PMCID: PMC7289705 DOI: 10.1128/msphere.00293-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella comprises more than 2,600 serovars. Very few environmental and uncommon serovars have been characterized for their potential role in virulence and human infections. A complementary in vitro and in vivo systematic high-throughput analysis of virulence was used to elucidate the association between genetic and phenotypic variations across Salmonella isolates. The goal was to develop a strategy for the classification of isolates as a benchmark and predict virulence levels of isolates. Thirty-five phylogenetically distant strains of unknown virulence were selected from the Salmonella Foodborne Syst-OMICS (SalFoS) collection, representing 34 different serovars isolated from various sources. Isolates were evaluated for virulence in 4 complementary models of infection to compare virulence traits with the genomics data, including interactions with human intestinal epithelial cells, human macrophages, and amoeba. In vivo testing was conducted using the mouse model of Salmonella systemic infection. Significant correlations were identified between the different models. We identified a collection of novel hypothetical and conserved proteins associated with isolates that generate a high burden. We also showed that blind prediction of virulence of 33 additional strains based on the pan-genome was high in the mouse model of systemic infection (82% agreement) and in the human epithelial cell model (74% agreement). These complementary approaches enabled us to define virulence potential in different isolates and present a novel strategy for risk assessment of specific strains and for better monitoring and source tracking during outbreaks.IMPORTANCE Salmonella species are bacteria that are a major source of foodborne disease through contamination of a diversity of foods, including meat, eggs, fruits, nuts, and vegetables. More than 2,600 different Salmonella enterica serovars have been identified, and only a few of them are associated with illness in humans. Despite the fact that they are genetically closely related, there is enormous variation in the virulence of different isolates of Salmonella enterica Identification of foodborne pathogens is a lengthy process based on microbiological, biochemical, and immunological methods. Here, we worked toward new ways of integrating whole-genome sequencing (WGS) approaches into food safety practices. We used WGS to build associations between virulence and genetic diversity within 83 Salmonella isolates representing 77 different Salmonella serovars. Our work demonstrates the potential of combining a genomics approach and virulence tests to improve the diagnostics and assess risk of human illness associated with specific Salmonella isolates.
Collapse
|
22
|
Salmonella enterica Requires Lipid Metabolism Genes To Replicate in Proinflammatory Macrophages and Mice. Infect Immun 2019; 88:IAI.00776-19. [PMID: 31611277 DOI: 10.1128/iai.00776-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/28/2022] Open
Abstract
To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, β-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and β-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.
Collapse
|
23
|
Song X, Zhang H, Liu X, Yuan J, Wang P, Lv R, Yang B, Huang D, Jiang L. The putative transcriptional regulator STM14_3563 facilitates Salmonella Typhimurium pathogenicity by activating virulence-related genes. Int Microbiol 2019; 23:381-390. [PMID: 31832871 DOI: 10.1007/s10123-019-00110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important gram-negative intracellular pathogen that infects humans and animals. More than 50 putative regulatory proteins have been identified in the S. Typhimurium genome, but few have been clearly defined. In this study, the physiological function and regulatory role of STM14_3563, which encodes a ParD family putative transcriptional regulator in S. Typhimurium, were investigated. Macrophage replication assays and mice experiments revealed that S. Typhimurium showed reduced growth in murine macrophages and attenuated virulence in mice owing to deletion of STM14_3563 gene. RNA sequencing (RNA-Seq) data showed that STM14_3563 exerts wide-ranging effects on gene expression in S. Typhimurium. STM14_3563 activates the expression of several genes encoded in Salmonella pathogenicity island (SPI)-6, SPI-12, and SPI-13, which are required for intracellular replication of S. Typhimurium. Additionally, the global transcriptional regulator Fis was found to directly activate STM14_3563 expression by binding to the STM14_3563 promoter. These results indicate that STM14_3563 is involved in the regulation of a variety of virulence-related genes in S. Typhimurium that contribute to its growth in macrophages and virulence in mice.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huan Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Jian Yuan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China. .,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China. .,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, China.
| |
Collapse
|
24
|
Song X, Zhang H, Ma S, Song Y, Lv R, Liu X, Yang B, Huang D, Liu B, Jiang L. Transcriptome analysis of virulence gene regulation by the ATP-dependent Lon protease in Salmonella Typhimurium. Future Microbiol 2019; 14:1109-1122. [PMID: 31370702 DOI: 10.2217/fmb-2019-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Determination of the virulence regulatory network controlled by the ATP-dependent Lon protease in Salmonella enterica serovar Typhimurium. Materials & methods: The effect of Lon on S. Typhimurium virulence genes expression was investigated by RNA sequencing, and virulence-associated phenotypes between the wild-type and lon mutant were compared. Results: SPI-1, SPI-4, SPI-9 and flagellar genes were activated, while SPI-2 genes were repressed in the lon mutant. Accordingly, the lon mutant exhibited increased adhesion to and invasion of epithelial cells, increased motility and decreased replication in macrophages. The activation of SPI-2 genes by Lon partially accounts for the replication defect of the mutant. Conclusion: A wide range of virulence regulatory functions are governed by Lon in S. enterica ser. Typhimurium.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Huan Zhang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Yajun Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Runxia Lv
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Di Huang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| |
Collapse
|
25
|
Xu J, Preciado-Llanes L, Aulicino A, Decker CM, Depke M, Gesell Salazar M, Schmidt F, Simmons A, Huang WE. Single-Cell and Time-Resolved Profiling of Intracellular Salmonella Metabolism in Primary Human Cells. Anal Chem 2019; 91:7729-7737. [PMID: 31117406 PMCID: PMC7006958 DOI: 10.1021/acs.analchem.9b01010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
intracellular pathogen Salmonella enterica has evolved
an array of traits for propagation and invasion of the
intestinal layers. It remains largely elusive how Salmonella adjusts its metabolic states to survive inside immune host cells.
In this study, single-cell Raman biotechnology combined with deuterium
isotope probing (Raman-DIP) have been applied to reveal metabolic
changes of the typhoidal Salmonella Typhi Ty2, the
nontyphoidal Salmonella Typhimurium LT2, and a clinical
isolate Typhimurium D23580. By initially labeling the Salmonella strains with deuterium, we employed reverse labeling to track their
metabolic changes in the time-course infection of THP-1 cell line,
human monocyte-derived dendritic cells (MoDCs) and macrophages (Mf).
We found that, in comparison with a noninvasive serovar, the invasive Salmonella strains Ty2 and D23580 have downregulated metabolic
activity inside human macrophages and dendritic cells and used lipids
as alternative carbon source, perhaps a strategy to escape from the
host immune response. Proteomic analysis using high sensitivity mass
spectrometry validated the findings of Raman-DIP analysis.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Lorena Preciado-Llanes
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Anna Aulicino
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Christoph Martin Decker
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany.,Proteomics Core, Weill Cornel Medicine-Qatar , Education City , PO 24144 Doha , Qatar
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Wei E Huang
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| |
Collapse
|
26
|
Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, Jacobs J, Gevaert K, Deborggraeve S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis 2019; 13:e0007416. [PMID: 31125353 PMCID: PMC6553789 DOI: 10.1371/journal.pntd.0007416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. Methodology/Principle findings We compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. For each serovar, five clinical isolates (covering different geographical origins) and one reference strain were grown in vitro to the exponential phase. Levels of orthologous proteins quantified in all four serovars and within the typhoidal and non-typhoidal groups were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Conclusions/Significance Our comparative proteome analysis indicated differences in the expression of surface proteins between Salmonella Typhi and Paratyphi A, and in pathogenesis-related proteins between Salmonella Typhimurium and Enteritidis. Our findings may guide future development of novel diagnostics and vaccines, as well as understanding of disease progression. With an estimated 20 million typhoid cases and an even higher number of non-typhoid cases the health burden caused by salmonellosis is huge. Salmonellosis is caused by the bacterial species Salmonella enterica and over 2500 different serovars exist, of which four are of major medical relevance for humans: Typhi and Paratyphi A cause typhoid fever while Typhimurium and Enteritidis are the dominant cause of non-typhoidal Salmonella infections. The proteome is the entire set of proteins that is expressed by a genome and the core proteome are all orthologous proteins detected in a given sample set. In this study we have investigated differential expression of the core proteomes of the Salmonella serovars Typhi, Paratyphi A, Typhimurium and Enteritidis, as well as the regulating molecules. Our comparative proteome analysis indicated differences in the expression of surface proteins between the serovars Typhi and Paratyphi A, and in pathogenesis-related proteins between Typhimurium and Enteritidis. Our findings in proteome-wide expression may guide the development of novel diagnostics and vaccines for Salmonella, as well as understanding of disease.
Collapse
Affiliation(s)
- Sara Saleh
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Puyvelde
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
27
|
Noster J, Chao TC, Sander N, Schulte M, Reuter T, Hansmeier N, Hensel M. Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense. PLoS Pathog 2019; 15:e1007741. [PMID: 31009521 PMCID: PMC6497321 DOI: 10.1371/journal.ppat.1007741] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/02/2019] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
Intracellular Salmonella enterica serovar Typhimurium (STM) deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) for the massive remodeling of the endosomal system for host cells. This activity results in formation of an extensive interconnected tubular network of Salmonella-induced filaments (SIFs) connected to the Salmonella-containing vacuole (SCV). Such network is absent in cells infected with SPI2-T3SS-deficient mutant strains such as ΔssaV. A tubular network with reduced dimensions is formed if SPI2-T3SS effector protein SseF is absent. Previous single cell live microscopy-based analyses revealed that intracellular proliferation of STM is directly correlated to the ability to transform the host cell endosomal system into a complex tubular network. This network may also abrogate host defense mechanisms such as delivery of antimicrobial effectors to the SCV. To test the role of SIFs in STM patho-metabolism, we performed quantitative comparative proteomics of STM recovered from infected murine macrophages. We infected RAW264.7 cells with STM wild type (WT), ΔsseF or ΔssaV strains, recovered bacteria 12 h after infection and determined proteome compositions. Increased numbers of proteins characteristic for nutritional starvation were detected in STM ΔsseF and ΔssaV compared to WT. In addition, STM ΔssaV, but not ΔsseF showed signatures of increased exposure to stress by antimicrobial defenses, in particular reactive oxygen species, of the host cells. The proteomics analyses presented here support and extend the role of SIFs for the intracellular lifestyle of STM. We conclude that efficient manipulation of the host cell endosomal system by effector proteins of the SPI2-T3SS contributes to nutrition, as well as to resistance against antimicrobial host defense mechanisms. The facultative intracellular bacterium Salmonella enterica has evolved sophisticated mechanisms to adapt to life inside a pathogen-containing vacuole in mammalian host cells. Intracellular Salmonella manipulate the host cell endosomal system resulting in formation of a complex network of tubular vesicles, termed Salmonella-induced filaments (SIFs). We applied quantitative proteomics to intracellular Salmonella in murine macrophages and compared the wild-type strain to mutant strains with aberrant SIF architecture, or no capacity for induction of SIF. We determined that those mutant strains contain higher amounts of transporters for nutrient uptake, and lower amounts of proteins for central carbon metabolism. These observations indicate response to nutrient restriction in absence of fully established SIF. In addition, the mutant strain unable to induce SIF formation showed increased amounts of proteins required for response to antimicrobial factors of the host cells. These data show that the massive remodeling of the endosomal system of host cells by intracellular Salmonella serves to essential needs, i.e. to enable access to nutrients for efficient proliferation of the pathogen, and to withstand hostile conditions within the pathogen-containing vacuole.
Collapse
Affiliation(s)
- Janina Noster
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Tzu-Chiao Chao
- Institute of Environmental Change & Society, University of Regina, Regina, Canada
| | - Nathalie Sander
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Tatjana Reuter
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Nicole Hansmeier
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,Institute of Environmental Change & Society, University of Regina, Regina, Canada
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
28
|
Salmonella Proteomic Profiling during Infection Distinguishes the Intracellular Environment of Host Cells. mSystems 2019; 4:mSystems00314-18. [PMID: 30984873 PMCID: PMC6456673 DOI: 10.1128/msystems.00314-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Salmonella Typhimurium is one of the leading causes of foodborne bacterial infection. Nevertheless, how Salmonella adapts to distinct types of host cells during infection remains poorly understood. By contrasting intracellular Salmonella proteomes from both infected macrophages and epithelial cells, we found striking proteomic signatures specific to particular types of host cells. Notably, Salmonella proteomic remodeling exhibited quicker kinetics in macrophages than in epithelial cells with respect to bacterial virulence and flagellar and chemotaxis systems. Furthermore, we unveiled high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells, which is attributable to differing intracellular levels of this amino acid. Intriguingly, we found that a defective hisG gene renders a Salmonella strain hypersensitive to histidine shortage in macrophages. Overall, our work reveals specific Salmonella adaptation mechanisms in distinct host cells, which should aid in the development of novel anti-infection strategies. Essential to bacterial pathogenesis, Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved the capacity to quickly sense and adapt to specific intracellular environment within distinct host cells. Here we examined S. Typhimurium proteomic remodeling within macrophages, allowing direct comparison with our previous studies in epithelial cells. In addition to many shared features, our data revealed proteomic signatures highly specific to one type of host cells. Notably, intracellular S. Typhimurium differentially regulates the two type III secretion systems (T3SSs) far more quickly in macrophages than in epithelial cells; bacterial flagellar and chemotaxis systems degenerate more quickly in macrophages than in HeLa cells as well. Importantly, our comparative analysis uncovered high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells. Targeted metabolomic measurements revealed markedly lower histidine levels within macrophages. Intriguingly, further functional studies established that histidine biosynthesis that is defective (due to a hisG mutation) renders the bacterium (strain SL1344) hypersensitive to intracellular shortage of this amino acid. Indeed, another S. Typhimurium strain, namely, strain 14028s, with a fully functional biosynthetic pathway exhibited only minor induction of the his operon within infected macrophages. Our work thus provided novel insights into S. Typhimurium adaptation mechanisms within distinct host cells and also provided an elegant paradigm where proteomic profiling of intracellular pathogens is utilized to discriminate specific host environments (e.g., on the basis of nutrient availability). IMPORTANCESalmonella Typhimurium is one of the leading causes of foodborne bacterial infection. Nevertheless, how Salmonella adapts to distinct types of host cells during infection remains poorly understood. By contrasting intracellular Salmonella proteomes from both infected macrophages and epithelial cells, we found striking proteomic signatures specific to particular types of host cells. Notably, Salmonella proteomic remodeling exhibited quicker kinetics in macrophages than in epithelial cells with respect to bacterial virulence and flagellar and chemotaxis systems. Furthermore, we unveiled high levels of induction of bacterial histidine biosynthesis in macrophages but not in epithelial cells, which is attributable to differing intracellular levels of this amino acid. Intriguingly, we found that a defective hisG gene renders a Salmonella strain hypersensitive to histidine shortage in macrophages. Overall, our work reveals specific Salmonella adaptation mechanisms in distinct host cells, which should aid in the development of novel anti-infection strategies.
Collapse
|
29
|
Xie K, Bunse C, Marcus K, Leichert LI. Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction. Redox Biol 2018; 21:101087. [PMID: 30682706 PMCID: PMC6351232 DOI: 10.1016/j.redox.2018.101087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Phagocyte-derived production of a complex mixture of different oxidants is a major mechanism of the host defense against microbial intruders. On the protein level, a major target of these oxidants is the thiol group of the amino acid cysteine in proteins. Oxidation of thiol groups is a widespread regulatory post-translational protein modification. It is used by bacteria to respond to and to overcome oxidative stress. Numerous redox proteomic studies have shown that protein thiols in bacteria, such as Escherichia coli react towards a number of oxidants in specific ways. However, our knowledge about protein thiols in bacteria exposed to the complex mixture of oxidants encountered in the phagolysosome is still limited. In this study, we used a quantitative redox proteomic method (OxICAT) to assess the in vivo thiol oxidation status of phagocytized E. coli. The majority (65.5%) of identified proteins harbored thiols that were significantly oxidized (> 30%) upon phagocytosis. A substantial number of these proteins are from major metabolic pathways or are involved in cell detoxification and stress response, suggesting a systemic breakdown of the bacterial cysteine proteome in phagocytized bacteria. 16 of the oxidized proteins provide E. coli with a significant growth advantage in the presence of H2O2, when compared to deletion mutants lacking these proteins, and 11 were shown to be essential under these conditions.
Collapse
Affiliation(s)
- Kaibo Xie
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, 44780 Bochum, Germany
| | - Christina Bunse
- Ruhr University Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany
| | - Katrin Marcus
- Ruhr University Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, 44780 Bochum, Germany.
| |
Collapse
|
30
|
Franco M, D'haeseleer PM, Branda SS, Liou MJ, Haider Y, Segelke BW, El-Etr SH. Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Front Cell Infect Microbiol 2018; 8:370. [PMID: 30406044 PMCID: PMC6206043 DOI: 10.3389/fcimb.2018.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, and are often fatal to humans and animals. Owing to the high fatality rate, potential for spread by aerosolization, and the lack of efficacious therapeutics, B. pseudomallei and B. mallei are considered biothreat agents of concern. In this study, we investigate the proteome of Burkholderia thailandensis, a closely related surrogate for the two more virulent Burkholderia species, during infection of host cells, and compare to that of B. thailandensis in culture. Studying the proteome of Burkholderia spp. during infection is expected to reveal molecular mechanisms of intracellular survival and host immune evasion; but proteomic profiling of Burkholderia during host infection is challenging. Proteomic analyses of host-associated bacteria are typically hindered by the overwhelming host protein content recovered from infected cultures. To address this problem, we have applied bio-orthogonal noncanonical amino acid tagging (BONCAT) to B. thailandensis, enabling the enrichment of newly expressed bacterial proteins from virtually any growth condition, including host cell infection. In this study, we show that B. thailandensis proteins were selectively labeled and efficiently enriched from infected host cells using BONCAT. We also demonstrate that this method can be used to label bacteria in situ by fluorescent tagging. Finally, we present a global proteomic profile of B. thailandensis as it infects host cells and a list of proteins that are differentially regulated in infection conditions as compared to bacterial monoculture. Among the identified proteins are quorum sensing regulated genes as well as homologs to previously identified virulence factors. This method provides a powerful tool to study the molecular processes during Burkholderia infection, a much-needed addition to the Burkholderia molecular toolbox.
Collapse
Affiliation(s)
- Magdalena Franco
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | | | | | - Megan J Liou
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yasmeen Haider
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sahar H El-Etr
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
31
|
Elder JR, Paul NC, Burin R, Guard J, Shah DH. Genomic organization and role of SPI-13 in nutritional fitness of Salmonella. Int J Med Microbiol 2018; 308:1043-1052. [PMID: 30466554 DOI: 10.1016/j.ijmm.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Salmonella pathogenicity island 13 (SPI-13) contributes to the virulence of Salmonella. The majority of the SPI-13 genes encode proteins putatively involved in bacterial metabolism, however, their functions largely remain uncharacterized. It is currently unknown if SPI-13 contributes to metabolic fitness of Salmonella and, if so, what are the metabolic substrates for the protein encoded by genes within SPI-13. We employed Phenotype Microarray (Biolog, USA) to compare the metabolic properties of SPI-13 deficient mutant (ΔSPI-13) and the WT parent strain of non-typhoidal Salmonella enterica sub sp. enterica serovar Enteritidis (S. Enteritidis). The results of Phenotype Microarray revealed that SPI-13 is required for efficient utilization of two micronutrients, namely, d-glucuronic acid (DGA) and tyramine (TYR), as sole sources of carbon and/or nitrogen. By systematic deletion of the individual gene(s), we identified specific genes within SPI-13 that are required for efficient utilization of DGA (SEN2977-80) and TYR (SEN2967 and SEN2971-72) as sole nutrient sources. The results show that SPI-13 mediated DGA and TYR metabolic pathways afford nutritional fitness to S. Enteritidis. Comparative genomics analysis of the SPI-13 locus from 247 Salmonella strains belonging to 57 different serovars revealed that SPI-13 genes specifically involved in the metabolism of DGA and TYR are highly conserved in Salmonella enterica. Because DGA and TYR are naturally present as metabolic byproducts in the gastrointestinal tract and other host tissues, we propose a metabolic model that shows that the role of SPI-13 mediated DGA and TYR metabolism in the nutritional fitness of Salmonella is likely linked to nutritional virulence of this pathogen.
Collapse
Affiliation(s)
- Jacob R Elder
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA
| | - Narayan C Paul
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA
| | - Raquel Burin
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA
| | - Jean Guard
- Egg Quality and Safety Research Unit, Agriculture Research Service, United StatesDepartment of Agriculture, Athens, GA, 30605, USA
| | - Devendra H Shah
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-7040, USA.
| |
Collapse
|
32
|
Pardo-Esté C, Hidalgo AA, Aguirre C, Briones AC, Cabezas CE, Castro-Severyn J, Fuentes JA, Opazo CM, Riedel CA, Otero C, Pacheco R, Valvano MA, Saavedra CP. The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium. PLoS One 2018; 13:e0203497. [PMID: 30180204 PMCID: PMC6122832 DOI: 10.1371/journal.pone.0203497] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica Serovar Typhimurium (S. Typhimurium) is an intracellular bacterium that overcomes host immune system barriers for successful infection. The bacterium colonizes the proximal small intestine, penetrates the epithelial layer, and is engulfed by macrophages and neutrophils. Intracellularly, S. Typhimurium encounters highly toxic reactive oxygen species including hydrogen peroxide and hypochlorous acid. The molecular mechanisms of Salmonella resistance to intracellular oxidative stress is not completely understood. The ArcAB two-component system is a global regulatory system that responds to oxygen. In this work, we show that the ArcA response regulator participates in Salmonella adaptation to changing oxygen levels and is also involved in promoting intracellular survival in macrophages and neutrophils, enabling S. Typhimurium to successfully establish a systemic infection.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alejandro A. Hidalgo
- Laboratorio de Patogenesis Bacteriana, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Camila Aguirre
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alan C. Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina E. Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cecilia M. Opazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Carolina Otero
- Center for Integrative Medicine and Innovative Science (CIMIS), Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Miguel A. Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
33
|
Agarwal S, Ghosh S, Sharma S, Kaur K, Verma I. Mycobacterium tuberculosis H37Rv expresses differential proteome during intracellular survival within alveolar epithelial cells compared with macrophages. Pathog Dis 2018; 76:5052203. [DOI: 10.1093/femspd/fty058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- S Agarwal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - S Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - S Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - K Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - I Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
34
|
Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. EMBO J 2018; 37:embj.201796977. [PMID: 29858228 DOI: 10.15252/embj.201796977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
The mechanism of action and contribution to pathogenesis of many virulence genes are understood. By contrast, little is known about anti-virulence genes, which contribute to the start, progression, and outcome of an infection. We now report how an anti-virulence factor in Salmonella enterica serovar Typhimurium dictates the onset of a genetic program that governs metabolic adaptations and pathogen survival in host tissues. Specifically, we establish that the anti-virulence protein CigR directly restrains the virulence protein MgtC, thereby hindering intramacrophage survival, inhibition of ATP synthesis, stabilization of cytoplasmic pH, and gene transcription by the master virulence regulator PhoP. We determine that, like MgtC, CigR localizes to the bacterial inner membrane and that its C-terminal domain is critical for inhibition of MgtC. As in many toxin/anti-toxin genes implicated in antibiotic tolerance, the mgtC and cigR genes are part of the same mRNA. However, cigR is also transcribed from a constitutive promoter, thereby creating a threshold of CigR protein that the inducible MgtC protein must overcome to initiate a virulence program critical for pathogen persistence in host tissues.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.,Yale Microbial Sciences Institute, West Haven, CT, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA .,Yale Microbial Sciences Institute, West Haven, CT, USA
| |
Collapse
|
35
|
Hanko EK, Minton NP, Malys N. A Transcription Factor-Based Biosensor for Detection of Itaconic Acid. ACS Synth Biol 2018; 7:1436-1446. [PMID: 29638114 PMCID: PMC6345495 DOI: 10.1021/acssynbio.8b00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Itaconic acid is an important platform chemical that can easily be incorporated into polymers and has the potential to replace petrochemical-based acrylic or methacrylic acid. A number of microorganisms have been developed for the biosynthesis of itaconate including Aspergillus terreus, Escherichia coli, and Saccharomyces cerevisiae. However, the number of strains and conditions that can be tested for increased itaconate titers are currently limited because of the lack of high-throughput screening methods. Here we identified itaconate-inducible promoters and their corresponding LysR-type transcriptional regulators from Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that the YpItcR/P ccl inducible system is highly inducible by itaconic acid in the model gammaproteobacterium E. coli and the betaproteobacterium Cupriavidus necator (215- and 105-fold, respectively). The kinetics and dynamics of the YpItcR/P ccl inducible system are investigated, and we demonstrate, that in addition to itaconate, the genetically encoded biosensor is capable of detecting mesaconate, cis-, and trans-aconitate in a dose-dependent manner. Moreover, the fluorescence-based biosensor is applied in E. coli to identify the optimum expression level of cadA, the product of which catalyzes the conversion of cis-aconitate into itaconate. The fluorescence output is shown to correlate well with itaconate concentrations quantified using high-performance liquid chromatography coupled with ultraviolet spectroscopy. This work highlights the potential of the YpItcR/P ccl inducible system to be applied as a biosensor for high-throughput microbial strain development to facilitate improved itaconate biosynthesis.
Collapse
Affiliation(s)
- Erik K.
R. Hanko
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), School of Life Sciences,
Centre for Biomolecular Sciences, The University
of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Nigel P. Minton
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), School of Life Sciences,
Centre for Biomolecular Sciences, The University
of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Naglis Malys
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), School of Life Sciences,
Centre for Biomolecular Sciences, The University
of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
36
|
Hebert CG, Hart S, Leski TA, Terray A, Lu Q. Label-Free Detection of Bacillus anthracis Spore Uptake in Macrophage Cells Using Analytical Optical Force Measurements. Anal Chem 2017; 89:10296-10302. [PMID: 28876903 DOI: 10.1021/acs.analchem.7b01983] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Understanding the interaction between macrophage cells and Bacillus anthracis spores is of significant importance with respect to both anthrax disease progression, spore detection for biodefense, as well as understanding cell clearance in general. While most detection systems rely on specific molecules, such as nucleic acids or proteins and fluorescent labels to identify the target(s) of interest, label-free methods probe changes in intrinsic properties, such as size, refractive index, and morphology, for correlation with a particular biological event. Optical chromatography is a label free technique that uses the balance between optical and fluidic drag forces within a microfluidic channel to determine the optical force on cells or particles. Here we show an increase in the optical force experienced by RAW264.7 macrophage cells upon the uptake of both microparticles and B. anthracis Sterne 34F2 spores. In the case of spores, the exposure was detected in as little as 1 h without the use of antibodies or fluorescent labels of any kind. An increase in the optical force was also seen in macrophage cells treated with cytochalasin D, both with and without a subsequent exposure to spores, indicating that a portion of the increase in the optical force arises independent of phagocytosis. These results demonstrate the capability of optical chromatography to detect subtle biological differences in a rapid and sensitive manner and suggest future potential in a range of applications, including the detection of biological threat agents for biodefense and pathogens for the prevention of sepsis and other diseases.
Collapse
Affiliation(s)
- Colin G Hebert
- Naval Research Laboratory , Chemistry Division, Bio/Analytical Chemistry Section, Code 6112, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Sean Hart
- LumaCyte, LLC , 1145 River Road, Suite 16, Charlottesville, Virginia 22901, United States
| | - Tomasz A Leski
- Naval Research Laboratory , Center for Bio/Molecular Science and Engineering, Code 6910, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Alex Terray
- Naval Research Laboratory , Chemistry Division, Bio/Analytical Chemistry Section, Code 6112, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Qin Lu
- Naval Research Laboratory , Chemistry Division, Bio/Analytical Chemistry Section, Code 6112, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
37
|
Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Front Cell Infect Microbiol 2017; 7:428. [PMID: 29034217 PMCID: PMC5626846 DOI: 10.3389/fcimb.2017.00428] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella Typhimurium has a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to the various host environments it colonizes. The genome of Salmonella Typhimurium has undergone multiple gene acquisition events and has accrued changes in non-coding DNA that have undergone selection by regulatory evolution. Together, at least 17 horizontally acquired pathogenicity islands (SPIs), prophage-associated genes, and changes in core genome regulation contribute to the virulence program of Salmonella. Here, we review the latest understanding of these elements and their contributions to pathogenesis, emphasizing the regulatory circuitry that controls niche-specific gene expression. In addition to an overview of the importance of SPI-1 and SPI-2 to host invasion and colonization, we describe the recently characterized contributions of other SPIs, including the antibacterial activity of SPI-6 and adhesion and invasion mediated by SPI-4. We further discuss how these fitness traits have been integrated into the regulatory circuitry of the bacterial cell through cis-regulatory evolution and by a careful balance of silencing and counter-silencing by regulatory proteins. Detailed understanding of regulatory evolution within Salmonella is uncovering novel aspects of infection biology that relate to host-pathogen interactions and evasion of host immunity.
Collapse
Affiliation(s)
- Bushra Ilyas
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Brian K Coombes
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Matyushkina DS, Butenko IO, Pobeguts OV, Fisunov GY, Govorun VM. Proteomic response of bacteria during the interaction with a host cell in a model of Mycoplasma gallisepticum. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Qi L, Hu M, Fu J, Liu Y, Wu M, Yu K, Liu X. Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium. Proteomics 2017; 17. [PMID: 28544771 DOI: 10.1002/pmic.201700092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
Systems-level analyses have the capability to offer new insight into host-pathogen interactions on the molecular level. Using Salmonella infection of host epithelial cells as a model system, we previously analyzed intracellular bacterial proteome as a window into pathogens' adaptations to their host environment [Infect. Immun. 2015; J. Proteome Res. 2017]. Herein we extended our efforts to quantitatively examine protein expression of host cells during infection. In total, we identified more than 5000 proteins with 194 differentially regulated proteins upon bacterial infection. Notably, we found marked induction of host integrin signaling and glycolytic pathways. Intriguingly, up-regulation of host glucose metabolism concurred with increased utilization of glycolysis by intracellular Salmonella during infection. In addition to immunoblotting assays, we also verified the up-regulation of PARP1 in the host nucleus by selected reaction monitoring and immunofluorescence studies. Furthermore, we provide evidence that PARP1 elevation is likely specific to Salmonella infection and independent of one of the bacterial type III secretion systems. Our work demonstrates that unbiased high-throughput proteomics can be used as a powerful approach to provide new perspectives on host-pathogen interactions.
Collapse
Affiliation(s)
- Linlu Qi
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mo Hu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
40
|
Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion. PLoS Pathog 2017; 13:e1006429. [PMID: 28575106 PMCID: PMC5476282 DOI: 10.1371/journal.ppat.1006429] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 05/23/2017] [Indexed: 02/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1)-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2) limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008), named LoiA (low oxygen induced factor A), directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1). Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF) under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen. Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1) is required for host cell invasion by S. Typhimurium. Expression of SPI-1 genes is induced by low oxygen (O2) tension under host conditions, but the relevant regulatory mechanisms are not clear. Here, we report a low O2-induced signal transduction pathway for the activation of SPI-1 expression in S. Typhimurium. A novel regulator, STM14_1008 (named LoiA), encoded within SPI-14 directly activates hilD, which in turn activates hilA (the master activator of SPI-1), and thus other SPI-1 genes under O2-limited conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, with loiA as the virulence determinant. This novel SPI-1 activation pathway can be used by S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. Acquisition of SPI-14 is therefore very important for the evolution of S. Typhimurium virulence by providing an essential component of this pathway, loiA.
Collapse
|
41
|
Espinoza RA, Silva-Valenzuela CA, Amaya FA, Urrutia ÍM, Contreras I, Santiviago CA. Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human macrophages. Biol Res 2017; 50:5. [PMID: 28202086 PMCID: PMC5311848 DOI: 10.1186/s40659-017-0109-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/04/2017] [Indexed: 02/03/2023] Open
Abstract
Background Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica, including S. Enteritidis, S. Typhimurium and S. Gallinarum. However, it is absent in typhoid serovars such as S. Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. Results
Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S. Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. Conclusions Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S. Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo A Espinoza
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Cecilia A Silva-Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Fernando A Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Ítalo M Urrutia
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Inés Contreras
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| |
Collapse
|
42
|
Liu Y, Yu K, Zhou F, Ding T, Yang Y, Hu M, Liu X. Quantitative Proteomics Charts the Landscape of Salmonella Carbon Metabolism within Host Epithelial Cells. J Proteome Res 2016; 16:788-797. [DOI: 10.1021/acs.jproteome.6b00793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanhua Liu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kaiwen Yu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Zhou
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tao Ding
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yufei Yang
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mo Hu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Resistance of Mice of the 129 Background to Yersinia pestis Maps to Multiple Loci on Chromosome 1. Infect Immun 2016; 84:2904-13. [PMID: 27481241 DOI: 10.1128/iai.00488-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is a Gram-negative bacterium that is the causative agent of bubonic and pneumonic plague. It is commonly acquired by mammals such as rodents and humans via the bite of an infected flea. We previously reported that multiple substrains of the 129 mouse background are resistant to pigmentation locus-negative (pgm(-)) Yersinia pestis and that this phenotype maps to a 30-centimorgan (cM) region located on chromosome 1. In this study, we have further delineated this plague resistance locus to a region of less than 20 cM through the creation and phenotyping of recombinant offspring arising from novel crossovers in this region. Furthermore, our experiments have revealed that there are at least two alleles in this initial locus, both of which are required for resistance on a susceptible C57BL/6 background. These two alleles work in trans since resistance is restored in offspring possessing one allele contributed by each parent. Our studies also indicated that the Slc11a1 gene (formerly known as Nramp1) located within the chromosome1 locus is not responsible for conferring resistance to 129 mice.
Collapse
|
44
|
Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter. mSystems 2016; 1:mSystems00032-15. [PMID: 27822540 PMCID: PMC5069955 DOI: 10.1128/msystems.00032-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action. Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action.
Collapse
|
45
|
Elder JR, Chiok KL, Paul NC, Haldorson G, Guard J, Shah DH. The Salmonella pathogenicity island 13 contributes to pathogenesis in streptomycin pre-treated mice but not in day-old chickens. Gut Pathog 2016; 8:16. [PMID: 27141235 PMCID: PMC4852409 DOI: 10.1186/s13099-016-0098-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) is a human and animal pathogen that causes gastroenteritis characterized by inflammatory diarrhea and occasionally an invasive systemic infection. Salmonella pathogenicity islands (SPIs) are horizontally acquired genomic segments known to contribute to Salmonella pathogenesis. The objective of the current study was to determine the contribution of SPI-13 to S. Enteritidis pathogenesis. METHODS We deleted the entire SPI-13 (∆SPI-13) from the genome of S. Enteritidis CDC_2010K_0968 strain isolated from a human patient during the 2010 egg-associated outbreak in the US. The kinetics of infection of the wild-type parent and the ∆SPI-13 were compared in orally challenged day-old chickens and streptomycin pre-treated mice. The degree of intestinal inflammation and the survival of mutant strain within the avian (HD11) and murine (RAW264.7) macrophages were also determined. RESULTS The deletion of the SPI-13 resulted in impaired infection kinetics of S. Enteritidis in streptomycin pre-treated mice which was characterized by significantly lower (P < 0.05) viable counts in the ceca, liver and spleen, impaired ability to induce intestinal inflammation and reduced survival within murine macrophages. Conversely, there were no significant differences in the infection kinetics of ∆SPI-13 in day-old chickens in any of the organs tested and the survival of ∆SPI-13 within chicken macrophages remained unaltered. CONCLUSIONS The results of this study show that SPI-13 contributes to the pathogenesis of S. Enteritidis in streptomycin pre-treated mice but not in day-old chickens and raises the possibility that SPI-13 may play a role in pathogenesis and the host adaptation/restriction of Salmonella serovars.
Collapse
Affiliation(s)
- Jacob R Elder
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | - Kim Lam Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | - Gary Haldorson
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | - Jean Guard
- Egg Quality and Safety Research Unit, Agriculture Research Service, United States Department of Agriculture, Athens, GA 30605 USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA ; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040 USA
| |
Collapse
|
46
|
Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics 2016; 13:139-56. [PMID: 26653908 DOI: 10.1586/14789450.2016.1132168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting.
Collapse
Affiliation(s)
- Maja Semanjski
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| | - Boris Macek
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
47
|
Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 2015; 9:116-26. [PMID: 26639528 PMCID: PMC4720413 DOI: 10.1111/1751-7915.12329] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022] Open
Abstract
Itaconic acid is an important biomass‐derived chemical building block but has also recently been identified as a metabolite produced in mammals, which has antimicrobial activity. The biosynthetic pathway of itaconic acid has been elucidated in the ascomycetous fungus Aspergillus terreus and in human macrophages. In both organisms itaconic acid is generated by decarboxylation of the tricarboxylic acid (TCA) cycle intermediate cis‐aconitate. Here, we show that the basidiomycetous fungus Ustilago maydis uses an alternative pathway and produces itaconic acid via trans‐aconitate, the thermodynamically favoured isomer of cis‐aconitate. We have identified a gene cluster that contains all genes involved in itaconic acid formation. Trans‐aconitate is generated from cis‐aconitate by a cytosolic aconitate‐Δ‐isomerase (Adi1) that belongs to the PrpF family of proteins involved in bacterial propionate degradation. Decarboxylation of trans‐aconitate is catalyzed by a novel enzyme, trans‐aconitate decarboxylase (Tad1). Tad1 displays significant sequence similarity with bacterial 3‐carboxy‐cis,cis‐muconate lactonizing enzymes (CMLE). This suggests that U. maydis has evolved an alternative biosynthetic pathway for itaconate production using the toxic intermediate trans‐aconitate. Overexpression of a pathway‐specific transcription factor (Ria1) or a mitochondrial tricarboxylic acid transporter (Mtt1) resulted in a twofold increase in itaconate yield. Therefore, our findings offer new strategies for biotechnological production of this valuable biomass‐derived chemical.
Collapse
Affiliation(s)
- Elena Geiser
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Sandra K Przybilla
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, D-35032, Marburg, Germany
| | - Alexandra Friedrich
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, D-35032, Marburg, Germany
| | - Wolfgang Buckel
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, D-35032, Marburg, Germany
| | - Nick Wierckx
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, D-35032, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, D-35032, Marburg, Germany
| |
Collapse
|
48
|
Rees MA, Stinear TP, Goode RJA, Coppel RL, Smith AI, Kleifeld O. Changes in protein abundance are observed in bacterial isolates from a natural host. Front Cell Infect Microbiol 2015; 5:71. [PMID: 26528441 PMCID: PMC4604328 DOI: 10.3389/fcimb.2015.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022] Open
Abstract
Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterization of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the lymph nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins were identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.
Collapse
Affiliation(s)
- Megan A Rees
- Coppel Laboratory, Department of Microbiology, Monash University Clayton, VIC, Australia ; Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Timothy P Stinear
- Stinear Laboratory, Department of Microbiology and Immunology, University of Melbourne Parkville, VIC, Australia
| | - Robert J A Goode
- Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Ross L Coppel
- Coppel Laboratory, Department of Microbiology, Monash University Clayton, VIC, Australia
| | - Alexander I Smith
- Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Oded Kleifeld
- Monash Biomedical Proteomics Facility, Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
49
|
Staib L, Fuchs TM. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 6:1116. [PMID: 26528264 PMCID: PMC4600919 DOI: 10.3389/fmicb.2015.01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose.
Collapse
Affiliation(s)
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Institute for Food and Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|
50
|
Abstract
Human salmonellosis is generally associated with Salmonella enterica from subspecies enterica (subspecies I). Acute infections can present in one of four ways: enteric fever, gastroenteritis, bacteremia, or extraintestinal focal infection. As with other infectious diseases, the course and outcome of the infection depend on a variety of factors, including the infecting organism, the inoculating dose, and the immune status and genetic background of the host. For serovarsTyphi and Paratyphi A there is a clear association between the genetic background of the serovar and systemic infection in humans. For serovars Paratyphi B and Paratyphi C, a good clinical description of the host and detailed population genetics of the pathogen are necessary before more detailed genetic studies of novel virulence factors,or host factors,can be initiated. For the nontyphoidalserovars (NTS) the situation is less clear. Serovars Typhimurium and Enteritidis are the most common within the food chain, and so the large number of invasive infections associated with these serovars is most likely due to exposure rather than to increased virulence of the pathogen. In Africa, however, a closely related group of strains of serovar Typhimurium, associated with HIV infection, may have become host adapted tohumans, suggesting that not all isolates called "Typhimurium" should be considered as a single group. Here we review current knowledge of the salmonellae for which invasive disease in humans is an important aspect of their population biology.
Collapse
|