1
|
Arunachalam E, Keber FC, Law RC, Kumar CK, Shen Y, Park JO, Wühr M, Needleman DJ. Robustness of mitochondrial biogenesis and respiration explain aerobic glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601975. [PMID: 39005310 PMCID: PMC11245115 DOI: 10.1101/2024.07.04.601975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A long-standing observation is that in fast-growing cells, respiration rate declines with increasing growth rate and is compensated by an increase in fermentation, despite respiration being more efficient than fermentation. This apparent preference for fermentation even in the presence of oxygen is known as aerobic glycolysis, and occurs in bacteria, yeast, and cancer cells. Considerable work has focused on understanding the potential benefits that might justify this seemingly wasteful metabolic strategy, but its mechanistic basis remains unclear. Here we show that aerobic glycolysis results from the saturation of mitochondrial respiration and the decoupling of mitochondrial biogenesis from the production of other cellular components. Respiration rate is insensitive to acute perturbations of cellular energetic demands or nutrient supplies, and is explained simply by the amount of mitochondria per cell. Mitochondria accumulate at a nearly constant rate across different growth conditions, resulting in mitochondrial amount being largely determined by cell division time. In contrast, glucose uptake rate is not saturated, and is accurately predicted by the abundances and affinities of glucose transporters. Combining these models of glucose uptake and respiration provides a quantitative, mechanistic explanation for aerobic glycolysis. The robustness of specific respiration rate and mitochondrial biogenesis, paired with the flexibility of other bioenergetic and biosynthetic fluxes, may play a broad role in shaping eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Easun Arunachalam
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Felix C. Keber
- Lewis-Sigler Institute for Integrative Genomics
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Richard C. Law
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chirag K. Kumar
- Lewis-Sigler Institute for Integrative Genomics
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yihui Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Daniel J. Needleman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| |
Collapse
|
2
|
Alves S, Santos-Pereira C, Oliveira CSF, Preto A, Chaves SR, Côrte-Real M. Enhancement of Acetate-Induced Apoptosis of Colorectal Cancer Cells by Cathepsin D Inhibition Depends on Oligomycin A-Sensitive Respiration. Biomolecules 2024; 14:473. [PMID: 38672489 PMCID: PMC11048611 DOI: 10.3390/biom14040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Conventional therapies are available with varying effectiveness. Acetate, a short-chain fatty acid produced by human intestinal bacteria, triggers mitochondria-mediated apoptosis preferentially in CRC but not in normal colonocytes, which has spurred an interest in its use for CRC prevention/therapy. We previously uncovered that acetate-induced mitochondrial-mediated apoptosis in CRC cells is significantly enhanced by the inhibition of the lysosomal protease cathepsin D (CatD), which indicates both mitochondria and the lysosome are involved in the regulation of acetate-induced apoptosis. Herein, we sought to determine whether mitochondrial function affects CatD apoptotic function. We found that enhancement of acetate-induced apoptosis by CatD inhibition depends on oligomycin A-sensitive respiration. Mechanistically, the potentiating effect is associated with an increase in cellular and mitochondrial superoxide anion accumulation and mitochondrial mass. Our results provide novel clues into the regulation of CatD function and the effect of tumor heterogeneity in the outcome of combined treatment using acetate and CatD inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Susana R. Chaves
- CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; (S.A.); (C.S.-P.); (C.S.F.O.); (A.P.)
| | - Manuela Côrte-Real
- CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; (S.A.); (C.S.-P.); (C.S.F.O.); (A.P.)
| |
Collapse
|
3
|
Martins Pinto M, Paumard P, Bouchez C, Ransac S, Duvezin-Caubet S, Mazat JP, Rigoulet M, Devin A. The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148931. [PMID: 36367492 DOI: 10.1016/j.bbabio.2022.148931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells display an altered energy metabolism, which was proposed to be the root of cancer. This early discovery was done by O. Warburg who conducted one of the first studies of tumor cell energy metabolism. Taking advantage of cancer cells that exhibited various growth rates, he showed that cancer cells display a decreased respiration and an increased glycolysis proportional to the increase in their growth rate, suggesting that they mainly depend on fermentative metabolism for ATP generation. Warburg's results and hypothesis generated controversies that are persistent to this day. It is thus of great importance to understand the mechanisms by which cancer cells can reversibly regulate the two pathways of their energy metabolism as well as the functioning of this metabolism in cell proliferation. In this review, we discuss of the origin of the decrease in cell respiratory rate, whether the Warburg effect is mandatory for an increased cell proliferation rate, the consequences of this effect on two major players of cell energy metabolism that are ATP and NADH, and the role of the microenvironment in the regulation of cellular respiration and metabolism both in cancer cell and in yeast.
Collapse
Affiliation(s)
- M Martins Pinto
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; CBMN, Allée de Geoffroy St Hilaire Bât, B1433600 Pessac, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
4
|
Terra-Matos J, Teixeira MO, Santos-Pereira C, Noronha H, Domingues L, Sieiro C, Gerós H, Chaves SR, Sousa MJ, Côrte-Real M. Saccharomyces cerevisiae Cells Lacking the Zinc Vacuolar Transporter Zrt3 Display Improved Ethanol Productivity in Lignocellulosic Hydrolysates. J Fungi (Basel) 2022; 8:78. [PMID: 35050019 PMCID: PMC8779672 DOI: 10.3390/jof8010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Yeast-based bioethanol production from lignocellulosic hydrolysates (LH) is an attractive and sustainable alternative for biofuel production. However, the presence of acetic acid (AA) in LH is still a major problem. Indeed, above certain concentrations, AA inhibits yeast fermentation and triggers a regulated cell death (RCD) process mediated by the mitochondria and vacuole. Understanding the mechanisms involved in AA-induced RCD (AA-RCD) may thus help select robust fermentative yeast strains, providing novel insights to improve lignocellulosic ethanol (LE) production. Herein, we hypothesized that zinc vacuolar transporters are involved in vacuole-mediated AA-RCD, since zinc enhances ethanol production and zinc-dependent catalase and superoxide dismutase protect from AA-RCD. In this work, zinc limitation sensitized wild-type cells to AA-RCD, while zinc supplementation resulted in a small protective effect. Cells lacking the vacuolar zinc transporter Zrt3 were highly resistant to AA-RCD, exhibiting reduced vacuolar dysfunction. Moreover, zrt3Δ cells displayed higher ethanol productivity than their wild-type counterparts, both when cultivated in rich medium with AA (0.29 g L-1 h-1 versus 0.11 g L-1 h-1) and in an LH (0.73 g L-1 h-1 versus 0.55 g L-1 h-1). Overall, the deletion of ZRT3 emerges as a promising strategy to increase strain robustness in LE industrial production.
Collapse
Affiliation(s)
- Joana Terra-Matos
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
| | - Marta Oliveira Teixeira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Carmen Sieiro
- Biomedical Research Center (CINBIO), Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Susana Rodrigues Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University do Minho, 4710-057 Braga, Portugal; (J.T.-M.); (M.O.T.); (C.S.-P.); (H.N.); (H.G.); (S.R.C.); (M.J.S.)
| |
Collapse
|
5
|
Rigoulet M, Bouchez CL, Paumard P, Ransac S, Cuvellier S, Duvezin-Caubet S, Mazat JP, Devin A. Cell energy metabolism: An update. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148276. [PMID: 32717222 DOI: 10.1016/j.bbabio.2020.148276] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.
Collapse
Affiliation(s)
- M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
6
|
Bouchez CL, Yoboue ED, de la Rosa Vargas LE, Salin B, Cuvellier S, Rigoulet M, Duvezin-Caubet S, Devin A. "Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in Saccharomyces cerevisiae. J Biol Chem 2020; 295:5095-5109. [PMID: 32075909 DOI: 10.1074/jbc.ra120.012739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
Heme (iron protoporphyrin IX) is a well-known prosthetic group for enzymes involved in metabolic pathways such as oxygen transport and electron transfer through the mitochondrial respiratory chain. However, heme has also been shown to be an important regulatory molecule (as "labile" heme) for diverse processes such as translation, kinase activity, and transcription in mammals, yeast, and bacteria. Taking advantage of a yeast strain deficient for heme production that enabled controlled modulation and monitoring of labile heme levels, here we investigated the role of labile heme in the regulation of mitochondrial biogenesis. This process is regulated by the HAP complex in yeast. Using several biochemical assays along with EM and epifluorescence microscopy, to the best of our knowledge, we show for the first time that cellular labile heme is critical for the post-translational regulation of HAP complex activity, most likely through the stability of the transcriptional co-activator Hap4p. Consequently, we found that labile heme regulates mitochondrial biogenesis and cell growth. The findings of our work highlight a new mechanism in the regulation of mitochondrial biogenesis by cellular metabolites.
Collapse
Affiliation(s)
- Cyrielle L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Edgar D Yoboue
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Livier E de la Rosa Vargas
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Bénédicte Salin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Sylvain Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Michel Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Stéphane Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France .,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
7
|
Mori K, Beauvoit BP, Biais B, Chabane M, Allwood JW, Deborde C, Maucourt M, Goodacre R, Cabasson C, Moing A, Rolin D, Gibon Y. Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:594. [PMID: 31156666 PMCID: PMC6529934 DOI: 10.3389/fpls.2019.00594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Respiration of bulky plant organs such as fleshy fruits depends on oxygen (O2) availability and often decreases with O2 concentration to avoid anoxia, but the relationship between O2 diffusional resistance and metabolic adjustments remains unclear. Melon fruit (Cucumis melo L.) was used to study relationships between O2 availability and metabolism in fleshy fruits. Enzyme activities, primary metabolites and O2 partial pressure were quantified from the periphery to the inner fruit mesocarp, at three stages of development. Hypoxia was gradually established during fruit development, but there was no strong oxygen gradient between the outer- and the inner mesocarp. These trends were confirmed by a mathematical modeling approach combining O2 diffusion equations and O2 demand estimates of the mesocarp tissue. A multivariate analysis of metabolites, enzyme activities, O2 demand and concentration reveals that metabolite gradients and enzyme capacities observed in melon fruits reflect continuous metabolic adjustments thus ensuring a timely maturation of the mesocarp. The present results suggest that the metabolic adjustments, especially the tuning of the capacity of cytochrome c oxidase (COX) to O2-availability that occurs during growth development, contribute to optimizing the O2-demand and avoiding the establishment of an O2 gradient within the flesh.
Collapse
Affiliation(s)
- Kentaro Mori
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Benoît Biais
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Maxime Chabane
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - J. William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, United Kingdom
| | - Catherine Deborde
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Mickaël Maucourt
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Royston Goodacre
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Cécile Cabasson
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Dominique Rolin
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| |
Collapse
|
8
|
Bouchez C, Devin A. Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): A Complex Relationship Regulated by the cAMP/PKA Signaling Pathway. Cells 2019; 8:cells8040287. [PMID: 30934711 PMCID: PMC6523352 DOI: 10.3390/cells8040287] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial biogenesis is a complex process. It requires the contribution of both the nuclear and the mitochondrial genomes and therefore cross talk between the nucleus and mitochondria. Cellular energy demand can vary by great length and it is now well known that one way to adjust adenosine triphosphate (ATP) synthesis to energy demand is through modulation of mitochondrial content in eukaryotes. The knowledge of actors and signals regulating mitochondrial biogenesis is thus of high importance. Here, we review the regulation of mitochondrial biogenesis both in yeast and in mammalian cells through mitochondrial reactive oxygen species.
Collapse
Affiliation(s)
- Cyrielle Bouchez
- Université Bordeaux, IBGC, UMR 5095, 33077 Bordeaux cedex, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1, rue Camille Saint Saëns, 33077 Bordeaux Cedex, France.
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, 33077 Bordeaux cedex, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1, rue Camille Saint Saëns, 33077 Bordeaux Cedex, France.
| |
Collapse
|
9
|
Avéret N, Jobin ML, Devin A, Rigoulet M. Proton pumping complex I increases growth yield in Candida utilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1320-6. [PMID: 26164102 DOI: 10.1016/j.bbabio.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and cellular maintenance processes. A crucial parameter for growth evaluation is its yield, i.e. the efficiency of the transformation processes. The yeast Candida utilis is of peculiar interest since its mitochondria exhibit a complex I that is proposed to pump protons but also an external NADH dehydrogenase that do not pump protons. Here, we show that in C. utilis cells grown on non-fermentable media, growth yield is 30% higher as compared to that of Saccharomyces cerevisiae that do not exhibit a complex I. Moreover, ADP/O determination in C. utilis shows that electrons coming from internal NADH dehydrogenase go through proton pumping complex I, whereas electrons coming from external NADH dehydrogenases do not go through proton pumping complex I. Furthermore, we show that electron competition strictly depends on extra-mitochondrial NADH concentration, i.e. the higher the extra-mitochondrial NADH concentration, the higher the competition process with a right way for electrons coming from external NADH dehydrogenases. Such a complex regulation in C. utilis allows an increase in growth yield when cytosolic NADH is not plentiful but still favors the cytosolic NADH re-oxidation at high NADH, favoring biomass generation metabolic pathways.
Collapse
Affiliation(s)
- Nicole Avéret
- Institute of Biochemistry and Genetics of the Cell, CNRS UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France; Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Marie-Lise Jobin
- Institute of Biochemistry and Genetics of the Cell, CNRS UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France; Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Anne Devin
- Institute of Biochemistry and Genetics of the Cell, CNRS UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France; Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Michel Rigoulet
- Institute of Biochemistry and Genetics of the Cell, CNRS UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France; Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France.
| |
Collapse
|
10
|
Rosas-Lemus M, Uribe-Alvarez C, Chiquete-Félix N, Uribe-Carvajal S. In Saccharomyces cerevisiae fructose-1,6-bisphosphate contributes to the Crabtree effect through closure of the mitochondrial unspecific channel. Arch Biochem Biophys 2014; 555-556:66-70. [PMID: 24924491 DOI: 10.1016/j.abb.2014.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 01/15/2023]
Abstract
In Saccharomyces cerevisiae addition of glucose inhibits oxygen consumption, i.e. S. cerevisiae is Crabtree-positive. During active glycolysis hexoses-phosphate accumulate, and probably interact with mitochondria. In an effort to understand the mechanism underlying the Crabtree effect, the effect of two glycolysis-derived hexoses-phosphate was tested on the S. cerevisiae mitochondrial unspecific channel (ScMUC). Glucose-6-phosphate (G6P) promoted partial opening of ScMUC, which led to proton leakage and uncoupling which in turn resulted in, accelerated oxygen consumption. In contrast, fructose-1,6-bisphosphate (F1,6BP) closed ScMUC and thus inhibited the rate of oxygen consumption. When added together, F1,6BP reverted the mild G6P-induced effects. F1,6BP is proposed to be an important modulator of ScMUC, whose closure contributes to the "Crabtree effect".
Collapse
Affiliation(s)
- Mónica Rosas-Lemus
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Cristina Uribe-Alvarez
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Inst. de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
11
|
Triggering respirofermentative metabolism in the crabtree-negative yeast Pichia guilliermondii by disrupting the CAT8 gene. Appl Environ Microbiol 2014; 80:3879-87. [PMID: 24747899 DOI: 10.1128/aem.00854-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pichia guilliermondii is a Crabtree-negative yeast that does not normally exhibit respirofermentative metabolism under aerobic conditions, and methods to trigger this metabolism may have applications for physiological study and industrial applications. In the present study, CAT8, which encodes a putative global transcriptional activator, was disrupted in P. guilliermondii. This yeast's ethanol titer increased by >20-fold compared to the wild type (WT) during aerobic fermentation using glucose. A comparative transcriptional analysis indicated that the expression of genes in the tricarboxylic acid cycle and respiratory chain was repressed in the CAT8-disrupted (ΔCAT8) strain, while the fermentative pathway genes were significantly upregulated. The respiratory activities in the ΔCAT8 strain, indicated by the specific oxygen uptake rate and respiratory state value, decreased to one-half and one-third of the WT values, respectively. In addition, the expression of HAP4, a transcriptional respiratory activator, was significantly repressed in the ΔCAT8 strain. Through disruption of HAP4, the ethanol production of P. guilliermondii was also increased, but the yield and titer were lower than that in the ΔCAT8 strain. A further transcriptional comparison between ΔCAT8 and ΔHAP4 strains suggested a more comprehensive reprogramming function of Cat8 in the central metabolic pathways. These results indicated the important role of CAT8 in regulating the glucose metabolism of P. guilliermondii and that the regulation was partially mediated by repressing HAP4. The strategy proposed here might be applicable to improve the aerobic fermentation capacity of other Crabtree-negative yeasts.
Collapse
|
12
|
Yoboue ED, Mougeolle A, Kaiser L, Averet N, Rigoulet M, Devin A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1093-8. [PMID: 24602596 DOI: 10.1016/j.bbabio.2014.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/27/2023]
Abstract
In yeast, there is a constant growth yield during proliferation on non-fermentable substrate where the ATP generated originates from oxidative phosphorylation. This constant growth yield is due to a tight adjustment between the growth rate and the cellular mitochondrial amount. We showed that this cellular mitochondrial amount is strictly controlled by mitochondrial biogenesis. Moreover, the Ras/cAMP pathway is the cellular signaling pathway involved in the regulation of mitochondrial biogenesis, with a direct relationship between the activity of this pathway and the cellular amount of mitochondria. The cAMP protein kinase Tpk3p is the catalytic subunit specifically involved in the regulation of mitochondrial biogenesis through regulation of the mitochondrial ROS production. An overflow of mitochondrial ROS decreases mitochondrial biogenesis through a decrease in the transcriptional co-activator Hap4p, which can be assimilated to mitochondria quality control. Moreover, the glutathione redox state is shown as being an intermediate in the regulation of mitochondrial biogenesis. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Edgar D Yoboue
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Alexis Mougeolle
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Laurent Kaiser
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Nicole Averet
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Michel Rigoulet
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France.
| |
Collapse
|
13
|
Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leão C, Côrte-Real M, Sousa MJ. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics 2013; 14:838. [PMID: 24286259 PMCID: PMC4046756 DOI: 10.1186/1471-2164-14-838] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetic acid is mostly known as a toxic by-product of alcoholic fermentation carried out by Saccharomyces cerevisiae, which it frequently impairs. The more recent finding that acetic acid triggers apoptotic programmed cell death (PCD) in yeast sparked an interest to develop strategies to modulate this process, to improve several biotechnological applications, but also for biomedical research. Indeed, acetate can trigger apoptosis in cancer cells, suggesting its exploitation as an anticancer compound. Therefore, we aimed to identify genes involved in the positive and negative regulation of acetic acid-induced PCD by optimizing a functional analysis of a yeast Euroscarf knock-out mutant collection. RESULTS The screen consisted of exposing the mutant strains to acetic acid in YPD medium, pH 3.0, in 96-well plates, and subsequently evaluating the presence of culturable cells at different time points. Several functional categories emerged as greatly relevant for modulation of acetic acid-induced PCD (e.g.: mitochondrial function, transcription of glucose-repressed genes, protein synthesis and modifications, and vesicular traffic for protection, or amino acid transport and biosynthesis, oxidative stress response, cell growth and differentiation, protein phosphorylation and histone deacetylation for its execution). Known pro-apoptotic and anti-apoptotic genes were found, validating the approach developed. Metabolism stood out as a main regulator of this process, since impairment of major carbohydrate metabolic pathways conferred resistance to acetic acid-induced PCD. Among these, lipid catabolism arose as one of the most significant new functions identified. The results also showed that many of the cellular and metabolic features that constitute hallmarks of tumour cells (such as higher glycolytic energetic dependence, lower mitochondrial functionality, increased cell division and metabolite synthesis) confer sensitivity to acetic acid-induced PCD, potentially explaining why tumour cells are more susceptible to acetate than untransformed cells and reinforcing the interest in exploiting this acid in cancer therapy. Furthermore, our results clearly establish a connection between cell proliferation and cell death regulation, evidencing a conserved developmental role of programmed cell death in unicellular eukaryotes. CONCLUSIONS This work advanced the characterization of acetic acid-induced PCD, providing a wealth of new information on putative molecular targets for its control with impact both in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Marlene Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Albertin W, da Silva T, Rigoulet M, Salin B, Masneuf-Pomarede I, de Vienne D, Sicard D, Bely M, Marullo P. The mitochondrial genome impacts respiration but not fermentation in interspecific Saccharomyces hybrids. PLoS One 2013; 8:e75121. [PMID: 24086452 PMCID: PMC3781082 DOI: 10.1371/journal.pone.0075121] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/08/2013] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.
Collapse
Affiliation(s)
- Warren Albertin
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche CEnologie, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Gradignan, France
| | - Telma da Silva
- INRA, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Michel Rigoulet
- CNRS, UMR 5095, Institute of Biochemistry and Genetics of the Cell, Bordeaux, France
- Univ. de Bordeaux, IBGC, UMR 5095, Bordeaux, France
| | - Benedicte Salin
- CNRS, UMR 5095, Institute of Biochemistry and Genetics of the Cell, Bordeaux, France
- Univ. de Bordeaux, IBGC, UMR 5095, Bordeaux, France
| | - Isabelle Masneuf-Pomarede
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche CEnologie, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Gradignan, France
| | - Dominique de Vienne
- Univ Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Delphine Sicard
- Univ Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Marina Bely
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche CEnologie, Villenave d’Ornon, France
| | - Philippe Marullo
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche CEnologie, Villenave d’Ornon, France
- BIOLAFFORT, Bordeaux, France
- * E-mail:
| |
Collapse
|
15
|
Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. Int J Biochem Cell Biol 2012; 45:167-74. [PMID: 23103716 DOI: 10.1016/j.biocel.2012.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 10/11/2012] [Accepted: 10/17/2012] [Indexed: 01/10/2023]
Abstract
Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
|
16
|
Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol 2012; 2012:403870. [PMID: 22693510 PMCID: PMC3369472 DOI: 10.1155/2012/403870] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.
Collapse
|
17
|
Yoboue ED, Augier E, Galinier A, Blancard C, Pinson B, Casteilla L, Rigoulet M, Devin A. cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state. J Biol Chem 2012; 287:14569-78. [PMID: 22396541 DOI: 10.1074/jbc.m111.302786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell fate and proliferation are tightly linked to the regulation of the mitochondrial energy metabolism. Hence, mitochondrial biogenesis regulation, a complex process that requires a tight coordination in the expression of the nuclear and mitochondrial genomes, has a major impact on cell fate and is of high importance. Here, we studied the molecular mechanisms involved in the regulation of mitochondrial biogenesis through a nutrient-sensing pathway, the Ras-cAMP pathway. Activation of this pathway induces a decrease in the cellular phosphate potential that alleviates the redox pressure on the mitochondrial respiratory chain. One of the cellular consequences of this modulation of cellular phosphate potential is an increase in the cellular glutathione redox state. The redox state of the glutathione disulfide-glutathione couple is a well known important indicator of the cellular redox environment, which is itself tightly linked to mitochondrial activity, mitochondria being the main cellular producer of reactive oxygen species. The master regulator of mitochondrial biogenesis in yeast (i.e. the transcriptional co-activator Hap4p) is positively regulated by the cellular glutathione redox state. Using a strain that is unable to modulate its glutathione redox state (Δglr1), we pinpoint a positive feedback loop between this redox state and the control of mitochondrial biogenesis. This is the first time that control of mitochondrial biogenesis through glutathione redox state has been shown.
Collapse
Affiliation(s)
- Edgar D Yoboue
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:568-76. [DOI: 10.1016/j.bbabio.2010.08.010] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/25/2022]
|
19
|
Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 2011; 14:459-68. [PMID: 20649461 DOI: 10.1089/ars.2010.3363] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria are the main source of reactive oxygen species in the cell. These reactive oxygen species have long been known as being involved in oxidative stress. This is a review of the mechanisms involved in reactive oxygen species generation by the respiratory chain and some of the dehydrogenases and the control by thermodynamic and kinetic constraints. Mitochondrial ROS produced at the level of the bc1 complex as well at the level of complex I are discussed. It was recognized more than a decade ago that they can also function as signaling molecules. This signaling role will be developed both in terms of mechanism and in terms of mitochondrial ROS signaling. The notion that hydrogen peroxide acts not only as a damaging oxidant but also as a signaling molecule was proposed more than a decade ago. Hydrogen peroxide signaling can be either direct (oxidation of its target) or indirect (involving peroxiredoxins, for example). The consequences of ROS signaling on crucial biologic processes such as cell proliferation and differentiation are discussed.
Collapse
Affiliation(s)
- Michel Rigoulet
- Université Bordeaux 2, and Institute of Biochemistry and Genetics of the Cell (IBGC) du CNRS, Bordeaux, France.
| | | | | |
Collapse
|
20
|
Gutiérrez-Aguilar M, Pérez-Martínez X, Chávez E, Uribe-Carvajal S. In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel. Arch Biochem Biophys 2009; 494:184-91. [PMID: 19995548 DOI: 10.1016/j.abb.2009.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 11/24/2022]
Abstract
The mitochondrial permeability transition (PT) involves the opening of a mitochondrial unselective channel (MUC) resulting in membrane depolarization and increased permeability to ions. PT has been observed in many, but not all eukaryotic species. In some species, PT has been linked to cell death, although other functions, such as matrix ion detoxification or regulation of the rate of oxygen consumption have been considered. The identification of the proteins constituting MUC would help understand the biochemistry and physiology of this channel. It has been suggested that the mitochondrial phosphate carrier is a structural component of MUC and we decided to test this in yeast mitochondria. Mersalyl inhibits the phosphate carrier and it has been reported that it also triggers PT. Mersalyl induced opening of the decavanadate-sensitive Yeast Mitochondrial Unselective Channel (YMUC). In isolated yeast mitochondria from a phosphate carrier-null strain the sensitivity to both phosphate and mersalyl was lost, although the permeability transition was still evoked by ATP in a decavanadate-sensitive fashion. Polyethylene glycol (PEG)-induced mitochondrial contraction results indicated that in mitochondria lacking the phosphate carrier the YMUC is smaller: complete contraction for mitochondria from the wild type and the mutant strains was achieved with 1.45 and 1.1 kDa PEGs, respectively. Also, as expected for a smaller channel titration with 1.1 kDa PEG evidenced a higher sensitivity in mitochondria from the mutant strain. The above data suggest that the phosphate carrier is the phosphate sensor in YMUC and contributes to the structure of this channel.
Collapse
|
21
|
Chevtzoff C, Yoboue ED, Galinier A, Casteilla L, Daignan-Fornier B, Rigoulet M, Devin A. Reactive oxygen species-mediated regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. J Biol Chem 2009; 285:1733-42. [PMID: 19897478 DOI: 10.1074/jbc.m109.019570] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial biogenesis is a complex process. It necessitates the participation of both the nuclear and the mitochondrial genomes. This process is highly regulated, and mitochondrial content within a cell varies according to energy demand. In the yeast Saccharomyces cerevisiae, the cAMP pathway is involved in the regulation of mitochondrial biogenesis. An overactivation of this pathway leads to an increase in mitochondrial enzymatic content. Of the three yeast cAMP protein kinases, we have previously shown that Tpk3p is the one involved in the regulation of mitochondrial biogenesis. In this paper, we investigated the molecular mechanisms that govern this process. We show that in the absence of Tpk3p, mitochondria produce large amounts of reactive oxygen species that signal to the HAP2/3/4/5 nuclear transcription factors involved in mitochondrial biogenesis. We establish that an increase in mitochondrial reactive oxygen species production down-regulates mitochondrial biogenesis. It is the first time that a redox sensitivity of the transcription factors involved in yeast mitochondrial biogenesis is shown. Such a process could be seen as a mitochondria quality control process.
Collapse
Affiliation(s)
- Cyrille Chevtzoff
- Institute of Biochemistry and Genetics of the Cell, CNRS UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Noubhani A, Bunoust O, Bonini BM, Thevelein JM, Devin A, Rigoulet M. The trehalose pathway regulates mitochondrial respiratory chain content through hexokinase 2 and cAMP in Saccharomyces cerevisiae. J Biol Chem 2009; 284:27229-34. [PMID: 19620241 DOI: 10.1074/jbc.m109.029454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, trehalose is synthesized by a multimeric enzymatic complex: TPS1 encodes trehalose 6-phosphate synthase, which belongs to a complex that is composed of at least three other subunits, including trehalose 6-phosphate phosphatase Tps2 and the redundant regulatory subunits Tps3 and Tsl1. The product of the TPS1 gene plays an essential role in the control of the glycolytic pathway by restricting the influx of glucose into glycolysis. In this paper, we investigated whether the trehalose synthesis pathway could be involved in the control of the other energy-generating pathway: oxidative phosphorylation. We show that the different mutants of the trehalose synthesis pathway (tps1Delta, tps2Delta, and tps1,2Delta) exhibit modulation in the amount of respiratory chains, in terms of cytochrome content and maximal respiratory activity. Furthermore, these variations in mitochondrial enzymatic content are positively linked to the intracellular concentration in cAMP that is modulated by Tps1p through hexokinase2. This is the first time that a pathway involved in sugar storage, i.e. trehalose, is shown to regulate the mitochondrial enzymatic content.
Collapse
Affiliation(s)
- Abdelmajid Noubhani
- CNRS, UMR5095 Institut de Biochimie et Génétique Cellulaire, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|