1
|
da Silva RG, Stocks CJ, Hu G, Kline KA, Chen J. Bosutinib Stimulates Macrophage Survival, Phagocytosis, and Intracellular Killing of Bacteria. ACS Infect Dis 2024; 10:1725-1738. [PMID: 38602352 PMCID: PMC11091880 DOI: 10.1021/acsinfecdis.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ronni
A. G. da Silva
- Singapore-MIT
Alliance for Research and Technology Centre, Antimicrobial Drug Resistance Interdisciplinary Research Group, 138602 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Claudia J. Stocks
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Guangan Hu
- Koch
Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly A. Kline
- Singapore-MIT
Alliance for Research and Technology Centre, Antimicrobial Drug Resistance Interdisciplinary Research Group, 138602 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
- Department
of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva1211, Switzerland
| | - Jianzhu Chen
- Singapore-MIT
Alliance for Research and Technology Centre, Antimicrobial Drug Resistance Interdisciplinary Research Group, 138602 Singapore
- Koch
Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Abhinand CS, Galipon J, Mori M, Ramesh P, Prasad TSK, Raju R, Sudhakaran PR, Tomita M. Temporal phosphoproteomic analysis of VEGF-A signaling in HUVECs: an insight into early signaling events associated with angiogenesis. J Cell Commun Signal 2023; 17:1067-1079. [PMID: 36881336 PMCID: PMC10409921 DOI: 10.1007/s12079-023-00736-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is one of the primary factors promoting angiogenesis in endothelial cells. Although defects in VEGF-A signaling are linked to diverse pathophysiological conditions, the early phosphorylation-dependent signaling events pertinent to VEGF-A signaling remain poorly defined. Hence, a temporal quantitative phosphoproteomic analysis was performed in human umbilical vein endothelial cells (HUVECs) treated with VEGF-A-165 for 1, 5 and 10 min. This led to the identification and quantification of 1971 unique phosphopeptides corresponding to 961 phosphoproteins and 2771 phosphorylation sites in total. Specifically, 69, 153, and 133 phosphopeptides corresponding to 62, 125, and 110 phosphoproteins respectively, were temporally phosphorylated at 1, 5, and 10 min upon addition of VEGF-A. These phosphopeptides included 14 kinases, among others. This study also captured the phosphosignaling events directed through RAC, FAK, PI3K-AKT-MTOR, ERK, and P38 MAPK modules with reference to our previously assembled VEGF-A/VEGFR2 signaling pathway map in HUVECs. Apart from a significant enrichment of biological processes such as cytoskeleton organization and actin filament binding, our results also suggest a role of AAK1-AP2M1 in the regulation of VEGFR endocytosis. Taken together, the temporal quantitative phosphoproteomics analysis of VEGF signaling in HUVECs revealed early signaling events and we believe that this analysis will serve as a starting point for the analysis of differential signaling across VEGF members toward the full elucidation of their role in the angiogenesis processes. Workflow for the identification of early phosphorylation events induced by VEGF-A-165 in HUVEC cells.
Collapse
Affiliation(s)
- Chandran S Abhinand
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Department of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
3
|
Royero P, Quatraccioni A, Früngel R, Silva MH, Bast A, Ulas T, Beyer M, Opitz T, Schultze JL, Graham ME, Oberlaender M, Becker A, Schoch S, Beck H. Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase. Cell Rep 2022; 41:111757. [PMID: 36476865 PMCID: PMC9756112 DOI: 10.1016/j.celrep.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding.
Collapse
Affiliation(s)
- Pedro Royero
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Anne Quatraccioni
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Rieke Früngel
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Arco Bast
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Mark E. Graham
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany,Corresponding author
| |
Collapse
|
4
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
5
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Panneton V, Nath A, Sader F, Delaunay N, Pelletier A, Maier D, Oh K, Hipfner DR. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation. J Biol Chem 2015; 290:20960-20971. [PMID: 26170449 DOI: 10.1074/jbc.m115.645952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Indexed: 01/21/2023] Open
Abstract
Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, Quebec H3T 3J7, Canada
| | - Apurba Nath
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, Quebec H3T 3J7, Canada
| | - Fadi Sader
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nathalie Delaunay
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Ariane Pelletier
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Dominic Maier
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Karen Oh
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - David R Hipfner
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, Quebec H3T 3J7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
8
|
Cipak L, Gupta S, Rajovic I, Jin QW, Anrather D, Ammerer G, McCollum D, Gregan J. Crosstalk between casein kinase II and Ste20-related kinase Nak1. Cell Cycle 2013; 12:884-8. [PMID: 23462181 PMCID: PMC3637346 DOI: 10.4161/cc.24095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the sterile 20 (Ste20) serine/threonine protein kinase was originally identified as a component of the S. cerevisiae mating pathway, it has homologs in higher eukaryotes and is part of a larger family of Ste20-like kinases. Ste20-like kinases are involved in multiple cellular processes, such as cell growth, morphogenesis, apoptosis and immune response. Carrying out such a diverse array of biological functions requires numerous regulatory inputs and outputs in the form of protein-protein interactions and post-translational modifications. Hence, a thorough knowledge of Ste20-like kinase binding partners and phosphorylation sites will be essential for understanding the various roles of these kinases. Our recent study revealed that Schizosaccharomyces pombe Nak1 (a conserved member of the GC-kinase sub-family of Ste20-like kinases) is in a complex with the leucine-rich repeat-containing protein Sog2. Here, we show a novel and unexpected interaction between the Nak1-Sog2 kinase complex and Casein kinase 2 (Cka1, Ckb1 and Ckb2) using tandem-affinity purification followed by mass spectrometric analysis. In addition, we identify unique phosphosites on Nak1, Sog2 and the catalytic subunit of casein kinase 2, Cka1. Given the conserved nature of these kinases, we expect this work will shed light on the functions of these proteins both in yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
10
|
Al-Zahrani KN, Baron KD, Sabourin LA. Ste20-like kinase SLK, at the crossroads: a matter of life and death. Cell Adh Migr 2012; 7:1-10. [PMID: 23154402 DOI: 10.4161/cam.22495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reorganization of the cytoskeleton is necessary for apoptosis, proliferation, migration, development and tissue repair. However, it is well established that mutations or overexpression of key regulators contribute to the phenotype and progression of several pathologies such as cancer. For instance, c-src mutations and the overexpression of FAK have been implicated in the invasive and metastatic process, suggesting that components of the motility system may represent a new class of therapeutic targets. Over the last several years, we and others have established distinct roles for the Ste20-like kinase SLK, encompassing apoptosis, growth, motility and development. Here, we review the SLK field from its initial cloning to the most recent findings from our laboratory. We summarize the various roles of SLK and the biochemical mechanisms that regulate its activity. These various findings reveal very complex functions and pattern of regulation for SLK in development and cancer, making it a potential therapeutic target.
Collapse
|
11
|
Luhovy AY, Jaberi A, Papillon J, Guillemette J, Cybulsky AV. Regulation of the Ste20-like kinase, SLK: involvement of activation segment phosphorylation. J Biol Chem 2011; 287:5446-58. [PMID: 22203681 DOI: 10.1074/jbc.m111.302018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression and activation of the Ste20-like kinase, SLK, is increased during kidney development and recovery from ischemic acute kidney injury. SLK promotes apoptosis, and it may regulate cell survival during injury or repair. This study addresses the role of phosphorylation in the regulation of kinase activity. We mutated serine and threonine residues in the putative activation segment of the SLK catalytic domain and expressed wild type (WT) and mutant proteins in COS-1 or glomerular epithelial cells. Compared with SLK WT, the T183A, S189A, and T183A/S189A mutants showed reduced in vitro kinase activity. SLK WT, but not mutants, increased activation-specific phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. Similarly, SLK WT stimulated activator protein-1 reporter activity, but activation of activator protein-1 by the three SLK mutants was ineffective. To test if homodimerization of SLK affects phosphorylation, the cDNA encoding SLK amino acids 1-373 (which include the catalytic domain) was fused with a cDNA for a modified FK506-binding protein, Fv (Fv-SLK 1-373). After transfection, the addition of AP20187 (an FK506 analog) induced regulated dimerization of Fv-SLK 1-373. AP20187-stimulated dimerization enhanced the kinase activity of Fv-SLK 1-373 WT. In contrast, kinase activity of Fv-SLK 1-373 T183A/S189A was weak and was not enhanced after dimerization. Finally, apoptosis was increased after expression of Fv-SLK 1-373 WT but not T183A/S189A. Thus, phosphorylation of Thr-183 and Ser-189 plays a key role in the activation and signaling of SLK and could represent a target for novel therapeutic approaches to renal injury.
Collapse
Affiliation(s)
- Artem Y Luhovy
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
12
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
13
|
Delarosa S, Guillemette J, Papillon J, Han YS, Kristof AS, Cybulsky AV. Activity of the Ste20-like kinase, SLK, is enhanced by homodimerization. Am J Physiol Renal Physiol 2011; 301:F554-64. [PMID: 21677149 DOI: 10.1152/ajprenal.00062.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The expression and activation of the Ste20-like kinase, SLK, is increased during renal development and recovery from ischemic acute renal failure. SLK promotes apoptosis, and during renal injury and repair, transcriptional induction or posttranscriptional control of SLK may, therefore, regulate cell survival. SLK contains protein interaction (coiled-coil) domains, suggesting that posttranslational homodimerization may also modulate SLK activity. We therefore expressed coiled-coil regions in the C-terminal domain of SLK as fusion proteins and demonstrated their homodimerization. By gel-filtration chromatography, endogenous and heterologously expressed SLK were detected in a macromolecular protein complex. To test the role of homodimerization in kinase activation, we constructed a fusion protein consisting of the SLK catalytic domain (amino acids 1-373) and a modified FK506 binding protein, Fv (Fv-SLK 1-373). Addition of AP20187 (an analog of FK506) enhanced the homodimerization of Fv-SLK 1-373. In an in vitro kinase assay, the dimeric Fv-SLK 1-373 displayed greater kinase activity than the monomeric form. In cells expressing Fv-SLK 1-373, homodimerization increased activation-specific phosphorylation of the proapoptotic kinases, c-Jun N-terminal kinase and p38 kinase. Compared with the monomer, dimeric Fv-SLK 1-373 enhanced the activation of a Bax promoter-luciferase reporter. Finally, expression of Fv-SLK 1-373 induced apoptosis, and the effect was increased by homodimerization. Thus the activity, downstream signaling, and functional effects of SLK are enhanced by dimerization of the kinase domain.
Collapse
Affiliation(s)
- Sierra Delarosa
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Cybulsky AV, Takano T, Papillon J, Guillemette J, Herzenberg AM, Kennedy CRJ. Podocyte injury and albuminuria in mice with podocyte-specific overexpression of the Ste20-like kinase, SLK. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2290-9. [PMID: 20889563 DOI: 10.2353/ajpath.2010.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SLK expression and activity are increased during kidney development and recovery from renal ischemia-reperfusion injury. In cultured cells, SLK promotes F-actin destabilization as well as apoptosis, partially via the p38 kinase pathway. To better understand the effects of SLK in vivo, a transgenic mouse model was developed where SLK was expressed in a podocyte-specific manner using the mouse nephrin promoter. Offspring of four founder mice carried the SLK transgene. Among male transgenic mice, 66% developed albuminuria at approximately 3 months of age, and the albuminuric mice originated from three of four founders. Overall, the male transgenic mice demonstrated about fivefold greater urinary albumin/creatinine compared with male non-transgenic mice. Transgenic and non-transgenic female mice did not develop albuminuria, suggesting that females were less susceptible to glomerular filtration barrier damage than their male counterparts. In transgenic mice, electron microscopy revealed striking podocyte injury, including poorly formed or effaced foot processes, and edematous and vacuolated cell bodies. By immunoblotting, nephrin expression was decreased in glomeruli of the albuminuric transgenic mice. Activation-specific phosphorylation of p38 was increased in transgenic mice compared with non-transgenic animals. Glomeruli of SLK transgenic mice showed around 30% fewer podocytes, and a reduction in F-actin compared with control glomeruli. Thus, podocyte SLK overexpression in vivo results in injury and podocyte loss, consistent with the effects of SLK in cultured cells.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Division of Nephrology, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | | | |
Collapse
|
15
|
Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. BMC Genomics 2010; 11 Suppl 1:S14. [PMID: 20158871 PMCID: PMC2822528 DOI: 10.1186/1471-2164-11-s1-s14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A bioinformatic search was carried for plant homologues of human serine-threonine protein kinases involved in regulation of cell division and microtubule protein phosphorylation (SLK, PAK6, PAK7, MARK1, MAST2, TTBK1, TTBK2, AURKA, PLK1, PLK4 and PASK). A number of SLK, MAST2 and AURKA plant homologues were identified. The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase). Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.
Collapse
Affiliation(s)
- Pavel A Karpov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Elena S Nadezhdina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation
- AN Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninsky Gory, 119992 Moscow, Russian Federation
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Vadym G Matusov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Alexey Yu Nyporko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Nadezhda Yu Shashina
- AN Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninsky Gory, 119992 Moscow, Russian Federation
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| |
Collapse
|
16
|
Yoo Y, Ho HJ, Wang C, Guan JL. Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene 2009; 29:263-72. [PMID: 19802004 PMCID: PMC2806939 DOI: 10.1038/onc.2009.319] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cofilin is a major regulator of actin dynamics involved in the regulation of cell spreading and migration through its actin depolymerizing and severing activities. V-Src is an activated Src tyrosine kinase and a potent oncogene known to phosphorylate a variety of cellular proteins in cell transformation process including altered cell adhesion, spreading and migration. Recently, it has been suggested that cofilin is a potential substrate of v-Src (Rush et al., 2005). Here, we show direct tyrosine phosphorylation of cofilin by v-Src and identify Y68 as the major phosphorylation site. Cofilin phosphorylation at Y68 did not change its activity per se, but induced increased ubiquitination of cofilin and its degradation through the proteosome pathway. Furthermore, the negative effect of cofilin on cellular F-actin contents was inhibited by co-expression of v-Src, whereas that of cofilin mutant Y68F (Y68 mutated to F) was not affected, suggesting that v-Src-mediated cofilin phosphorylation at Y68 is required for degradation of cofilin in vivo. Lastly, inhibition of cell spreading by v-Src was rescued partially by co-expression of cofilin, and to a greater extent by the Y68F mutant which is not subjected to v-Src induced degradation through phosphorylation, suggesting that v-Src mediated changes in cell spreading is, at least in part, through inhibiting the function of cofilin via phosphorylating it at Y68. Together, these results suggest a novel mechanism by which cofilin is regulated by v-Src through tyrosine phosphorylation at Y68 that triggers degradation of cofilin via ubiquitination-proteosome pathway and consequently inhibits cofilin activity in reducing cellular F-actin contents and cell spreading.
Collapse
Affiliation(s)
- Y Yoo
- Division of Molecular Medicine and Genetics, Departments of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
17
|
Cybulsky AV, Takano T, Guillemette J, Papillon J, Volpini RA, Di Battista JA. The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Am J Physiol Renal Physiol 2009; 297:F971-80. [DOI: 10.1152/ajprenal.00294.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression and activity of the germinal center SLK are increased during kidney development and recovery from renal ischemia-reperfusion injury. SLK promotes apoptosis, in part, via pathway(s) involving apoptosis signal-regulating kinase-1 and p38 mitogen-activated protein kinase. This study addresses the role of p53 as a potential effector of SLK. p53 transactivation was measured after transient transfection of a luciferase reporter plasmid that contains a p53 cis-acting enhancer element. Overexpression of SLK in COS-1 cells and cotransfection of SLK and p53-wild type (wt) cDNAs in glomerular epithelial cells (GECs) stimulated p53 transactivational activity, as measured by a p53 response element-driven luciferase reporter. In GECs, chemical anoxia followed by glucose reexposure (in vitro ischemia-reperfusion) increased p53 reporter activity, and this increase was amplified by overexpression of SLK. Expression of SLK induced p53 phosphorylation on serine (S)-33 and S315. In GECs, cotransfection of SLK with p53-wt, p53-S33A, p53-S315A, or p53-S33A+S315A mutants showed that only the double mutation abolished the SLK-induced increase in p53 reporter activity. SLK-induced stimulation of p53 reporter activity was attenuated by inhibition of JNK. Overexpression of SLK amplified apoptosis induced by subjecting cells to in vitro ischemia-reperfusion injury, while ectopic expression of a dominant negative SLK mutant attenuated the ischemia-reperfusion-induced apoptosis. The p53 transactivation inhibitor pifithrin-α significantly attenuated the amount of apoptosis after ischemia-reperfusion and SLK overexpression. Thus SLK induces p53 phosphorylation and transactivation, which enhances apoptosis after in vitro ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Rildo A. Volpini
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - John A. Di Battista
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Karpov PA, Nadezhdina ES, Emets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. Bioinformatic search of plant protein kinases involved in the phosphorylation of microtubular proteins and the regulation of the cell cycle. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Delpire E. The mammalian family of sterile 20p-like protein kinases. Pflugers Arch 2009; 458:953-67. [PMID: 19399514 DOI: 10.1007/s00424-009-0674-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 04/15/2009] [Indexed: 12/12/2022]
Abstract
Twenty-eight kinases found in mammalian genomes share similarity to the budding yeast kinase Ste20p. This review article examines the biological function of these mammalian Ste20 kinases. Some of them have conserved the Ste20p function of transducing extracellular signals to mitogen-activated kinases. Others affect ion transport, cell cycle, cytoskeleton organization, and program cell death. A number of molecular details involved in the activation of the kinases are discussed including autophosphorylation, substrate recognition, autoinhibition, dimerization, and substrate binding.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, T-4202 MCN 1161 21st Avenue South, Nashville, TN 37232-2520, USA.
| |
Collapse
|
20
|
Guilluy C, Rolli-Derkinderen M, Loufrani L, Bourgé A, Henrion D, Sabourin L, Loirand G, Pacaud P. Ste20-Related Kinase SLK Phosphorylates Ser188 of RhoA to Induce Vasodilation in Response to Angiotensin II Type 2 Receptor Activation. Circ Res 2008; 102:1265-74. [DOI: 10.1161/circresaha.107.164764] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The small G protein Rho signaling pathways are recognized as major regulators of cardiovascular functions, and activation of Rho proteins appears to be a common component for the pathogenesis of hypertension and vascular proliferative disorders. Recent evidence suggests that modulation of Rho protein signaling by phosphorylation of Rho proteins provides an additional simple mechanism for coordinating Rho protein functions. Phosphorylation of RhoA by cAMP- or cGMP-activated kinase on Ser188 induces cytosolic sequestration of RhoA through increased interaction with guanine dissociation inhibitor, thereby resulting in inhibition of RhoA-dependent functions. Here we show that stimulation of angiotensin II (Ang II) type 2 receptor (AT
2
R) in vascular smooth muscle cells induces Ser188 phosphorylation of RhoA independently of cAMP- or cGMP-activated kinase. We identify the Ser/Thr kinase Ste20-related kinase SLK as a new kinase phosphorylating RhoA on Ser188. Activation of the signaling cascade involving Src homology 2 domain–containing protein-tyrosine phosphatase 1, casein kinase II and SLK is responsible for RhoA phosphorylation and inhibition of RhoA-mediated arterial contraction induced by AT
2
R activation. These results thus identify the molecular mechanism linking AT
2
R to RhoA inhibition and vasodilation.
Collapse
Affiliation(s)
- Christophe Guilluy
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Malvyne Rolli-Derkinderen
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Laurent Loufrani
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Anne Bourgé
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Daniel Henrion
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Luc Sabourin
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Gervaise Loirand
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| | - Pierre Pacaud
- From Inserm U915 (C.G., M.R.-D., A.B., G.L., P.P.); Faculté des Sciences, l’institut du thorax (C.G., M.R.-D., A.B., G.L., P.P.); Centre Hospitalier Universitaire Nantes, l’institut du thorax (G.L.), Nantes, France; Inserm U771 and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6214 (L.L., D.H.), Faculté de Médecine Angers, France; University of Ottawa and Ottawa Health Research Institute (L.S.), Ontario, Canada
| |
Collapse
|
21
|
Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, McKay M, Sabourin LA. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration. PLoS One 2008; 3:e1868. [PMID: 18382658 PMCID: PMC2270904 DOI: 10.1371/journal.pone.0001868] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/15/2008] [Indexed: 11/19/2022] Open
Abstract
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.
Collapse
Affiliation(s)
- Simona Wagner
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chris J. Storbeck
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Kristin Roovers
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Ziad Y. Chaar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Piotr Kolodziej
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Marlene McKay
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Luc A. Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Burakov AV, Zhapparova ON, Kovalenko OV, Zinovkina LA, Potekhina ES, Shanina NA, Weiss DG, Kuznetsov SA, Nadezhdina ES. Ste20-related protein kinase LOSK (SLK) controls microtubule radial array in interphase. Mol Biol Cell 2008; 19:1952-61. [PMID: 18287541 DOI: 10.1091/mbc.e06-12-1156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Interphase microtubules are organized into a radial array with centrosome in the center. This organization is a subject of cellular regulation that can be driven by protein phosphorylation. Only few protein kinases that regulate microtubule array in interphase cells have been described. Ste20-like protein kinase LOSK (SLK) was identified as a microtubule and centrosome-associated protein. In this study we have shown that the inhibition of LOSK activity by dominant-negative mutant K63R-DeltaT or by LOSK depletion with RNAi leads to unfocused microtubule arrangement. Microtubule disorganization is prominent in Vero, CV-1, and CHO-K1 cells but less distinct in HeLa cells. The effect is a result neither of microtubule stabilization nor of centrosome disruption. In cells with suppressed LOSK activity centrosomes are unable to anchor or to cap microtubules, though they keep nucleating microtubules. These centrosomes are depleted of dynactin. Vero cells overexpressing K63R-DeltaT have normal dynactin "comets" at microtubule ends and unaltered morphology of Golgi complex but are unable to polarize it at the wound edge. We conclude that protein kinase LOSK is required for radial microtubule organization and for the proper localization of Golgi complex in various cell types.
Collapse
Affiliation(s)
- Anton V Burakov
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Moscow Region, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|