1
|
Wen XY, Yang N, Gao Y, Ma WN, Fu Y, Geng RF, Zhang YL. PRDX1 exerts a photoprotection effect by inhibiting oxidative stress and regulating MAPK signaling on retinal pigment epithelium. BMC Ophthalmol 2024; 24:237. [PMID: 38844903 PMCID: PMC11155104 DOI: 10.1186/s12886-024-03489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.
Collapse
Affiliation(s)
- Xiao-Ying Wen
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Na Yang
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yang Gao
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Wei-Na Ma
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yan Fu
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Ren-Fei Geng
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yue-Ling Zhang
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China.
| |
Collapse
|
2
|
Cao M, Day AM, Galler M, Latimer HR, Byrne DP, Foy TW, Dwyer E, Bennett E, Palmer J, Morgan BA, Eyers PA, Veal EA. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms. Mol Cell 2023; 83:3140-3154.e7. [PMID: 37572670 DOI: 10.1016/j.molcel.2023.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Min Cao
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alison M Day
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Galler
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Heather R Latimer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Thomas W Foy
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emilia Dwyer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Elise Bennett
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy Palmer
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Brian A Morgan
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
3
|
Ren C, Sun Z, Chen Y, Chen J, Wang S, Liu Q, Wang P, Cheng X, Zhang Z, Wang Q. Identification of Biomarkers Affecting Cryopreservation Recovery Ratio in Ram Spermatozoa Using Tandem Mass Tags (TMT)-Based Quantitative Proteomics Approach. Animals (Basel) 2023; 13:2368. [PMID: 37508145 PMCID: PMC10376853 DOI: 10.3390/ani13142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sperm proteins play vital roles in improving sperm freezing resilience in domestic animals. However, it remains poorly defined which proteins regulate the freezing resilience of spermatozoa in rams (Ovis aries). Here, we compared the proteome of ram sperm with a high cryopreservation recovery ratio (HCR) with that of ram sperm with a low cryopreservation recovery ratio (LCR) using a tandem mass tag-based quantitative proteomics approach. Bioinformatic analysis was performed to evaluate differentially expressed proteins (DEPs). A total of 2464 proteins were identified, and 184 DEPs were screened. Seventy-two proteins were higher in the LCR group. One hundred and twelve proteins were more abundant in the HCR group, and they were mainly involved in the regulation of oxidative phosphorylation and thermogenesis pathways. Proteins in high abundance in the HCR group included the S100A family, such as S100A8, S100A9, S100A14, and S100A16, effectively controlling for CA2+ and maintaining flagella structure; HYOU1 and PRDX1, which participate in antioxidant protection and anti-apoptosis to prevent cell death; and HSP90B1, which maintains cell activity and immune response. Our results could help illuminate the molecular mechanisms underlying cryopreservation of ram semen and expand the potential direction of cryopreservation of high-quality semen.
Collapse
Affiliation(s)
- Chunhuan Ren
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Qiangjun Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
4
|
Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M. The effects of oxidative stress on the development of atherosclerosis. Biol Chem 2020; 400:711-732. [PMID: 30864421 DOI: 10.1515/hsz-2018-0397] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a cardiovascular disease (CVD) known widely world wide. Several hypothesizes are suggested to be involved in the narrowing of arteries during process of atherogenesis. The oxidative modification hypothesis is related to oxidative and anti-oxidative imbalance and is the most investigated. The aim of this study was to review the role of oxidative stress in atherosclerosis. Furthermore, it describes the roles of oxidative/anti-oxidative enzymes and compounds in the macromolecular and lipoprotein modifications and in triggering inflammatory events. The reactive oxygen (ROS) and reactive nitrogen species (RNS) are the most important endogenous sources produced by non-enzymatic and enzymatic [myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADH) oxidase and lipoxygenase (LO)] reactions that may be balanced with anti-oxidative compounds [glutathione (GSH), polyphenols and vitamins] and enzymes [glutathione peroxidase (Gpx), peroxiredoxins (Prdx), superoxide dismutase (SOD) and paraoxonase (PON)]. However, the oxidative and anti-oxidative imbalance causes the involvement of cellular proliferation and migration signaling pathways and macrophage polarization leads to the formation of atherogenic plaques. On the other hand, the immune occurrences and the changes in extra cellular matrix remodeling can develop atherosclerosis process.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Adeleh Poursaleh
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikhnia Farhad
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Microbial Biotechnology Research Center, Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Song Y, Liu H, Cui C, Peng X, Wang C, Tian X, Li W. Silencing of Peroxiredoxin 1 Inhibits the Proliferation of Esophageal Cancer Cells and Promotes Apoptosis by Inhibiting the Activity of the PI3K/AKT Pathway. Cancer Manag Res 2019; 11:10883-10890. [PMID: 31920397 PMCID: PMC6941600 DOI: 10.2147/cmar.s235317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To study the effect of peroxiredoxin 1 (PRDX1) on esophageal squamous carcinoma cells and determine whether it plays a role in regulating the PI3K/AKT signaling pathway. METHODS Three esophageal squamous cell carcinoma cell lines (Eca-109, EC9706, and KYSE150) and one normal cell line (human esophageal epithelial cells) were selected. The protein expression of peroxiredoxin 1 (PRDX1) and the activity of the PI3K/AKT pathway were detected via Western blotting. The proliferation ability of cells was detected through the MTT assay and cell clone formation. Apoptosis was detected using flow cytometry. Subsequently, cells were treated with a PI3K/AKT pathway inhibitor and activator, alone or in combination with silencing of PRDX1, and the above indicators were re-tested. RESULTS The expression of PRDX1 and activity of PI3K/AKT pathway-associated proteins were higher in esophageal cancer cells than in normal esophageal epithelial cells. Compared with normal human esophageal epithelial cells, the proliferation of the three types of esophageal cancer cells was increased, whereas their level of apoptosis was decreased (p<0.05). In Eca-109 cells (cell line with silenced expression of PRDX1), the expression of PRDX1 was significantly decreased. In contrast to the control group, the proliferation and clonality of cells in the silencing PRDX1 group was decreased, the proportion of apoptotic cells was increased, and the phosphorylation levels of PI3K and AKT were decreased (p<0.05). Compared with the control group, treatment with the inhibitor LY294002 alone significantly inhibited cell proliferation and promoted apoptosis (p<0.05); this effect was similar to that observed in the silencing PRDX1 group. CONCLUSION PRDX1 was highly expressed in esophageal cancer cells. Silencing of PRDX1 can inhibit the proliferation of esophageal cancer cells and promote apoptosis. The mechanism involved in this process may be related to the inhibition of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yingjian Song
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai264000, Shandong, People’s Republic of China
| | - Huimin Liu
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai264000, Shandong, People’s Republic of China
| | - Chunling Cui
- Library, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai264000, Shandong, People’s Republic of China
| | - Xiaonu Peng
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai264000, Shandong, People’s Republic of China
| | - Chaoyang Wang
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai264000, Shandong, People’s Republic of China
| | - Xudong Tian
- Department of Thoracic Surgery, Liaocheng People’s Hospital, Liaocheng252000, Shandong, People’s Republic of China
| | - Wenjun Li
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai264000, Shandong, People’s Republic of China
| |
Collapse
|
6
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
7
|
Lu Y, Zhang XS, Zhang ZH, Zhou XM, Gao YY, Liu GJ, Wang H, Wu LY, Li W, Hang CH. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation 2018; 15:87. [PMID: 29554978 PMCID: PMC5859544 DOI: 10.1186/s12974-018-1118-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Peroxiredoxin (Prx) protein family have been reported as important damage-associated molecular patterns (DAMPs) in ischemic stroke. Since peroxiredoxin 2 (Prx2) is the third most abundant protein in erythrocytes and the second most protein in the cerebrospinal fluid in traumatic brain injury and subarachnoid hemorrhage (SAH) patients, we assessed the role of extracellular Prx2 in the context of SAH. METHODS We introduced a co-culture system of primary neurons and microglia. Prx2 was added to culture medium with oxyhemoglobin (OxyHb) to mimic SAH in vitro. Neuronal cell viability was assessed by lactate dehydrogenase (LDH) assay, and neuronal apoptosis was determined by TUNEL staining. Inflammatory factors in culture medium were measured by ELISA, and their mRNA levels in microglia were determined by qPCR. Toll-like receptor 4 knockout (TLR4-KO) mice were used to provide TLR4-KO microglia; ST-2825 was used to inhibit MyD88, and pyrrolidine dithiocarbamate (PDTC) was used to inhibit NF-κB. Related cellular signals were analyzed by Western blot. Furthermore, we detected the level of Prx2 in aneurysmal SAH patients' cerebrospinal fluids (CSF) and compared its relationship with Hunt-Hess grades. RESULTS Prx2 interacted with TLR4 on microglia after SAH and then activated microglia through TLR4/MyD88/NF-κB signaling pathway. Pro-inflammatory factors were expressed and released, eventually caused neuronal apoptosis. The levels of Prx2 in SAH patients positively correlated with Hunt-Hess grades. CONCLUSIONS Extracellular Prx2 in CSF after SAH is a DAMP which resulted in microglial activation via TLR4/MyD88/NF-κB pathway and then neuronal apoptosis. Prx2 in patients' CSF may be a potential indicator of brain injury and prognosis.
Collapse
Affiliation(s)
- Yue Lu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zi-Huan Zhang
- Department of Neurosurgery, Zhongdu Hospital, Bengbu, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guang-Jie Liu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, South Medical University, Nanjing, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:882-890. [DOI: 10.1016/j.bbadis.2017.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/04/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022]
|
9
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
10
|
Guo W, Liu X, Li J, Shen Y, Zhou Z, Wang M, Xie Y, Feng X, Wang L, Wu X. Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. Int J Biol Macromol 2018; 112:608-615. [PMID: 29410271 DOI: 10.1016/j.ijbiomac.2018.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/06/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
Abstract
Apoptosis induced by oxidative stress blocks the recovery of heart function in myocardial ischemia reperfusion injury (MIRI). Peroxiredoxin 1 (Prdx1) inhibits oxidative stress. However, the expression and function of Prdx1 in MIRI are unclear. In present study, Prdx1 protein level increased in rat MIRI model, associated with cardiomyocyte apoptosis. Cultured rat embryonic ventricular myocardial H9c2 cells with hypoxia/reoxygenation (H/R) treatment was utilized to mimic MIRI in vitro, showing that H/R treatment increased the ratio of p-p38/p38, p-JNK/JNK and apoptosis index. But Prdx1 ameliorate the up-regulation of p-p38/p38 ratio and p-JNK/JNK ratio, as well as decreased H9c2 cell apoptosis. SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) inhibited H9c2 cell apoptosis, and at the same time Prdx1 down-regulated the activation of p38 MAPK and JNK during H/R treatment. In addition, a ROS scavenger N-acetyl-l-cysteine (NAC) down-regulated the protein level of p-p38, p-JNK and Prdx1, and H9c2 cell apoptosis. In summary, these findings indicated that Prdx1 inhibited MAPK pathway induced cells apoptosis, and ROS is the upstream regulator of H/R induced apoptosis.
Collapse
Affiliation(s)
- Wanwan Guo
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Jingjing Li
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yimin Shen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zijian Zhou
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Mingming Wang
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Yuyi Xie
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Xuemei Feng
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Liyang Wang
- Department of Geriatric Medicine, the Second People's Hospital, Nantong 226001, Jiangsu, China
| | - Xiang Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
11
|
Ooi BK, Goh BH, Yap WH. Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation. Int J Mol Sci 2017; 18:ijms18112336. [PMID: 29113088 PMCID: PMC5713305 DOI: 10.3390/ijms18112336] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS) production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1), ATP-binding cassette (ABC) efflux transporters (ABCA1 and ABCG1) and scavenger receptors (scavenger receptor class B (CD36), scavenger receptor class A (SR-A) and lectin-type oxidized LDL receptor (LOX-1)). However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
12
|
Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation. Int J Mol Sci 2017. [PMID: 29113088 DOI: 10.3390/ijms18112336.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS) production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1), ATP-binding cassette (ABC) efflux transporters (ABCA1 and ABCG1) and scavenger receptors (scavenger receptor class B (CD36), scavenger receptor class A (SR-A) and lectin-type oxidized LDL receptor (LOX-1)). However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.
Collapse
|
13
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
14
|
Tie G, Yan J, Messina JA, Raffai RL, Messina LM. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells. J Vasc Res 2016; 52:361-71. [PMID: 27031525 DOI: 10.1159/000443889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/10/2016] [Indexed: 11/19/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL.
Collapse
Affiliation(s)
- Guodong Tie
- Division of Vascular Surgery, University of Massachusetts Medical School, Worcester, Mass., USA
| | | | | | | | | |
Collapse
|
15
|
Latimer HR, Veal EA. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction. Mol Cells 2016; 39:40-5. [PMID: 26813660 PMCID: PMC4749872 DOI: 10.14348/molcells.2016.2327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/27/2022] Open
Abstract
Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin.
Collapse
Affiliation(s)
- Heather R. Latimer
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH,
UK
| | - Elizabeth A. Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH,
UK
| |
Collapse
|
16
|
Holmdahl R, Sareila O, Olsson LM, Bäckdahl L, Wing K. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunol Rev 2015; 269:228-47. [DOI: 10.1111/imr.12378] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rikard Holmdahl
- Section for Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
- Medicity Research Laboratory, University of Turku; Turku Finland
- Medical Immunopharmacologic Research; Southern Medical University; Guangzhou China
| | - Outi Sareila
- Section for Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
- Medicity Research Laboratory, University of Turku; Turku Finland
| | - Lina M. Olsson
- Section for Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - Liselotte Bäckdahl
- Section for Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - Kajsa Wing
- Section for Medical Inflammation Research; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
17
|
Tang Z, Xia N, Yuan X, Zhu X, Xu G, Cui S, Zhang T, Zhang W, Zhao Y, Wang S, Shi B. PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells. Biochem Biophys Res Commun 2015; 465:670-7. [DOI: 10.1016/j.bbrc.2015.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022]
|
18
|
The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide. Biochem Soc Trans 2014; 42:909-16. [DOI: 10.1042/bst20140059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a more selectively reactive oxygen species, H2O2 (hydrogen peroxide) has been co-opted as a signalling molecule, but high levels can still lead to lethal amounts of cell damage. 2-Cys Prxs (peroxiredoxins) are ubiquitous thioredoxin peroxidases which utilize reversibly oxidized catalytic cysteine residues to reduce peroxides. As such, Prxs potentially make an important contribution to the repertoire of cell defences against oxidative damage. Although the abundance of eukaryotic 2-Cys Prxs suggests an important role in maintaining cell redox, the surprising sensitivity of their thioredoxin peroxidase activity to inactivation by H2O2 has raised questions as to their role as an oxidative stress defence. Indeed, work in model yeast has led the way in revealing that Prxs do much more than simply remove peroxides and have even uncovered circumstances where their thioredoxin peroxidase activity is detrimental. In the present paper, we focus on what we have learned from studies in the fission yeast Schizosaccharomyces pombe about the different roles of 2-Cys Prxs in responses to H2O2 and discuss the general implications of these findings for other systems.
Collapse
|
19
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1504] [Impact Index Per Article: 136.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
20
|
El Eter E, Al Masri A, Habib S, Al Zamil H, Al Hersi A, Al Hussein F, Al Omran M. Novel links among peroxiredoxins, endothelial dysfunction, and severity of atherosclerosis in type 2 diabetic patients with peripheral atherosclerotic disease. Cell Stress Chaperones 2014; 19:173-81. [PMID: 23801458 PMCID: PMC3933621 DOI: 10.1007/s12192-013-0442-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023] Open
Abstract
Peroxiredoxins, a group of antioxidant protein enzymes (PRDX1 to 6), are reported as antiatherogenic factors in animals; however, human studies are lacking. The present work aims to provide baseline data regarding the phenotype of PRDX1, 2, 4, and 6 in diabetic patients with peripheral atherosclerosis disease (PAD) and their relation to endothelial dysfunction (ED) and disease severity. Plasma levels of PRDX1, 2, 4, and 6 and markers of endothelial dysfunction (ICAM-1 and VCAM-1) were measured using ELISA in 55 type 2 diabetic patients having PAD and 25 healthy subjects. Ankle-brachial index (ABI), body mass index (BMI), triglycerides (TG), total cholesterol, HbA1c, and insulin resistance (HOMA IR) were measured. PRDX1, 2, 4, and 6 levels were significantly higher in patients compared to controls (PRDX1 21.9 ± 5.71 vs 16.8 ± 3.9 ng/ml, P < 0.001, PRDX2 36.5 ± 14.83 vs 20.4 ± 8.61 ng/ml, P < 0.001, PRDX4 3,840 ± 1,440 vs 2,696 ± 1,972 pg/ml, P < 0.005, PRDX6 311 ± 110 vs 287.9 ± 114 pg/ml, P < 0.05). PRDX1 and PRDX4 correlated negatively with ABI (r = -0.273, P < 0.05 and r = -0.28, P < 0.05, respectively), while PRDX1 and PRDX2 correlated positively with HOMA/IR and TG (r = 0.276, P < 0.01 and r = 0.295, P < 0.01, respectively). ICAM-1 was associated with PRDX2 and log PRDX6 (r = 0.345, P = 0.0037 and r = 0.344, P = 0.0038). Our results provide strong links among PRDXs, ED, and severity of PAD in diabetic patients which warrants further evaluation to clarify whether high circulating levels of PRDXs are a consequence of chronic atherosclerotic disease or a predisposing factor for later cardiovascular events.
Collapse
Affiliation(s)
- Eman El Eter
- Physiology Department, Medical College and King Khalid University Hospital, King Saud University, P.O. BOX 2925(29), Riyadh, 11464, Saudi Arabia,
| | | | | | | | | | | | | |
Collapse
|
21
|
Molin M, Demir AB. Linking Peroxiredoxin and Vacuolar-ATPase Functions in Calorie Restriction-Mediated Life Span Extension. Int J Cell Biol 2014; 2014:913071. [PMID: 24639875 PMCID: PMC3930189 DOI: 10.1155/2014/913071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/11/2013] [Accepted: 12/15/2013] [Indexed: 01/09/2023] Open
Abstract
Calorie restriction (CR) is an intervention extending the life spans of many organisms. The mechanisms underlying CR-dependent retardation of aging are still poorly understood. Despite mechanisms involving conserved nutrient signaling pathways proposed, few target processes that can account for CR-mediated longevity have so far been identified. Recently, both peroxiredoxins and vacuolar-ATPases were reported to control CR-mediated retardation of aging downstream of conserved nutrient signaling pathways. In this review, we focus on peroxiredoxin-mediated stress-defence and vacuolar-ATPase regulated acidification and pinpoint common denominators between the two mechanisms proposed for how CR extends life span. Both the activities of peroxiredoxins and vacuolar-ATPases are stimulated upon CR through reduced activities in conserved nutrient signaling pathways and both seem to stimulate cellular resistance to peroxide-stress. However, whereas vacuolar-ATPases have recently been suggested to control both Ras-cAMP-PKA- and TORC1-mediated nutrient signaling, neither the physiological benefits of a proposed role for peroxiredoxins in H2O2-signaling nor downstream targets regulated are known. Both peroxiredoxins and vacuolar-ATPases do, however, impinge on mitochondrial iron-metabolism and further characterization of their impact on iron homeostasis and peroxide-resistance might therefore increase our understanding of the beneficial effects of CR on aging and age-related diseases.
Collapse
Affiliation(s)
- Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Gothenburg, Sweden
| | - Ayse Banu Demir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Gothenburg, Sweden
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey
- Department of Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Inciralti, Izmir, Turkey
| |
Collapse
|
22
|
Brown JD, Day AM, Taylor SR, Tomalin LE, Morgan BA, Veal EA. A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep 2013; 5:1425-35. [PMID: 24268782 PMCID: PMC3898613 DOI: 10.1016/j.celrep.2013.10.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/23/2013] [Accepted: 10/21/2013] [Indexed: 01/04/2023] Open
Abstract
H2O2 can cause oxidative damage associated with age-related diseases such as diabetes and cancer but is also used to initiate diverse responses, including increased antioxidant gene expression. Despite significant interest, H2O2-signaling mechanisms remain poorly understood. Here, we present a mechanism for the propagation of an H2O2 signal that is vital for the adaptation of the model yeast, Schizosaccharomyces pombe, to oxidative stress. Peroxiredoxins are abundant peroxidases with conserved antiaging and anticancer activities. Remarkably, we find that the only essential function for the thioredoxin peroxidase activity of the Prx Tpx1(hPrx1/2) in resistance to H2O2 is to inhibit a conserved thioredoxin family protein Txl1(hTxnl1/TRP32). Thioredoxins regulate many enzymes and signaling proteins. Thus, our discovery that a Prx amplifies an H2O2 signal by driving the oxidation of a thioredoxin-like protein has important implications, both for Prx function in oxidative stress resistance and for responses to H2O2. The thioredoxin-like protein Txl1 is oxidized in response to H2O2 The thioredoxin peroxidase activity of the Prx Tpx1 is required for oxidation of Txl1 The AP-1-like transcription factor Pap1 is an in vivo substrate for Txl1 Tpx1’s thioredoxin peroxidase activity provides H2O2 resistance by regulating Txl1
Collapse
Affiliation(s)
- Jonathon D Brown
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, Tyne and Wear, UK
| | - Alison M Day
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, Tyne and Wear, UK
| | - Sarah R Taylor
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, Tyne and Wear, UK
| | - Lewis E Tomalin
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, Tyne and Wear, UK
| | - Brian A Morgan
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, Tyne and Wear, UK.
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, Tyne and Wear, UK.
| |
Collapse
|
23
|
Abstract
SIGNIFICANCE Redox biology is a rapidly developing area of research due to the recent evidence for general importance of redox control for numerous cellular functions under both physiological and pathophysiological conditions. Understanding of redox homeostasis is particularly relevant to the understanding of the aging process. The link between reactive oxygen species (ROS) and accumulation of age-associated oxidative damage to macromolecules is well established, but remains controversial and applies only to a subset of experimental models. In addition, recent studies show that ROS may function as signaling molecules and that dysregulation of this process may also be linked to aging. RECENT ADVANCES Many protein factors and pathways that control ROS production and scavenging, as well as those that regulate cellular redox homeostasis, have been identified. However, much less is known about the mechanisms by which redox signaling pathways influence longevity. In this review, we discuss recent advances in the understanding of the molecular basis for the role of redox signaling in aging. CRITICAL ISSUES Recent studies allowed identification of previously uncharacterized redox components and revealed complexity of redox signaling pathways. It would be important to identify functions of these components and elucidate how distinct redox pathways are integrated with each other to maintain homeostatic balance. FUTURE DIRECTIONS Further characterization of processes that coordinate redox signaling, redox homeostasis, and stress response pathways should allow researchers to dissect how their dysregulation contributes to aging and pathogenesis of various age-related diseases, such as diabetes, cancer and neurodegeneration.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | | |
Collapse
|
24
|
Hossain GS, Lynn EG, Maclean KN, Zhou J, Dickhout JG, Lhoták S, Trigatti B, Capone J, Rho J, Tang D, McCulloch CA, Al-Bondokji I, Malloy MJ, Pullinger CR, Kane JP, Li Y, Shiffman D, Austin RC. Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. J Am Heart Assoc 2013; 2:e000134. [PMID: 23686369 PMCID: PMC3698773 DOI: 10.1161/jaha.113.000134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Apoptosis caused by endoplasmic reticulum (ER) stress contributes to atherothrombosis, the underlying cause of cardiovascular disease (CVD). T-cell death-associated gene 51 (TDAG51), a member of the pleckstrin homology-like domain gene family, is induced by ER stress, causes apoptosis when overexpressed, and is present in lesion-resident macrophages and endothelial cells. METHODS AND RESULTS To study the role of TDAG51 in atherosclerosis, male mice deficient in TDAG51 and apolipoprotein E (TDAG51(-/-)/ApoE(-/-)) were generated and showed reduced atherosclerotic lesion growth (56 ± 5% reduction at 40 weeks, relative to ApoE(-/-) controls, P<0.005) and necrosis (41 ± 4% versus 63 ± 8% lesion area in TDAG51(-/-)/ApoE(-/-) and ApoE(-/-), respectively; P<0.05) without changes in plasma levels of lipids, glucose, and inflammatory cytokines. TDAG51 deficiency caused several phenotypic changes in macrophages and endothelial cells that increase cytoprotection against oxidative and ER stress, enhance PPARγ-dependent reverse cholesterol transport, and upregulate peroxiredoxin-1 (Prdx-1), an antioxidant enzyme with antiatherogenic properties (1.8 ± 0.1-fold increase in Prdx-1 protein expression, relative to control macrophages; P<0.005). Two independent case-control studies found that a genetic variant in the human TDAG51 gene region (rs2367446) is associated with CVD (OR, 1.15; 95% CI, 1.07 to 1.24; P=0.0003). CONCLUSIONS These findings provide evidence that TDAG51 affects specific cellular pathways known to reduce atherogenesis, suggesting that modulation of TDAG51 expression or its activity may have therapeutic benefit for the treatment of CVD.
Collapse
Affiliation(s)
- Gazi S Hossain
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tae Lim Y, Sup Song D, Joon Won T, Lee YJ, Yoo JS, Eun Hyung K, Won Yoon J, Park SY, Woo Hwang K. Peroxiredoxin-1, a possible target in modulating inflammatory cytokine production in macrophage like cell line RAW264.7. Microbiol Immunol 2012; 56:411-9. [PMID: 22486405 DOI: 10.1111/j.1348-0421.2012.00453.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peroxiredoxin (PRX), a scavenger of H(2) O(2) and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti-oxidant roles, the involvement of PRX-1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX-1 having been uncovered only recently. In the present study, it was discovered that the PRX-1 deficient macrophage like cell line (RAW264.7) has anti-inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti-inflammatory cytokine, interleukin-10 (IL-10), in PRX-1 knock down RAW264.7 cells. Gene expression of pro-inflammatory cytokines IL-1β and tumor necrosis factor- α (TNF-α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL-10 was also increased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL-10 would result in decreased expression of IL-1β and TNF-α in PRX-1 knock-down cells. This was confirmed by blocking IL-10, which reestablished IL-1β and TNF-α secretion. We also observed that increased concentrations of IL-10 do not affect the NF-κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX-1 knockdown RAW264.7 cells. Up-regulation of IL-10 in PRX-1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down-regulation of PRX-1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Young Tae Lim
- Laboratory of Host Defense Modulation, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jarvis RM, Hughes SM, Ledgerwood EC. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med 2012; 53:1522-30. [PMID: 22902630 DOI: 10.1016/j.freeradbiomed.2012.08.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/04/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
Hydrogen peroxide is widely viewed as the main second messenger in redox signaling, and it has been proposed that deactivation of the antioxidant peroxiredoxin (Prdx) enzymes allows free peroxide to accumulate and directly oxidize target proteins (the floodgate model). We assessed the role of cytosolic Prdxs 1 and 2 in peroxide-induced activation of the apoptosis signaling kinase 1 (ASK1)/p38 signaling pathway, in which oxidation of ASK1 is required for phosphorylation of p38. In response to peroxide, Prdx1 catalyzed oxidation of ASK1 to a disulfide-linked multimer, and this occurred via transient formation of a Prdx1-ASK1 mixed disulfide intermediate. Oxidation of ASK1 and phosphorylation of p38 were inhibited by knockdown of Prdx1, but also by overexpression of Prdx2. This suggests that these two cytosolic Prdxs have distinct roles in the cellular peroxide response and compete for available peroxide substrate. These data imply that Prdx1 can function as a peroxide receptor in response to extracellular H(2)O(2), receiving the peroxide signal and transducing it into a disulfide bond that is subsequently transmitted to the substrate, ASK1, resulting in p38 phosphorylation. Interestingly, in response to peroxide, Prdx1 and Prdx3 transiently formed reducible higher molecular weight complexes, suggesting that multiple proteins are targets for Prdx-mediated oxidation via a disulfide-exchange mechanism. This model of active peroxide signal distribution via disulfide exchange is consistent with Prdx function in yeast and explains how peroxides may trigger specific disulfide bond formation in mammalian cells.
Collapse
Affiliation(s)
- Reagan M Jarvis
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
27
|
Goncalves K, Sullivan K, Phelan S. Differential expression and function of peroxiredoxin 1 and peroxiredoxin 6 in cancerous MCF-7 and noncancerous MCF-10A breast epithelial cells. Cancer Invest 2012; 30:38-47. [PMID: 22236188 DOI: 10.3109/07357907.2011.629382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxiredoxins are thiol-specific antioxidant proteins whose expression is elevated in several cancers. We compared the expression and function of Prdx1 and Prdx6 between the MCF-7 mammary adenocarcinoma cell line and the noncancerous MCF-10A cell line. We found elevated Prdx1 expression in MCF-7 cells and comparable expression of Prdx6. Suppression of Prdx1 and/or Prdx6 resulted in a modest increase in peroxide-induced cytotoxicity of MCF-7 cells, and a dramatic increase in MCF-10A cytotoxicity with and without hydrogen peroxide treatment. Our data confirm a cytoprotective role for peroxiredoxins and suggest a synergistic role for Prdx1 and Prdx6 in MCF-10A cells.
Collapse
Affiliation(s)
- Kevin Goncalves
- Department of Biology, College of Arts and Sciences, Fairfield University, Fairfield, Connecticut 06824, USA
| | | | | |
Collapse
|
28
|
Abstract
Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.
Collapse
Affiliation(s)
- Jong-Gil Park
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
29
|
Catalgol B, Kartal Ozer N. Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis. Curr Cardiol Rev 2011; 6:309-24. [PMID: 22043207 PMCID: PMC3083812 DOI: 10.2174/157340310793566181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 06/13/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023] Open
Abstract
Redox mediated signaling mechanisms play crucial roles in the pathogenesis of several cardiovascular diseases. Atherosclerosis is one of the most important disorders induced mainly by hypercholesterolemia. Oxidation products and related signaling mechanisms are found within the characteristic biomarkers of atherosclerosis. Several studies have shown that redox signaling via lipid rafts play a significant role in the regulation of pathogenesis of many diseases including atherosclerosis. This review attempts to summarize redox signaling and lipid rafts in hypercholesterolemia induced atherosclerosis.
Collapse
Affiliation(s)
- Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Marmara University, 34668 Haydarpasa, Istanbul, Turkey
| | | |
Collapse
|
30
|
Wilson CH, Zeile S, Chataway T, Nieuwenhuijs VB, Padbury RTA, Barritt GJ. Increased expression of peroxiredoxin 1 and identification of a novel lipid‐metabolizing enzyme in the early phase of liver ischemia reperfusion injury. Proteomics 2011; 11:4385-96. [DOI: 10.1002/pmic.201100053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 12/25/2022]
Affiliation(s)
- Claire H. Wilson
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Susanne Zeile
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Tim Chataway
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | | | - Robert T. A. Padbury
- The HPB and Liver Transplant Unit, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Greg J. Barritt
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15:2335-81. [PMID: 21194351 PMCID: PMC3166203 DOI: 10.1089/ars.2010.3534] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O(2)•- and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H(2)O(2), enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | | |
Collapse
|
32
|
Duarte PM, Napimoga MH, Fagnani EC, Santos VR, Bastos MF, Ribeiro FV, Araújo VC, Demasi APD. The expression of antioxidant enzymes in the gingivae of type 2 diabetics with chronic periodontitis. Arch Oral Biol 2011; 57:161-8. [PMID: 21975116 DOI: 10.1016/j.archoralbio.2011.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES There is controversial evidence regarding the levels of antioxidant molecules in type 2 diabetes periodontitis patients. Thus, the aim of the present study was to evaluate the gene expression of antioxidant enzymes in the gingival tissue of poorly and well-controlled type 2 diabetic subjects with chronic periodontitis (CP). DESIGN Gingival biopsies were harvested from systemically and periodontally healthy subjects (n=12), systemically healthy subjects with CP (n=15), well-controlled (n=8) and poorly controlled (n=14) diabetic subjects with CP. The messenger RNA (mRNA) levels of peroxiredoxin (PRDX) 1 and 2, catalase (CAT), glutathione peroxidase (GPX1) and superoxide dismutase (SOD) 1 and 2 were measured by quantitative polymerase chain reaction (qPCR). RESULTS The results showed that PRDX1 and GPX1 were up-regulated by periodontitis (p<0.05), independently of the glycaemic status, whilst PRDX2 and SOD2 genes were slightly influenced by periodontitis, but significantly induced when periodontitis was associated with DM, especially under a poor glycaemic control (p<0.05). Moreover, CAT and SOD1 expressions were not significantly influenced by any of these inflammatory disorders (p>0.05). CONCLUSION In conclusion, both PRDX1 and GPX1 were overexpressed in CP whilst PRDX2 and SOD2 were up-regulated especially in the poorly controlled diabetic group with CP.
Collapse
Affiliation(s)
- Poliana M Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Svendsen A, Verhoeff JJC, Immervoll H, Brøgger JC, Kmiecik J, Poli A, Netland IA, Prestegarden L, Planagumà J, Torsvik A, Kjersem AB, Sakariassen PØ, Heggdal JI, Van Furth WR, Bjerkvig R, Lund-Johansen M, Enger PØ, Felsberg J, Brons NHC, Tronstad KJ, Waha A, Chekenya M. Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathol 2011; 122:495-510. [PMID: 21863242 PMCID: PMC3185228 DOI: 10.1007/s00401-011-0867-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 12/05/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumour, where patients respond poorly to radiotherapy and exhibit dismal survival outcomes. The mechanisms of radioresistance are not completely understood. However, cancer cells with an immature stem-like phenotype are hypothesised to play a role in radioresistance. Since the progenitor marker neuron-glial-2 (NG2) has been shown to regulate several aspects of GBM progression in experimental systems, we hypothesised that its expression would influence the survival of GBM patients. Quantification of NG2 expression in 74 GBM biopsies from newly diagnosed and untreated patients revealed that 50% express high NG2 levels on tumour cells and associated vessels, being associated with significantly shorter survival. This effect was independent of age at diagnosis, treatment received and hypermethylation of the O(6)-methylguanine methyltransferase (MGMT) DNA repair gene promoter. NG2 was frequently co-expressed with nestin and vimentin but rarely with CD133 and the NG2 positive tumour cells harboured genetic aberrations typical for GBM. 2D proteomics of 11 randomly selected biopsies revealed upregulation of an antioxidant, peroxiredoxin-1 (PRDX-1), in the shortest surviving patients. Expression of PRDX-1 was associated with significantly reduced products of oxidative stress. Furthermore, NG2 expressing GBM cells showed resistance to ionising radiation (IR), rapidly recognised DNA damage and effectuated cell cycle checkpoint signalling. PRDX-1 knockdown transiently slowed tumour growth rates and sensitised them to IR in vivo. Our data establish NG2 as an important prognostic factor for GBM patient survival, by mediating resistance to radiotherapy through induction of ROS scavenging enzymes and preferential DNA damage signalling.
Collapse
Affiliation(s)
- Agnete Svendsen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Joost J. C. Verhoeff
- Laboratory of Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Heike Immervoll
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan C. Brøgger
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Justyna Kmiecik
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Aurelie Poli
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Centre de Recherche de Public de la Santé, Luxembourg, Haukeland University Hospital, Bergen, Norway
| | - Inger A. Netland
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Lars Prestegarden
- Department of Dermatology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jesús Planagumà
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Anja Torsvik
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | | | | | - Jan I. Heggdal
- Department of Oncology and Medical Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter R. Van Furth
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Centre de Recherche de Public de la Santé, Luxembourg, Haukeland University Hospital, Bergen, Norway
| | | | - Per Ø. Enger
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Joerg Felsberg
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nicolaas H. C. Brons
- Centre de Recherche de Public de la Santé, Luxembourg, Haukeland University Hospital, Bergen, Norway
| | - Karl J. Tronstad
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Andreas Waha
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Translational Cancer Research Group, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
34
|
Park JG, Yoo JY, Jeong SJ, Choi JH, Lee MR, Lee MN, Hwa Lee J, Kim HC, Jo H, Yu DY, Kang SW, Rhee SG, Lee MH, Oh GT. Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Circ Res 2011; 109:739-49. [PMID: 21835911 DOI: 10.1161/circresaha.111.245530] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Peroxiredoxin 2 (Prdx2), a thiol-specific peroxidase, has been reported to regulate proinflammatory responses, vascular remodeling, and global oxidative stress. OBJECTIVE Although Prdx2 has been proposed to retard atherosclerosis development, no direct evidence and mechanisms have been reported. METHODS AND RESULTS We show that Prdx2 is highly expressed in endothelial and immune cells in atherosclerotic lesions and blocked the increase of endogenous H(2)O(2) by atherogenic stimulation. Deficiency of Prdx2 in apolipoprotein E-deficient (ApoE(-/-)) mice accelerated plaque formation with enhanced activation of p65, c-Jun, JNKs, and p38 mitogen-activated protein kinase; and these proatherogenic effects of Prdx2 deficiency were rescued by administration of the antioxidant ebselen. In bone marrow transplantation experiments, we found that Prdx2 has a major role in inhibiting atherogenic responses in both vascular and immune cells. Prdx2 deficiency resulted in increased expression of vascular adhesion molecule-1, intercellular adhesion molecule-1, and monocyte chemotactic protein-1, which led to increased immune cell adhesion and infiltration into the aortic intima. Compared with deficiency of glutathione peroxidase 1 or catalase, Prdx2 deficiency showed a severe predisposition to develop atherosclerosis. CONCLUSIONS Prdx2 is a specific peroxidase that inhibits atherogenic responses in vascular and inflammatory cells, and specific activation of Prdx2 may be an effective means of antiatherogenic therapy.
Collapse
Affiliation(s)
- Jong-Gil Park
- Division of Life and Pharmaceutical Science, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Runchel C, Matsuzawa A, Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 2011; 15:205-18. [PMID: 21050144 DOI: 10.1089/ars.2010.3733] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All aerobic organisms are exposed to oxidative stress during their lifetime and are required to respond appropriately for maintenance of their survival and homeostasis. Sustained exposure to oxidative stress has devastating effects in organisms, and, not surprisingly, oxidative stress has been implicated in numerous human diseases. Therefore, an understanding of how mammals respond to oxidative stress is crucial both biologically and clinically. Intracellular signaling pathways, which are activated in response to excessive oxygen radicals, play essential roles in overcoming oxidative stress. The mitogen-activated protein kinase (MAPK) signaling pathways are involved in diverse physiological processes, and are critical for induction of oxidative stress responses. In this review, we will discuss the physiological roles of MAPKs in oxidative stress, the upstream signaling pathways leading to MAPK activation, their regulation, and the MAPK downstream substrates, with a focus on mammalian systems.
Collapse
Affiliation(s)
- Christopher Runchel
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
36
|
Li D, Wang D, Wang Y, Ling W, Feng X, Xia M. Adenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 2010; 285:33499-33509. [PMID: 20713354 DOI: 10.1074/jbc.m110.159772] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence suggests that adenosine monophosphate-activated protein kinase (AMPK) exerts protective effects for cardiovascular diseases apart from the regulation of energy homeostasis. However, the role of AMPK and its underlying mechanism on macrophage foam cell formation are poorly understood. In this study, we sought to investigate the potential effects of AMPK in modulating cholesterol deposition by using murine macrophage-derived foam cells. Incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) markedly attenuated the cholesterol ester accumulation in oxidized low density lipoprotein-loaded macrophages. Notably, AICAR treatment significantly increased ATP-binding cassette transporters G1 (Abcg1) mRNA and protein levels without affecting mRNA and protein expression of ABCA1, scavenger receptors, including scavenger receptor-A, CD36, and scavenger receptor-BI (SR-BI), and cholesterol synthesis-related genes. The up-regulation of Abcg1 by AICAR was independent of the liver X receptor/retinoid X receptor pathway but dependent on ERK activation. AICAR elevates Abcg1 expression through a post-transcriptional mechanism that stabilizes the mRNA. Using a heterologous system with luciferase as a reporter, we further identify the Abcg1 mRNA 3'-UTR responsible for the regulatory effect of AICAR. Prevention of ABCG1 expression by small interfering RNA abolished the AICAR-mediated attenuation on foam cell formation. Furthermore, increased ABCG1 expression and reduced lipid accumulation were demonstrated in AICAR-treated macrophages isolated from apolipoprotein E-deficient mice (apoE(-/-) mice). AICAR treatment also inhibited atherosclerotic plaque formation in apoE(-/-) mice. Our findings elucidate a precise mechanism involved in the prevention of atherogenesis by AMPK.
Collapse
Affiliation(s)
- Dan Li
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Duan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Yun Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Wenhua Ling
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Xiang Feng
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Min Xia
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China.
| |
Collapse
|
37
|
Choi HJ, Choi WS, Park JY, Kang KH, Prabagar MG, Shin CY, Kang YS. A Pattern Recognition Receptor, SIGN-R1, Mediates ROS Generation against Polysaccharide Dextran, Resulting in Increase of Peroxiredoxin-1 and Its Interaction to SIGN-R1. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.3.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Role of peroxiredoxin 1 and peroxiredoxin 4 in protection of respiratory syncytial virus-induced cysteinyl oxidation of nuclear cytoskeletal proteins. J Virol 2010; 84:9533-45. [PMID: 20610706 DOI: 10.1128/jvi.01005-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The respiratory epithelium plays a central role in innate immunity by secreting networks of inflammatory mediators in response to respiratory syncytial virus (RSV) infection. Previous proteomic studies focusing on the host cellular response to RSV indicated the existence of a nuclear heat shock response and cytoplasmic depletion of antioxidant proteins in model type II-like airway epithelial cells. Here, we increased the depth of nuclear proteomic interrogation by using fluorescence difference labeling followed by liquid isoelectric focusing prefractionation/two-dimensional gel electrophoresis (2-DE) to identify an additional 41 proteins affected by RSV infection. Surprisingly, we found inducible oligomers and shifts in isoelectric points for peroxiredoxin 1 (Prdx-1), Prdx-3, and Prdx-4 isoforms without changes in their total abundance, indicating that Prdxs were being oxidized in response to RSV. To address the role of Prdx-1 and Prdx-4 in RSV infection, isoforms were selectively knocked down by small interfering RNA (siRNA) transfection. Cells lacking Prdx-1, Prdx-4, or both showed increased levels of reactive oxygen species formation and a higher level of protein carbonylation in response to RSV infection. Using a novel saturation fluorescence labeling 2-DE analysis, we showed that 15 unique proteins had enhanced oxidative modifications of at least >1.2-fold in the Prdx knockdowns in response to RSV, including annexin A2 and desmoplakin. Our results suggest that Prdx-1 and Prdx-4 are essential for preventing RSV-induced oxidative damage in a subset of nuclear intermediate filament and actin binding proteins in epithelial cells.
Collapse
|
39
|
Lee SH, Park DW, Park SC, Park YK, Hong SY, Kim JR, Lee CH, Baek SH. Calcium-independent phospholipase A2beta-Akt signaling is involved in lipopolysaccharide-induced NADPH oxidase 1 expression and foam cell formation. THE JOURNAL OF IMMUNOLOGY 2009; 183:7497-504. [PMID: 19917703 DOI: 10.4049/jimmunol.0900503] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Foam cell formation is the most important process in atherosclerosis, and low density lipoprotein oxidation by reactive oxygen species (ROS) is the key step in the conversion of macrophages to foam cells. This study reveals the control mechanism of the gene for NADPH oxidase 1 (Nox1), which produces ROS in the formation of foam cells by stimulating TLR4. Treatment of macrophages by the TLR4 agonist LPS stimulated ROS production and ROS-mediated macrophage to foam cell conversion. This LPS-induced ROS production and foam cell formation could be abrogated by pretreatment of macrophages with N-acetyl cysteine or apocynin. LPS increased Nox1 promoter activity, and resultant expression of mRNA and protein. Small interfering RNA mediated inhibition of Nox1 expression decreased LPS-induced ROS production and foam cell formation. LPS-mediated Nox1 expression and the responses occurred in a calcium-independent phospholipase A(2) (iPLA(2))-dependent manner. The iPLA(2)beta-specific inhibitor S-BEL or iPLA(2)beta small interfering RNA attenuated LPS-induced Nox1 expression, ROS production, and foam cell formation. In addition, activation of iPLA(2)beta by LPS caused Akt phosphorylation and was followed by increased Nox1 expression. These results suggest that the binding of LPS and TLR4 increases Nox1 expression through the iPLA(2)beta-Akt signaling pathway, and control ROS production and foam cell formation.
Collapse
Affiliation(s)
- Sun-Hye Lee
- Aging-associated Vascular Disease Research Center, Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 2009; 4:783-99. [PMID: 19645509 DOI: 10.1021/cb900105q] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidation of cysteine to sulfenic acid has emerged as a biologically relevant post-translational modification with particular importance in redox-mediated signal transduction; however, the identity of modified proteins remains largely unknown. We recently reported DAz-1, a cell-permeable chemical probe capable of detecting sulfenic acid modified proteins directly in living cells. Here we describe DAz-2, an analogue of DAz-1 that exhibits significantly improved potency in vitro and in cells. Application of this new probe for global analysis of the sulfenome in a tumor cell line identifies most known sulfenic acid modified proteins: 14 in total, plus more than 175 new candidates, with further testing confirming oxidation in several candidates. The newly identified proteins have roles in signal transduction, DNA repair, metabolism, protein synthesis, redox homeostasis, nuclear transport, vesicle trafficking, and ER quality control. Cross-comparison of these results with those from disulfide, S-glutathionylation, and S-nitrosylation proteomes reveals moderate overlap, suggesting fundamental differences in the chemical and biological basis for target specificity. The combination of selective chemical enrichment and live-cell compatibility makes DAz-2 a powerful new tool with the potential to reveal new regulatory mechanisms in signaling pathways and identify new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kate S. Carroll
- Chemical Biology Graduate Program
- Life Sciences Institute
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216
| |
Collapse
|
41
|
Henderson B, Henderson S. Unfolding the relationship between secreted molecular chaperones and macrophage activation states. Cell Stress Chaperones 2009; 14:329-41. [PMID: 18958583 PMCID: PMC2728268 DOI: 10.1007/s12192-008-0087-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 02/07/2023] Open
Abstract
Over the last 20 years, it has emerged that many molecular chaperones and protein-folding catalysts are secreted from cells and function, somewhat in the manner of cytokines, as pleiotropic signals for a variety of cells, with much attention being focused on the macrophage. During the last decade, it has become clear that macrophages respond to bacterial, protozoal, parasitic and host signals to generate phenotypically distinct states of activation. These activation states have been termed 'classical' and 'alternative' and represent not a simple bifurcation in response to external signals but a range of cellular phenotypes. From an examination of the literature, the hypothesis is propounded that mammalian molecular chaperones are able to induce a wide variety of alternative macrophage activation states, and this may be a system for relating cellular or tissue stress to appropriate macrophage responses to restore homeostatic equilibrium.
Collapse
Affiliation(s)
- Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK.
| | | |
Collapse
|
42
|
Song IS, Kim SU, Oh NS, Kim J, Yu DY, Huang SM, Kim JM, Lee DS, Kim NS. Peroxiredoxin I contributes to TRAIL resistance through suppression of redox-sensitive caspase activation in human hepatoma cells. Carcinogenesis 2009; 30:1106-14. [PMID: 19406930 DOI: 10.1093/carcin/bgp104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reactive oxygen species (ROS) have been implicated in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance of many cancers. We evaluated the role of peroxiredoxin (Prx) I in TRAIL resistance governed by coupling of nicotinamide adenosine dinucleotide phosphate oxidase (Nox)-derived ROS signaling with the p38 mitogen-activated protein kinase (MAPK)/caspase-signaling cascade in liver cancer cells. Upregulated Prx I expression was found in neoplastic regions of human patient liver, and Prx I knockdown resulted in accelerated TRAIL-induced cell death in SK-Hep-1 human hepatoma cells. The TRAIL cytotoxicity by Prx I knockdown was dependent on activation of caspase-8/3 cascades, which was ablated by addition of inhibitors for p38 MAPK, ROS or Nox, suggesting the association with Nox-driven redox signaling. Furthermore, we found that Nox4 was constitutively expressed in both SK-Hep-1 cells and tumor regions of patient livers, knockdown of Nox4 expression could alleviate ROS generation and TRAIL-mediated cytotoxicity. In accordance with previous findings, increased activation of both p38 MAPK and caspase cascades by Prx I knockdown was inhibited by either Nox4 knockdown or SB203580 addition. Collectively, these data suggest that Prx I functions to block propagation of Nox-derived ROS signaling to the p38 MAPK/caspase/cell death cascade during TRAIL treatment and also provides a molecular mechanism by which Prx I contributes to TRAIL resistance in liver cancers.
Collapse
Affiliation(s)
- In-Sung Song
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Skin fibroblast model to study an impaired glutathione synthesis: Consequences of a genetic polymorphism on the proteome. Brain Res Bull 2009; 79:46-52. [DOI: 10.1016/j.brainresbull.2008.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
|
44
|
Gertz M, Fischer F, Leipelt M, Wolters D, Steegborn C. Identification of Peroxiredoxin 1 as a novel interaction partner for the lifespan regulator protein p66Shc. Aging (Albany NY) 2009; 1:254-65. [PMID: 20157513 PMCID: PMC2806001 DOI: 10.18632/aging.100017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/28/2009] [Indexed: 12/15/2022]
Abstract
Damage caused by reactive
oxygen species (ROS) contributes to many aging processes and accompanying
diseases. ROS are toxic side products of cellular respiration, but also
function as signal, e.g. in the mitochondrial apoptosis pathway. The
protein p66Shc, which has been implicated in life-span regulation and
aging-related diseases, is a central player in stress-induced apoptosis and
the associated ROS burst. Stress signals, such as UV radiation or ROS
themselves, activate p66Shc, which was proposed to stimulate its H2O2
forming activity, ultimately triggering mitochondrial disintegration.
However, mechanistic details of H2O2 formation and
apoptosis induction by p66Shc and regulation of these activities remain to
be revealed. Here,
we describe the effects of Ser36 phosphorylation and Pin1 binding on p66Shc
activity, and the identification of Peroxiredoxin 1 (Prx1) as a novel
interaction partner for the unique p66Shc N-terminal domain. Prx1 was
identified in affinity experiments as dominant interaction partner. Complex
formation leads to disassembly of Prx1 decamers, which is known to increase
its peroxidase activity. The interaction leads to reduction of the p66CH2CB
tetramer, which reduces its ability to induce mitochondrial rupture. Our
results indicate that p66CH2CB and Prx1 form a stress-sensing complex that
keeps p66Shc inactive at moderate stress levels.
Collapse
Affiliation(s)
- Melanie Gertz
- Department of Physiological Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | | | | | | | | |
Collapse
|
45
|
Fourquet S, Huang ME, D'Autreaux B, Toledano MB. The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid Redox Signal 2008; 10:1565-76. [PMID: 18498222 DOI: 10.1089/ars.2008.2049] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiol-based peroxidases consist of the peroxiredoxins (Prx) and the related glutathione peroxidase (GPx)-like enzymes. Their catalytic function is to reduce peroxides by using the reactivity of the cysteine residue, and their presumed primary physiologic role is to protect living organisms from peroxide toxicity. However, as peroxide-metabolizing enzymes, they also regulate hydrogen peroxide (H2O2) signaling. We review here enzymatic and biochemical attributes of thiol peroxidases that specify both distinctive peroxide-scavenging functions and the property of regulating H2O2 signaling. We then discuss possible thiol peroxidase physiologic functions, based on selected observations made in microorganisms and mammals.
Collapse
Affiliation(s)
- Simon Fourquet
- CEA, DSV, IBITECS, Laboratoire Stress Oxydants et Cancer, CEA-Saclay, Gif-sur-Yvette France
| | | | | | | |
Collapse
|
46
|
Radwan M, Miller I, Grunert T, Marchetti-Deschmann M, Vogl C, O'Donoghue N, Dunn MJ, Kolbe T, Allmaier G, Gemeiner M, Müller M, Strobl B. The impact of tyrosine kinase 2 (Tyk2) on the proteome of murine macrophages and their response to lipopolysaccharide (LPS). Proteomics 2008; 8:3469-85. [DOI: 10.1002/pmic.200800260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Kisucka J, Chauhan AK, Patten IS, Yesilaltay A, Neumann C, Van Etten RA, Krieger M, Wagner DD. Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ Res 2008; 103:598-605. [PMID: 18689572 DOI: 10.1161/circresaha.108.174870] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The peroxiredoxin (Prdx) family of antioxidant enzymes uses redox-active cysteines to reduce peroxides, lipid hydroperoxides, and peroxynitrites. Prdx1 is known to be important to protect red blood cells against reactive oxygen species and in tumor prevention. In this study, the role of Prdx1 in inflammation, thrombosis, and atherosclerosis was investigated. Using intravital microscopy, we showed that the number of leukocytes rolling per minute in unstimulated veins was increased by 2.5-fold in Prdx1(-/-) compared to Prdx1(+/+) mice. In Prdx1(-/-) mice, 50% of leukocytes rolled at a velocity <10 mum/sec compared with 10% in Prdx1(+/+) mice, suggesting that adhesion molecule density on the endothelium may have been increased by Prdx1 deficiency. Indeed, endothelial P-selectin, soluble P-selectin, and von Willebrand factor in plasma were increased in Prdx1(-/-) mice compared to Prdx1(+/+) mice, indicating elevated Weibel-Palade body release. In contrast to this excessive endothelial activation, Prdx1(-/-) platelets showed no sign of hyperreactivity, and their aggregation both in vitro and in vivo was normal. We also examined the role of Prdx1 in the apoE(-/-) murine spontaneous model of atherosclerosis. Prdx1(-/-)/apoE(-/-) mice fed normal chow developed larger, more macrophage-rich aortic sinus lesions than Prdx1(+/+)/apoE(-/-) mice, despite similar amounts and size distributions of cholesterol in their plasma lipoproteins. Thus, Prdx1 protects against excessive endothelial activation and atherosclerosis, and the Prdx1(-/-) mice could serve as an animal model susceptible to chronic inflammation.
Collapse
Affiliation(s)
- Janka Kisucka
- Immune Disease Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Schreibelt G, van Horssen J, Haseloff RF, Reijerkerk A, van der Pol SMA, Nieuwenhuizen O, Krause E, Blasig IE, Dijkstra CD, Ronken E, de Vries HE. Protective effects of peroxiredoxin-1 at the injured blood-brain barrier. Free Radic Biol Med 2008; 45:256-64. [PMID: 18452719 DOI: 10.1016/j.freeradbiomed.2008.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/28/2008] [Accepted: 03/26/2008] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) play a pivotal role in the development of neuroinflammatory disorders, such as multiple sclerosis (MS). Here, we studied the effect of ROS on protein expression in brain endothelial cells (BECs) using proteomic techniques and show that long-term exposure to ROS induces adaptive responses in BECs to counteract an oxidative attack. ROS induce differential protein expression in BECs, among which is peroxiredoxin-1 (Prx1). To further study the role of Prx1 we established a BEC line overexpressing Prx1. Our data indicate that Prx-1 overexpression protects BECs from ROS-induced cell death, reduces adhesion and subsequent transendothelial migration of monocytes by decreasing intercellular adhesion molecule-1 expression, and enhances the integrity of the BEC layer. Interestingly, vascular Prx1 immunoreactivity was markedly upregulated in inflammatory lesions of experimental autoimmune encephalomyelitis (EAE) animals and active demyelinating MS lesions. These findings indicate that enhanced vascular Prx1 expression may reflect the occurrence of vascular oxidative stress in EAE and MS. On the other hand, it may function as an endogenous defense mechanism to inhibit leukocyte infiltration and counteract ROS-induced cellular injury.
Collapse
Affiliation(s)
- Gerty Schreibelt
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee YM, Park SH, Shin DI, Hwang JY, Park B, Park YJ, Lee TH, Chae HZ, Jin BK, Oh TH, Oh YJ. Oxidative Modification of Peroxiredoxin Is Associated with Drug-induced Apoptotic Signaling in Experimental Models of Parkinson Disease. J Biol Chem 2008; 283:9986-98. [DOI: 10.1074/jbc.m800426200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
50
|
D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007; 8:813-24. [PMID: 17848967 DOI: 10.1038/nrm2256] [Citation(s) in RCA: 2528] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
Collapse
Affiliation(s)
- Benoît D'Autréaux
- CEA, IBITECS, SBIGEM, Laboratoire Stress Oxydants et Cancer, Batiment 142, Commissariat à l'Energie Atomique-Saclay, 91191 Gif-sur-Yvette, France
| | | |
Collapse
|