1
|
Kang D, Yang MJ, Cheong HK, Park CJ. NMR investigation of FOXO4-DNA interaction for discriminating target and non-target DNA sequences. Commun Biol 2024; 7:1425. [PMID: 39487330 PMCID: PMC11530643 DOI: 10.1038/s42003-024-07133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Forkhead box O4 (FOXO4), a human transcription factor, recognizes target DNA through its forkhead domain (FHD) while maintaining comparable binding affinity to non-target DNA. The conserved region 3 (CR3), a transactivation domain, modulates DNA binding kinetics to FHD and contributes to target DNA selection, but the underlying mechanism of this selection remains elusive. Using paramagnetic relaxation enhancement analysis, we observed a minor state of CR3 close to FHD in the presence of non-target DNA, a state absent when FHD interacts with target DNA. This minor state suggests that CR3 effectively masks the non-target DNA-binding interface on FHD. The interaction weakens significantly under high salt concentration, implying that CR3 or high salt concentrations can modulate electrostatic interactions with non-target DNA. Our 15N relaxation measurements revealed FHD's flexibility with non-target DNA and increased rigidity with target DNA binding. Our findings offer insights into the role of FOXO4 as a transcription initiator.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hae-Kap Cheong
- Ochang Center, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Polák M, Černý J, Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal Chem 2024; 96:1478-1487. [PMID: 38226459 PMCID: PMC10831798 DOI: 10.1021/acs.analchem.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
Collapse
Affiliation(s)
- Marek Polák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| | - Jiří Černý
- Laboratory
of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| |
Collapse
|
3
|
Galley JC, Miller MP, Sanker S, Liu M, Sharina I, Martin E, Gomez D, Straub AC. FoxO4 controls sGCβ transcription in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2022; 322:H417-H426. [PMID: 35089807 PMCID: PMC8873033 DOI: 10.1152/ajpheart.00551.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) binds soluble guanylyl cyclase β (sGCβ) to produce cGMP and relax vascular smooth muscle cells (SMCs) needed for vasodilation. Although the regulation of NO-stimulated sGC activity has been well characterized at the posttranslational level, the mechanisms that govern sGC transcription remain incompletely understood. Recently, we identified Forkhead box subclass O (FoxO) transcription factors as essential for expression of sGC; however, the specific FoxO family member responsible for the expression of sGCβ in SMC remains unknown. Using FoxO shRNA knockdown adenovirus treatment in rat aortic SMCs, we show that FoxO1 or FoxO3 knockdown causes greater than twofold increases in Gucy1a3 and Gucy1b3 mRNA expression, without changes in NO-dependent cGMP production or cGMP-dependent phosphorylation. FoxO4 knockdown produced a 50% decrease in Gucy1a3 and Gucy1b3 mRNA with 70% loss of sGCα and 50% loss of sGCβ protein expression. Knockdown of FoxO4 expression decreased cGMP production and downstream protein kinase G-dependent phosphorylation more than 50%. Triple FoxO knockdown exacerbated loss of sGC-dependent function, phenocopying previous FoxO inhibition studies. Using promoter luciferase and chromatin immunoprecipitation assays, we find that FoxO4 acts as a transcriptional activator by directly binding several FoxO DNA motifs in the promoter regions of GUCY1B3 in human aortic SMCs. Collectively, our data show FoxO4 is a critical transcriptional regulator of sGCβ expression in SMC.NEW & NOTEWORTHY One of the key mechanisms of vascular smooth muscle cell (SMC) dilation occurs through nitric oxide (NO)-dependent induction of soluble guanylyl cyclase (sGC) by means of its β-subunit. Herein, we are the first to identify Forkhead box subclass O protein 4 (FoxO4) as a key transcriptional regulator of GUCY1B3 expression, which codes for sGCβ protein in human and animal SMCs. This discovery will likely have important implications for the future usage of antihypertensive and vasodilatory therapies which target NO production, sGC, or FoxO transcription factors.
Collapse
Affiliation(s)
- Joseph C. Galley
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan P. Miller
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Subramaniam Sanker
- 2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mingjun Liu
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,3Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iraida Sharina
- 4Department of Cardiovascular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Emil Martin
- 4Department of Cardiovascular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Delphine Gomez
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,5Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C. Straub
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania,6Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Polák M, Yassaghi G, Kavan D, Filandr F, Fiala J, Kukačka Z, Halada P, Loginov DS, Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor-dsDNA Complex. Anal Chem 2022; 94:3203-3210. [PMID: 35134296 DOI: 10.1021/acs.analchem.1c04746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A combination of covalent labeling techniques and mass spectrometry (MS) is currently a progressive approach for deriving insights related to the mapping of protein surfaces or protein-ligand interactions. In this study, we mapped an interaction interface between the DNA binding domain (DBD) of FOXO4 protein and the DNA binding element (DAF16) using fast photochemical oxidation of proteins (FPOP). Residues involved in protein-DNA interaction were identified using the bottom-up approach. To confirm the findings and avoid a misinterpretation of the obtained data, caused by possible multiple radical oxidations leading to the protein surface alteration and oxidation of deeply buried amino acid residues, a top-down approach was employed for the first time in FPOP analysis. An isolation of singly oxidized ions enabled their gas-phase separation from multiply oxidized species followed by CID and ECD fragmentation. Application of both fragmentation techniques allowed generation of complementary fragment sets, out of which the regions shielded in the presence of DNA were deduced. The findings obtained by bottom-up and top-down approaches were highly consistent. Finally, FPOP results were compared with those of the HDX study of the FOXO4-DBD·DAF16 complex. No contradictions were found between the methods. Moreover, their combination provides complementary information related to the structure and dynamics of the protein-DNA complex. Data are available via ProteomeXchange with identifier PXD027624.
Collapse
Affiliation(s)
- Marek Polák
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - Ghazaleh Yassaghi
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - František Filandr
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - Jan Fiala
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Petr Halada
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Dmitry S Loginov
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119191, Russia
| | - Petr Novák
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| |
Collapse
|
5
|
Joshi R, Pohl P, Strachotova D, Herman P, Obsil T, Obsilova V. Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys J 2022; 121:1299-1311. [PMID: 35189105 PMCID: PMC9034186 DOI: 10.1016/j.bpj.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.
Collapse
|
6
|
Circ_0084443 Inhibits Wound Healing Via Repressing Keratinocyte Migration Through Targeting the miR-17-3p/FOXO4 Axis. Biochem Genet 2021; 60:1236-1252. [PMID: 34837127 DOI: 10.1007/s10528-021-10157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Keratinocyte migration is a crucial process during skin wound healing, and circular RNAs are associated with keratinocyte migration. The purpose of our study was to clarify the role of circ_0084443 in wound healing. The levels of circ_0084443, microRNA (miR)-17-3p, and forkhead box protein O4 (FOXO4) were examined by quantitative reverse transcription-PCR. Cell migration was detected via wound scratch assay or transwell assay. The protein expression was measured using western blot. The binding analysis between miR-17-3p and circ_0084443 or FOXO4 was determined by dual-luciferase reporter assay and RNA Immunoprecipitation assay. TGF-β1 decreased the levels of circ_0084443 and FOXO4 while increased the miR-17-3p expression in keratinocytes by a concentration-dependent manner. Circ_0084443 acted as a miR-17-3p sponge and circ_0084443 overexpression alleviated TGF-β1-induced migration of keratinocytes by sponging miR-17-3p. FOXO4 was a target for miR-17-3p. The downregulation of miR-17-3p suppressed cell migration in TGF-β1-induced cells by increasing the FOXO4 level. Circ_0084443 positively regulated the FOXO4 expression by sponging miR-17-3p. Circ_0084443 suppressed the TGFβ signaling pathway by affecting the miR-17-3p/FOXO4 axis. These results exhibited that circ_0084443 suppressed the TGF-β1-induced keratinocyte migration by regulating the miR-17-3p/FOXO4 axis, suggesting the application potential of circ_0084443 in wound-healing-related diseases.
Collapse
|
7
|
Kim J, Ahn D, Park CJ. FOXO4 Transactivation Domain Interaction with Forkhead DNA Binding Domain and Effect on Selective DNA Recognition for Transcription Initiation. J Mol Biol 2021; 433:166808. [PMID: 33450250 DOI: 10.1016/j.jmb.2021.166808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
Forkhead box O4 (FOXO4) is a human transcription factor (TF) that participates in cell homeostasis. While the structure and DNA binding properties of the conserved forkhead domain (FHD) have been thoroughly investigated, how the transactivation domain (TAD) regulates the DNA binding properties of the protein remains elusive. Here, we investigated the role of TAD in modulating the DNA binding properties of FOXO4 using solution NMR. We found that TAD and FHD form an intramolecular complex mainly governed by hydrophobic interaction. Remarkably, TAD and DNA share the same surface of FHD for binding. While FHD did not differentiate binding to target and non-target DNA, the FHD-TAD complex showed different behaviors depending on the DNA sequence. In the presence of TAD, free and DNA-bound FHD exhibited a slow exchange with target DNA and a fast exchange with non-target DNA. The interaction of the two domains affected the kinetic function of FHD depending on the type of DNA. Based on these findings, we suggest a transcription initiation model by which TAD modulates FOXO4 recognition of its target promoter DNA sequences. This study describes the function of TAD in FOXO4 and provides a new kinetic perspective on target sequence selection by TFs.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dabin Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
8
|
Filandrova R, Kavan D, Kadek A, Novak P, Man P. Studying Protein-DNA Interactions by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2021; 2247:193-219. [PMID: 33301119 DOI: 10.1007/978-1-0716-1126-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) can be used to study interactions of proteins with various ligands, to describe the effects of mutations, or to reveal structural responses of proteins to different experimental conditions. It is often described as a method with virtually no limitations in terms of protein size or sample composition. While this is generally true, there are, however, ligands or buffer components that can significantly complicate the analysis. One such compound, that can make HDX-MS troublesome, is DNA. In this chapter, we will focus on the analysis of protein-DNA interactions, describe the detailed protocol, and point out ways to overcome the complications arising from the presence of DNA.
Collapse
Affiliation(s)
- Ruzena Filandrova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alan Kadek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Petr Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
9
|
Filandrová R, Vališ K, Černý J, Chmelík J, Slavata L, Fiala J, Rosůlek M, Kavan D, Man P, Chum T, Cebecauer M, Fabris D, Novák P. Motif orientation matters: Structural characterization of TEAD1 recognition of genomic DNA. Structure 2020; 29:345-356.e8. [PMID: 33333006 DOI: 10.1016/j.str.2020.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
TEAD transcription factors regulate gene expression through interactions with DNA and other proteins. They are crucial for the development of eukaryotic organisms and to control the expression of genes involved mostly in cell proliferation and differentiation; however, their deregulation can lead to tumorigenesis. To study the interactions of TEAD1 with M-CAT motifs and their inverted versions, the KD of each complex was determined, and H/D exchange, quantitative chemical cross-linking, molecular docking, and smFRET were utilized for structural characterization. ChIP-qPCR was employed to correlate the results with a cell line model. The results obtained showed that although the inverted motif has 10× higher KD, the same residues were affected by the presence of M-CAT in both orientations. Molecular docking and smFRET revealed that TEAD1 binds the inverted motif rotated 180°. In addition, the inverted motif was proven to be occupied by TEAD1 in Jurkat cells, suggesting that the low-affinity binding sites present in the human genome may possess biological relevance.
Collapse
Affiliation(s)
- Růžena Filandrová
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Karel Vališ
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Lukáš Slavata
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Jan Fiala
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Petr Man
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Tomáš Chum
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Marek Cebecauer
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Daniele Fabris
- University of Connecticut, Department of Chemistry, 55 N. Eagleville Road, Storrs, CT 06269, USA
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic.
| |
Collapse
|
10
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020; 16:e1009100. [PMID: 33264373 PMCID: PMC7735635 DOI: 10.1371/journal.ppat.1009100] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/14/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020. [PMID: 33264373 DOI: 10.1101/2020.04.02.022194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Li Q, Wen H, Li Y, Zhang Z, Wang L, Mao X, Li J, Qi X. FOXO1A promotes neuropeptide FF transcription subsequently regulating the expression of feeding-related genes in spotted sea bass (Lateolabrax maculatus). Mol Cell Endocrinol 2020; 517:110871. [PMID: 32450284 DOI: 10.1016/j.mce.2020.110871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 01/13/2023]
Abstract
FOXOs belong to the forkhead transcription factor superfamily, several of which are suggested to be involved in the control of food intake. Previously, we proved that the neuropeptide FF (NPFF) peptide was involved in feeding regulation in spotted sea bass. In the present study, seven members of the foxo family were identified in the whole genome of spotted sea bass. The distributions of these genes in different tissues were analyzed by qRT-PCR. Variations in the foxo1a and npff expression profiles during short-term starvation showed similar expression patterns. The colocalization of foxo1a and npff in the telencephalon, hypothalamus, stomach and intestine further provided evidence that foxo1a may act directly to promote the transcription of npff. Thirteen predicted FOXO1 binding sites were found in the 5' upstream region of npff. Luciferase assay results showed that FOXO1A was able to activate npff transcriptional responses by directly binding DNA response elements, and the key regulatory areas and sites of FOXO1A on the npff promoter were confirmed by deletion and site-directed mutagenesis analyses. These findings may help to elucidate the role of FOXO1 in the regulation of feeding processes in teleosts.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhanxiong Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuebin Mao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Junjie Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
13
|
Oboshi W, Hayashi K, Takeuchi H, Ikeda K, Yamaguchi Y, Kimura A, Nakamura T, Yukimasa N. MicroRNA-150 suppresses p27 Kip1 expression and promotes cell proliferation in HeLa human cervical cancer cells. Oncol Lett 2020; 20:210. [PMID: 32963616 PMCID: PMC7491037 DOI: 10.3892/ol.2020.12073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/23/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) exert critical roles in the majority of biological and pathological processes. Recent studies have associated miR-150 with a number of different cancer types. However, little is known about miR-150 targets in cervical cancer. In the present study, the HeLa human cervical cancer cell line was transfected with hsa-miR-150-5p mimics, hsa-miR-150-5p inhibitors or miRNA controls. miR-150 was predicted to bind the 3'untranslated region (3'UTR) of the CDKN1B gene, which encodes the cyclin-dependent kinase inhibitor 1B (p27Kip1). The direct binding between miR-150 and the 3'UTR of CDKN1B was confirmed using dual-luciferase reporter assays. The effects of miR-150 on CDKN1B mRNA expression, p27Kip1 protein expression, cell cycle and cell proliferation were determined using reverse-transcription quantitative PCR, western blot analysis, flow cytometry and WST-8 assays, respectively. miR-150 was demonstrated to directly target the 3'UTR of CDKN1B in transfected HeLa cells. The expression of CDKN1B mRNA and p27Kip1 protein was reduced by miR-150 mimics, and increased by miR-150 inhibitors. Moreover, the overexpression of miR-150 promoted cell cycle progression from the G0/G1 to the S phase and led to a significant increase in HeLa cell proliferation. The results of the present study indicated that miR-150 promotes HeLa cell cycle progression and proliferation via the suppression of p27Kip1 expression.
Collapse
Affiliation(s)
- Wataru Oboshi
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Keisuke Hayashi
- Department of Clinical Laboratory, Shikoku Central Hospital, Shikokuchuo, Ehime 799-0193, Japan
| | - Hiroaki Takeuchi
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Katsuhide Ikeda
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Yoshitaka Yamaguchi
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Asako Kimura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Narita Chiba 286-8686, Japan
| | - Takehiro Nakamura
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| | - Nobuyasu Yukimasa
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| |
Collapse
|
14
|
Landová B, Šilhán J. Conformational changes of DNA repair glycosylase MutM triggered by DNA binding. FEBS Lett 2020; 594:3032-3044. [PMID: 32598485 DOI: 10.1002/1873-3468.13876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Bacterial MutM is a DNA repair glycosylase removing DNA damage generated from oxidative stress and, therefore, preventing mutations and genomic instability. MutM belongs to the Fpg/Nei family of prokaryotic enzymes sharing structural and functional similarities with their eukaryotic counterparts, for example, NEIL1-NEIL3. Here, we present two crystal structures of MutM from pathogenic Neisseria meningitidis: a MutM holoenzyme and MutM bound to DNA. The free enzyme exists in an open conformation, while upon binding to DNA, both the enzyme and DNA undergo substantial structural changes and domain rearrangement. Our data show that not only NEI glycosylases but also the MutMs undergo dramatic conformational changes. Moreover, crystallographic data support the previously published observations that MutM enzymes are rather flexible and dynamic molecules.
Collapse
Affiliation(s)
- Barbora Landová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Šilhán
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. Cells 2020; 9:cells9030702. [PMID: 32182991 PMCID: PMC7140670 DOI: 10.3390/cells9030702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders.
Collapse
|
16
|
Qi M, Sun LA, Jiang XC, Han YL, Wang L, Niu WH, Fei MX, Zhaba WD, Zheng LR, Zhou ML. FOXO4 expression associates with glioblastoma development and FOXO4 expression inhibits cell malignant phenotypes in vitro and in vivo. Life Sci 2020; 247:117436. [PMID: 32070707 DOI: 10.1016/j.lfs.2020.117436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM Forkhead box protein O4 (FOXO4) is a transcription factor, and aberrant FOXO4 expression is associated with development of various human cancers. This study explored the role of FOXO4 in glioma in vitro and in vivo. METHODS FOXO4 expression was first assessed in normal brain tissues, low-grade glioma, glioblastoma multiforme (GBM), normal human astrocytes (HA), and GBM cell lines, while manipulation of FOXO4 expression in glioma cell lines was assessed using qRT-PCR, Western blot, and cell viability CCK-8, Transwell, and a nude mouse subcutaneous xenograft assays. KEY FINDINGS The data showed downregulated FOXO4 expression in GBM tissues and cell lines. FOXO4 overexpression induced by transfection with FOXO4 cDNA significantly inhibited GBM cell proliferation, migration, and invasion, but increased tumor cells to undergo apoptosis in vitro, while suppressed growth of GBM cell subcutaneous xenografts in nude mice. In conclusion, FOXO4 possesses an anti-cancer glioma activity, which could be a novel target for future control of GBM.
Collapse
Affiliation(s)
- Min Qi
- Anatomy Experimental Center, Wannan Medical College, Wuhu 241002, Anhui, China; Graduate School of Wannan Medical College, Wuhu 241002, Anhui, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Le-An Sun
- Graduate School of Wannan Medical College, Wuhu 241002, Anhui, China; Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Xiao-Chun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Lin Wang
- Department of Pathophysiology, Basic Medical College, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Wen-Hao Niu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Mao-Xing Fei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Wang-Dui Zhaba
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Lan-Rong Zheng
- Department of Pathology, Basic Medical College, Wannan Medical College, Wuhu 241002, Anhui, China.
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
17
|
A Review of FoxO1-Regulated Metabolic Diseases and Related Drug Discoveries. Cells 2020; 9:cells9010184. [PMID: 31936903 PMCID: PMC7016779 DOI: 10.3390/cells9010184] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
FoxO1 is a conserved transcription factor involved in energy metabolism. It is tightly regulated by modifications on its mRNA and protein and responds to environmental nutrient signals. FoxO1 controls the transcription of downstream genes mediating metabolic regulation. Dysfunction of FoxO1 pathways results in several metabolic diseases, including diabetes, obesity, non-alcoholic fatty liver disease, and atherosclerosis. Here, we summarize the mechanism of FoxO1 regulation behind these diseases and FoxO1-related drug discoveries.
Collapse
|
18
|
Hagenbuchner J, Obsilova V, Kaserer T, Kaiser N, Rass B, Psenakova K, Docekal V, Alblova M, Kohoutova K, Schuster D, Aneichyk T, Vesely J, Obexer P, Obsil T, Ausserlechner MJ. Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. eLife 2019; 8:48876. [PMID: 31789593 PMCID: PMC6919977 DOI: 10.7554/elife.48876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
FOXO transcription factors are critical regulators of cell homeostasis and steer cell death, differentiation and longevity in mammalian cells. By combined pharmacophore-modeling-based in silico and fluorescence polarization-based screening we identified small molecules that physically interact with the DNA-binding domain (DBD) of FOXO3 and modulate the FOXO3 transcriptional program in human cells. The mode of interaction between compounds and the FOXO3-DBD was assessed via NMR spectroscopy and docking studies. We demonstrate that compounds S9 and its oxalate salt S9OX interfere with FOXO3 target promoter binding, gene transcription and modulate the physiologic program activated by FOXO3 in cancer cells. These small molecules prove the druggability of the FOXO-DBD and provide a structural basis for modulating these important homeostasis regulators in normal and malignant cells.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic
| | - Teresa Kaserer
- Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.,Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Nora Kaiser
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Bettina Rass
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Katarina Psenakova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtech Docekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Alblova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic
| | - Klara Kohoutova
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniela Schuster
- Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tatsiana Aneichyk
- Division of Molecular Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria.,Independent Data Lab UG, Munich, Germany
| | - Jan Vesely
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Institute of Physiology, Division BIOCEV, The Czech Academy of Sciences, Prague, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | | |
Collapse
|
19
|
A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2019; 39:1080-1097. [PMID: 31591479 PMCID: PMC6989399 DOI: 10.1038/s41388-019-1044-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor FOXO3 has been associated in different tumor entities with hallmarks of cancer, including metastasis, tumor angiogenesis, maintenance of tumor-initiating stem cells, and drug resistance. In neuroblastoma (NB), we recently demonstrated that nuclear FOXO3 promotes tumor angiogenesis in vivo and chemoresistance in vitro. Hence, inhibiting the transcriptional activity of FOXO3 is a promising therapeutic strategy. However, as no FOXO3 inhibitor is clinically available to date, we used a medium-throughput fluorescence polarization assay (FPA) screening in a drug-repositioning approach to identify compounds that bind to the FOXO3-DNA-binding-domain (DBD). Carbenoxolone (CBX), a glycyrrhetinic acid derivative, was identified as a potential FOXO3-inhibitory compound that binds to the FOXO3-DBD with a binding affinity of 19 µM. Specific interaction of CBX with the FOXO3-DBD was validated by fluorescence-based electrophoretic mobility shift assay (FAM-EMSA). CBX inhibits the transcriptional activity of FOXO3 target genes, as determined by chromatin immunoprecipitation (ChIP), DEPP-, and BIM promoter reporter assays, and real-time RT-PCR analyses. In high-stage NB cells with functional TP53, FOXO3 triggers the expression of SESN3, which increases chemoprotection and cell survival. Importantly, FOXO3 inhibition by CBX treatment at pharmacologically relevant concentrations efficiently repressed FOXO3-mediated SESN3 expression and clonogenic survival and sensitized high-stage NB cells to chemotherapy in a 2D and 3D culture model. Thus, CBX might be a promising novel candidate for the treatment of therapy-resistant high-stage NB and other "FOXO-resistant" cancers.
Collapse
|
20
|
MS-Based Approaches Enable the Structural Characterization of Transcription Factor/DNA Response Element Complex. Biomolecules 2019; 9:biom9100535. [PMID: 31561554 PMCID: PMC6843354 DOI: 10.3390/biom9100535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.
Collapse
|
21
|
Bian L, Zhi X, Ma L, Zhang J, Chen P, Sun S, Li J, Sun Y, Qin J. Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p / FOXO4 axis. Biochem Biophys Res Commun 2018; 505:346-352. [PMID: 30249393 DOI: 10.1016/j.bbrc.2018.09.073] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
Circular RNAs(circRNAs) are a class of non-coding RNAs that are widely expressed in a variety of cell species. The role they play in cancers is poorly understood, especially in colorectal cancer (CRC). Hsa_circRNA_103809 (hsa_circ_0072088, circZFR)has been demonstrated to be lowly expressed in colorectal cancer tissues and is associated with stage and lymph node metastasis of cancer tissues. Real-time quantitative PCR (qRT-PCR) was used to verify the relationship of hsa_circRNA_103809 between colorectal cancer and paired adjacent tissue in clinical tissue samples. Then, the proliferative capacity, migration ability, cell cycle, and apoptosis were measured using wound-healing assay, CCK8, transwell assay, flow cytometry, and the like, when hsa_circRNA_103809 expression in SW620 and COCA-2. The qRT-PCR, western bolt and other experiments verify that the expression of hsa_circRNA_103809 can regulate the expression of miR-532-3P and FOXO4. Hsa_circRNA_103809 was found to be significantly down regulated in CRC tissues and cell lines and compared with paired adjacent non-tumorous tissues and normal FHC cells. Hsa_circRNA_103809 participates in the regulation of biological functions through the miR-532-3P/FOXO4 axis in the CRC. Hsa_circRNA_103809 may be a potential novel gene target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Longjun Bian
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Lilin Ma
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Jiaxuan Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Peisheng Chen
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Shiyu Sun
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Juanjuan Li
- Department of Otorhinolaryngology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Yi Sun
- Department of Endocrinology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Jun Qin
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, PR China.
| |
Collapse
|
22
|
Zhang Y, Zhang W, Fu X, Zhou F, Yu H, Na X. Transcriptomics and metabonomics analyses of maternal DEHP exposure on male offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26322-26329. [PMID: 29978319 DOI: 10.1007/s11356-018-2596-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The objectives of this study were to evaluate the effect of maternal Di-2-ethylhexyl phthalate (DEHP) exposure on male offspring and to explore the mechanism of changes with the metabolic alterations and differential genes. Pregnant female Sprague-Dawley (SD) rats were intragastrically administered with 600 mg/kg body weight of DEHP or corn oil (CON) throughout pregnancy and lactation. The growth of male offspring was investigated until 14 weeks old, the indices of blood were detected, and mechanism was studied using metabonomics and transcriptomics. Compared with the CON group, body weight, body length, food intake, body fat weight, Lee's index, organ coefficient, blood lipids, and oral glucose tolerance test (OGTT) of male offspring were not significantly changed in maternal DEHP group. However, serum biochemical indexes such as alanine transaminase (ALT), total protein (TP), albumin (ALB), blood urea nitrogen (BUN), and creatinine (CREA) were markedly reduced in maternal DEHP group (p < 0.05). In addition, insulin level was elevated and catalase (CAT) level was decreased notably in maternal DEHP group compared with the CON group (p < 0.05). Furthermore, thyroxine (T4) level was lower and thyroid stimulating hormone (TSH) level was higher in maternal DEHP group (p < 0.05). Metabonomics revealed seven principal metabolites were identified, including increased L-allothreonine, creatine, uric acid, retinyl ester, L-palmitoylcarnitine, and decreased glycocholic acid and LysoPC (18:3). Transcriptomics displayed 35 differential genes were involved in the mechanism of maternal DEHP exposure. Therefore, this research confirms the effect of a certain dose of maternal DEHP exposure on male offspring and understands exactly the mechanism of these changes with metabonomics and transcriptomics.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Wanying Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xihang Fu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fenfen Zhou
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Haiyang Yu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiaolin Na
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
23
|
Li J, Dantas Machado AC, Guo M, Sagendorf JM, Zhou Z, Jiang L, Chen X, Wu D, Qu L, Chen Z, Chen L, Rohs R, Chen Y. Structure of the Forkhead Domain of FOXA2 Bound to a Complete DNA Consensus Site. Biochemistry 2017. [PMID: 28644006 DOI: 10.1021/acs.biochem.7b00211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FOXA2, a member of the forkhead family of transcription factors, plays essential roles in liver development and bile acid homeostasis. In this study, we report a 2.8 Å co-crystal structure of the FOXA2 DNA-binding domain (FOXA2-DBD) bound to a DNA duplex containing a forkhead consensus binding site (GTAAACA). The FOXA2-DBD adopts the canonical winged-helix fold, with helix H3 and wing 1 regions mainly mediating the DNA recognition. Although the wing 2 region was not defined in the structure, isothermal titration calorimetry assays suggested that this region was required for optimal DNA binding. Structure comparison with the FOXA3-DBD bound to DNA revealed more major groove contacts and fewer minor groove contacts in the FOXA2 structure than in the FOXA3 structure. Structure comparison with the FOXO1-DBD bound to DNA showed that different forkhead proteins could induce different DNA conformations upon binding to identical DNA sequences. Our findings provide the structural basis for FOXA2 protein binding to a consensus forkhead site and elucidate how members of the forkhead protein family bind different DNA sites.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Ming Guo
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Jared M Sagendorf
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Zhan Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Longying Jiang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China
| | - Daichao Wu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lin Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Department of Physics and Astronomy and Department of Computer Science, University of Southern California , Los Angeles, California 90089, United States
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health and Laboratory of Structural Biology, Xiangya Hospital, Central South University , Changsha, Hunan 410008, China.,State Key Laboratory of Medical Genetics and College of Life Science, Central South University , Changsha, Hunan 410008, China.,Collaborative Innovation Center for Cancer Medicine , Guangzhou, Guangdong 510060, China
| |
Collapse
|
24
|
Humpolickova J, Mejdrová I, Matousova M, Nencka R, Boura E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB). J Med Chem 2016; 60:119-127. [PMID: 28004946 DOI: 10.1021/acs.jmedchem.6b01466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.
Collapse
Affiliation(s)
- Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technicka 5, Prague 166 28, Czech Republic
| | - Marika Matousova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
25
|
SUN YUJIA, XUE JING, GUO WENJIAO, LI MENJIAO, HUANG YONGZHEN, LAN XIANYONG, LEI CHUZHAO, ZHANG CHUNLEI, CHEN HONG. Haplotypes of bovine FoxO1 gene sequence variants and association with growth traits in Qinchuan cattle. J Genet 2016. [DOI: 10.1007/s12041-013-0209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Jirku M, Lansky Z, Bednarova L, Sulc M, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J, Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem Cell Biol 2016; 78:186-193. [PMID: 27435061 DOI: 10.1016/j.biocel.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin-1 channel (TRPM1) is an important mediator of calcium influx into the cell that is expressed in melanoma and ON-bipolar cells. Similar to other members of the TRP channel family, the intracellular N- and C- terminal domains of TRPM1 are expected to play important roles in the modulation of TRPM1 receptor function. Among the most commonly occurring modulators of TRP channels are the cytoplasmically expressed calcium binding proteins calmodulin and S100 calcium-binding protein A1 (S100A1), but the interaction of TRPM1 with S100A1 has not been described yet. Here, using a combination of biophysical and bioinformatics methods, we have determined that the N-terminal L242-E344 region of TRPM1 is a S100A1 binding domain. We show that formation of the TRPM1/S100A1 complex is calcium-dependent. Moreover, our structural model of the complex explained data obtained from fluorescence spectroscopy measurements revealing that the complex formation is facilitated through interactions of clusters positively charged (K271A, R273A, R274A) and hydrophobic (L263A, V270A, L276A) residues at the N-terminus of TRPM1. Taken together, our data suggest a molecular mechanism for the potential regulation of TRPM1 by S100A1.
Collapse
Affiliation(s)
- Michaela Jirku
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jan Teisinger
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Kristyna Bousova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
27
|
Xu MM, Mao GX, Liu J, Li JC, Huang H, Liu YF, Liu JH. Low expression of the FoxO4 gene may contribute to the phenomenon of EMT in non-small cell lung cancer. Asian Pac J Cancer Prev 2016; 15:4013-8. [PMID: 24935588 DOI: 10.7314/apjcp.2014.15.9.4013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Because of its importance in tumor invasion and metastasis, the epithelial-mesenchymal transition (EMT) has become a research focus in the field of cancer. Recently, evidence has been presented that FoxO4 might be involved in EMT. Our study aimed to detect the expression of FoxO4, E-cadherin and vimentin in non-small cell lung cancers (NSCLCs). We also investigated clinical features and their correlations with the markers. In our study, FoxO4, E-cadherin and vimentin were assessed by immunohistochemistry in a tissue microarray (TMA) containing 150 cases of NSCLC. In addition, the expression level of FoxO4 protein was determined by Western blotting. The percentages of FoxO4, E-cadherin and vimentin positive expression in NSCLCs were 42.7%, 38.7% and 55.3%, respectively. Immunoreactivity of FoxO4 was low in NSCLC when compared with paired normal lung tissues. There were significant correlations between FoxO4 and TNM stage (P<0.001), histological differentiation (P=0.004) and lymph node metastasis (P<0.001), but no significant links with age (P=0.323), gender (P=0.410), tumor size (P=0.084), smoking status (P=0.721) and histological type (P=0.281). Our study showed that low expression of FoxO4 correlated with decreased expression of E-cadherin and elevated expression of vimentin. Cox regression analysis indicated FoxO4 to be an independent prognostic factor in NSCLC (P=0.046). These data suggested that FoxO4 might inhibit the process of EMT in NSCLC, and might therefore be a target for therapy.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
28
|
Morris G, Fanucchi S. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain. Biochemistry 2016; 55:1959-67. [PMID: 26950495 DOI: 10.1021/acs.biochem.5b01271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.
Collapse
Affiliation(s)
- Gavin Morris
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand , 1 Jan Smuts Avenue, Braamfontein, 2050, Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand , 1 Jan Smuts Avenue, Braamfontein, 2050, Johannesburg, Gauteng, South Africa
| |
Collapse
|
29
|
Yalley A, Schill D, Hatta M, Johnson N, Cirillo LA. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes. J Biol Chem 2016; 291:8848-61. [PMID: 26929406 DOI: 10.1074/jbc.m115.677583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/04/2023] Open
Abstract
FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.
Collapse
Affiliation(s)
- Akua Yalley
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniel Schill
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mitsutoki Hatta
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Nicole Johnson
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lisa Ann Cirillo
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
30
|
Zaleska M, Fogl C, Kho AL, Ababou A, Ehler E, Pfuhl M. The Cardiac Stress Response Factor Ms1 Can Bind to DNA and Has a Function in the Nucleus. PLoS One 2015; 10:e0144614. [PMID: 26656831 PMCID: PMC4682817 DOI: 10.1371/journal.pone.0144614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/21/2015] [Indexed: 11/21/2022] Open
Abstract
Ms1 (also known as STARS and ABRA) has been shown to act as an early stress response gene in processes as different as hypertrophy in skeletal and cardiac muscle and growth of collateral blood vessels. It is important for cardiac development in zebrafish and is upregulated in mouse models for cardiac hypertrophy as well as in human failing hearts. Ms1 possesses actin binding sites at its C-terminus and is usually found in the cell bound to actin filaments in the cytosol or in sarcomeres. We determined the NMR structure of the only folded domain of Ms1 comprising the second actin binding site called actin binding domain 2 (ABD2, residues 294-375), and found that it is similar to the winged helix-turn-helix fold adopted mainly by DNA binding domains of transcriptional factors. In vitro experiments show specific binding of this domain, in combination with a newly discovered AT-hook motif located N-terminally, to the sequence (A/C/G)AAA(C/A). NMR and fluorescence titration experiments confirm that this motif is indeed bound specifically by the recognition helix. In neonatal rat cardiomyocytes endogenous Ms1 is found in the nucleus in a spotted pattern, reminiscent of PML bodies. In adult rat cardiomyocytes Ms1 is exclusively found in the sarcomere. A nuclear localisation site in the N-terminus of the protein is required for nuclear localisation. This suggests that Ms1 has the potential to act directly in the nucleus through specific interaction with DNA in development and potentially as a response to stress in adult tissues.
Collapse
Affiliation(s)
- Mariola Zaleska
- Cardiovascular and Randall Division, King's College London, London, United Kingdom
| | - Claudia Fogl
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, United Kingdom
| | - Ay Lin Kho
- Cardiovascular and Randall Division, King's College London, London, United Kingdom
| | - Abdessamad Ababou
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Elisabeth Ehler
- Cardiovascular and Randall Division, King's College London, London, United Kingdom
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Wang F, Marshall CB, Ikura M. Forkhead followed by disordered tail: The intrinsically disordered regions of FOXO3a. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1056906. [PMID: 28232890 DOI: 10.1080/21690707.2015.1056906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
Abstract
Forkhead box Class O is one of 19 subfamilies of the Forkhead box family, comprising 4 human transcription factors: FOXO1, FOXO3a, FOXO4, and FOXO6, which are involved in many crucial cellular processes. FOXO3a is a tumor suppressor involved in multiple physiological and pathological processes, and plays essential roles in metabolism, cell cycle arrest, DNA repair, and apoptosis. In its role as a transcription factor, the FOXO3a binds a consensus Forkhead response element DNA sequence, and recruits transcriptional coactivators to activate gene transcription. FOXO3a has additional functions, such as regulating p53-mediated apoptosis and activating kinase ATM. With the exception of the structured DNA-binding forkhead domain, most of the FOXO3a sequence comprises intrinsically disordered regions (IDRs), including 3 regions (CR1-3) that are conserved within the FOXO subfamily. Numerous studies have demonstrated that these IDRs directly mediate many of the diverse functions of FOXO3a. These regions contain post-translational modification and protein-protein interaction sites that integrate upstream signals to maintain homeostasis. Thus, the FOXO3a IDRs are emerging as key mediators of diverse regulatory processes, and represent an important target for the future development of therapeutics for FOXO3a-related diseases.
Collapse
Affiliation(s)
- Feng Wang
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Present affiliation: Department of Biochemistry; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Christopher B Marshall
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, Department of Medical Biophysics, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
33
|
Różycki B, Boura E. Large, dynamic, multi-protein complexes: a challenge for structural biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:463103. [PMID: 25335513 DOI: 10.1088/0953-8984/26/46/463103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural biology elucidates atomic structures of macromolecules such as proteins, DNA, RNA, and their complexes to understand the basic mechanisms of their functions. Among proteins that pose the most difficult problems to current efforts are those which have several large domains connected by long, flexible polypeptide segments. Although abundant and critically important in biological cells, such proteins have proven intractable by conventional techniques. This gap has recently led to the advancement of hybrid methods that use state-of-the-art computational tools to combine complementary data from various high- and low-resolution experiments. In this review, we briefly discuss the individual experimental techniques to illustrate their strengths and limitations, and then focus on the use of hybrid methods in structural biology. We describe how representative structures of dynamic multi-protein complexes are obtained utilizing the EROS hybrid method that we have co-developed.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
34
|
Vacha P, Zuskova I, Bumba L, Herman P, Vecer J, Obsilova V, Obsil T. Detailed kinetic analysis of the interaction between the FOXO4–DNA-binding domain and DNA. Biophys Chem 2013; 184:68-78. [DOI: 10.1016/j.bpc.2013.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/01/2022]
|
35
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
36
|
Regulation of autophagy by Forkhead box (FOX) O transcription factors. Adv Biol Regul 2013; 52:122-36. [PMID: 22115564 DOI: 10.1016/j.advenzreg.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022]
|
37
|
Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK. Multiple modes of chromatin remodeling by Forkhead box proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:707-15. [PMID: 22406422 DOI: 10.1016/j.bbagrm.2012.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Forkhead box (FOX) proteins represent a large family of transcriptional regulators unified by their DNA binding domain (DBD) known as a 'forkhead' or 'winged helix' domain. Over 40 FOX genes have been identified in the mammalian genome. FOX proteins share significant sequence similarities in the DBD which allow them to bind to a consensus DNA response element. However, their modes of action are quite diverse as they regulate gene expression by acting as pioneer factors, transcription factors, or both. This review focuses on the mechanisms of chromatin remodeling with an emphasis on three sub-classes-FOXA, FOXO, and FOXP members. FOXA proteins serve as pioneer factors to open up local chromatin structure and thereby increase accessibility of chromatin to factors regulating transcription. FOXP proteins, in contrast, function as classic transcription factors to recruit a variety of chromatin modifying enzymes to regulate gene expression. FOXO proteins represent a hybrid subclass having dual roles as pioneering factors and transcription factors. A subset of FOX proteins interacts with condensed mitotic chromatin and may function as 'bookmarking' agents to maintain transcriptional competence at specific genomic sites. The overall diversity in chromatin remodeling function by FOX proteins is related to unique structural motifs present within the DBD flanking regions that govern selective interactions with core histones and/or chromatin coregulatory proteins. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Rezabkova L, Man P, Novak P, Herman P, Vecer J, Obsilova V, Obsil T. Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J Biol Chem 2011; 286:43527-36. [PMID: 22027839 DOI: 10.1074/jbc.m111.273573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.
Collapse
Affiliation(s)
- Lenka Rezabkova
- Department of Physical and Macromolecular Chemistry, Charles University in Prague, 12843 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
39
|
Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1938-45. [PMID: 21708191 DOI: 10.1016/j.bbamcr.2011.06.002] [Citation(s) in RCA: 547] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/04/2011] [Indexed: 12/28/2022]
Abstract
The forkhead box O (FoxO) transcription factor family is a key player in an evolutionary conserved pathway downstream of insulin and insulin-like growth factor receptors. The mammalian FoxO family consists of FoxO1, 3, 4 and 6, which share high similarity in their structure, function and regulation. FoxO proteins are involved in diverse cellular and physiological processes including cell proliferation, apoptosis, reactive oxygen species (ROS) response, longevity, cancer and regulation of cell cycle and metabolism. The regulation of FoxO protein function involves an intricate network of posttranslational modifications and protein-protein interactions that provide integrated cellular response to changing physiological conditions and cues. AKT was identified in early genetic and biochemical studies as a main regulator of FoxO function in diverse organisms. Though other FoxO regulatory pathways and mechanisms have been delineated since, AKT remains a key regulator of the pathway. The present review summarizes the current knowledge of FoxO regulation by AKT and 14-3-3 proteins, focusing on its mechanistic and structural aspects and discusses its crosstalk with the other FoxO regulatory mechanisms. This article is part of a Special Issue entitled: PI3K-AKT-FoxO axis in cancer and aging.
Collapse
Affiliation(s)
- Guri Tzivion
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | |
Collapse
|
40
|
PDK1-Foxo1 in agouti-related peptide neurons regulates energy homeostasis by modulating food intake and energy expenditure. PLoS One 2011; 6:e18324. [PMID: 21694754 PMCID: PMC3072380 DOI: 10.1371/journal.pone.0018324] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/03/2011] [Indexed: 01/05/2023] Open
Abstract
Insulin and leptin intracellular signaling pathways converge and act synergistically on the hypothalamic phosphatidylinositol-3-OH kinase/3-phosphoinositide-dependent protein kinase 1 (PDK1). However, little is known about whether PDK1 in agouti-related peptide (AGRP) neurons contributes to energy homeostasis. We generated AGRP neuron-specific PDK1 knockout (AGRPPdk1−/−) mice and mice with selective expression of transactivation-defective Foxo1 (Δ256Foxo1AGRPPdk1−/−). The AGRPPdk1−/− mice showed reductions in food intake, body length, and body weight. The Δ256Foxo1AGRPPdk1−/− mice showed increased body weight, food intake, and reduced locomotor activity. After four weeks of calorie-restricted feeding, oxygen consumption and locomotor activity were elevated in AGRPPdk1−/− mice and reduced in Δ256Foxo1AGRPPdk1−/− mice. In vitro, ghrelin-induced changes in [Ca2+]i and inhibition of ghrelin by leptin were significantly attenuated in AGRPPdk1−/− neurons compared to control neurons. However, ghrelin-induced [Ca2+]i changes and leptin inhibition were restored in Δ256Foxo1AGRPPdk1−/− mice. These results suggested that PDK1 and Foxo1 signaling pathways play important roles in the control of energy homeostasis through AGRP-independent mechanisms.
Collapse
|
41
|
Abstract
The evolutionarily conserved Forkhead box O (FOXO) family of transcription factors regulates multiple transcriptional targets involved in various cellular processes, including proliferation, stress resistance, apoptosis, and metabolism. Target gene regulation appears to be controlled in a cell-type-specific manner due to association of FOXO isoforms with specific cofactors. Many of the cellular processes modulated by FOXO are themselves deregulated in tumorigenesis, and deletion of Foxo genes has demonstrated that these transcription factors function as tumor suppressors. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions. In this review we describe the functional consequences of FOXO activation based on our current knowledge of transcriptional targets.
Collapse
Affiliation(s)
- Kristan E van der Vos
- Molecular Immunology Lab, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Valis K, Prochazka L, Boura E, Chladova J, Obsil T, Rohlena J, Truksa J, Dong LF, Ralph SJ, Neuzil J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res 2011; 71:946-54. [PMID: 21245099 DOI: 10.1158/0008-5472.can-10-2203] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proapoptotic protein Noxa, a member of the BH3-only Bcl-2 protein family, can effectively induce apoptosis in cancer cells, although the relevant regulatory pathways have been obscure. Previous studies of the cytotoxic effects of α-tocopheryl succinate (α-TOS) on cancer cells identified a mechanism whereby α-TOS caused apoptosis requiring the Noxa-Bak axis. In the present study, ab initio analysis revealed a conserved FoxO-binding site (DBE; DAF-16 binding element) in the NOXA promoter, and specific affinity of FoxO proteins to this DBE was confirmed by fluorescence anisotropy. FoxO1 and FoxO3a proteins accumulated in the nucleus of α-TOS-treated cells, and the drug-induced specific FoxO1 association with the NOXA promoter and its activation were validated by chromatin immunoprecipitation. Using siRNA knockdown, a specific role for the FoxO1 protein in activating NOXA transcription in cancer cells was identified. Furthermore, the proapoptotic kinase Hippo/Mst1 was found to be strongly activated by α-TOS, and inhibiting Hippo/Mst1 by specific siRNA prevented phosphorylation of FoxO1 and its nuclear translocation, thereby reducing levels of NOXA transcription and apoptosis in cancer cells exposed to α-TOS. Thus, we have demonstrated that anticancer drugs, exemplified by α-TOS, induce apoptosis by a mechanism involving the Hippo/Mst1-FoxO1-Noxa pathway. We propose that activation of this pathway provides a new paradigm for developing targeted cancer treatments.
Collapse
Affiliation(s)
- Karel Valis
- Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Weidinger C, Krause K, Fuhrer D. Novel insights into FOXOlogy: FOXOs and their putative role in thyroid carcinogenesis. Expert Rev Endocrinol Metab 2011; 6:63-69. [PMID: 30764036 DOI: 10.1586/eem.10.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
FOXO transcription factors regulate genes directly involved in the control of cell cycle arrest, apoptosis, DNA damage repair and antioxidative defense mechanisms. Genetic FOXO alterations and inactivation of FOXOs through oncogenic signaling cascades have been identified in several human cancers and contribute to uncoordinated cellular proliferation. To date, little is known about FOXOs in the thyroid context. In this article we will first provide an introduction into the topic of forkhead transcription factors by explaining the principles of FOXO function and regulation. We will then address specific aspects of FOXO3 function in the thyroid and possible consequences of FOXO3 deregulation in thyroid malignancy. Finally, we discuss the potential role of the PI3K/Akt/FOXO3 axis for a targeted drug therapy of advanced thyroid carcinoma.
Collapse
Affiliation(s)
- Carl Weidinger
- a Clinic of Endocrinology and Nephrology, Department of Internal Medicine, Neurology and Dermatology, University of Leipzig, D-04103 Leipzig, Germany
| | - Kerstin Krause
- a Clinic of Endocrinology and Nephrology, Department of Internal Medicine, Neurology and Dermatology, University of Leipzig, D-04103 Leipzig, Germany
| | - Dagmar Fuhrer
- a Clinic of Endocrinology and Nephrology, Department of Internal Medicine, Neurology and Dermatology, University of Leipzig, D-04103 Leipzig, Germany
- b
| |
Collapse
|
45
|
Obsil T, Obsilova V. Structural basis for DNA recognition by FOXO proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1946-53. [PMID: 21146564 DOI: 10.1016/j.bbamcr.2010.11.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/30/2010] [Indexed: 12/30/2022]
Abstract
The FOXO forkhead transcription factors are involved in metabolism control, cell survival, cellular proliferation, DNA damage repair response, and stress resistance. Their transcriptional activity is regulated through a number of posttranslational modifications, including phosphorylation, acetylation and ubiquitination. The recently determined three-dimensional structures of FOXO forkhead domains bound to DNA enable to explain the structural basis for DNA recognition by FOXO proteins and its regulation. The aim of this review is to summarize the recent structural characterization of FOXO proteins, the mechanisms of DNA recognition and the role of posttranslational modifications in the regulation of FOXO DNA-binding properties. This article is part of a Special Issue entitled: PI3K-AKT-FOXO axis in cancer and aging.
Collapse
Affiliation(s)
- Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | | |
Collapse
|
46
|
Rezabkova L, Boura E, Herman P, Vecer J, Bourova L, Sulc M, Svoboda P, Obsilova V, Obsil T. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3). J Struct Biol 2010; 170:451-61. [DOI: 10.1016/j.jsb.2010.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/12/2010] [Accepted: 03/22/2010] [Indexed: 11/30/2022]
|
47
|
Iskandar K, Cao Y, Hayashi Y, Nakata M, Takano E, Yada T, Zhang C, Ogawa W, Oki M, Chua S, Itoh H, Noda T, Kasuga M, Nakae J. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab 2010; 298:E787-98. [PMID: 20103739 DOI: 10.1152/ajpendo.00512.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Both insulin and leptin signaling converge on phosphatidylinositol 3-OH kinase [PI(3)K]/3-phosphoinositide-dependent protein kinase-1 (PDK-1)/protein kinase B (PKB, also known as Akt) in proopiomelanocortin (POMC) neurons. Forkhead box-containing protein-O1 (FoxO1) is inactivated in a PI(3)K-dependent manner. However, the interrelationship between PI(3)K/PDK-1/Akt and FoxO1, and the chronic effects of the overexpression of FoxO1 in POMC neurons on energy homeostasis has not been elucidated. To determine the extent to which PDK-1 and FoxO1 signaling in POMC neurons was responsible for energy homeostasis, we generated POMC neuron-specific Pdk1 knockout mice (POMCPdk1(-/-)) and mice selectively expressing a constitutively nuclear (CN)FoxO1 or transactivation-defective (Delta256)FoxO1 in POMC neurons (CNFoxO1(POMC) or Delta256FoxO1(POMC)). POMCPdk1(-/-) mice showed increased food intake and body weight accompanied by decreased expression of Pomc gene. The CNFoxO1(POMC) mice exhibited mild obesity and hyperphagia compared with POMCPdk1(-/-) mice. Although expression of the CNFoxO1 made POMCPdk1(-/-) mice more obese due to excessive suppression of Pomc gene, overexpression of Delta256FoxO1 in POMC neurons had no effects on metabolic phenotypes and Pomc expression levels of POMCPdk1(-/-) mice. These data suggest a requirement for PDK-1 and FoxO1 in transcriptional regulation of Pomc and food intake.
Collapse
Affiliation(s)
- Kristy Iskandar
- International Center for Medical Research and Treatment, Kobe University Graduate school of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Friedlova E, Grycova L, Holakovska B, Silhan J, Janouskova H, Sulc M, Obsilova V, Obsil T, Teisinger J. The interactions of the C-terminal region of the TRPC6 channel with calmodulin. Neurochem Int 2010; 56:363-6. [DOI: 10.1016/j.neuint.2009.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/28/2022]
|
49
|
Wang F, Marshall CB, Li GY, Yamamoto K, Mak TW, Ikura M. Synergistic interplay between promoter recognition and CBP/p300 coactivator recruitment by FOXO3a. ACS Chem Biol 2009; 4:1017-27. [PMID: 19821614 DOI: 10.1021/cb900190u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
FOXO3a is a transcription factor belonging to the forkhead box O-Class (FOXO) subfamily, and it regulates metabolism, cell-cycle arrest, cell differentiation, and apoptosis through activating or suppressing gene transcription. FOXO3a contains a well-folded DNA-binding forkhead (FH) domain, but a large portion of the remaining protein sequence (75% of the total) is predicted to comprise intrinsically disordered regions (IDRs). Within the IDRs, there are three conserved regions (CR1-CR3), and it has been shown that CR3 (residues D610-N650) is a transactivation domain that recruits the coactivator histone acetyltransferase (HAT) CBP/p300, through binding to its KIX domain. In a previous study, we determined the solution structure of the FH domain and identified an intramolecular interaction between FH and CR3 domains of FOXO3a. Here we illustrate that the KIX domain of CBP interacts with the central core region (L620-A635) of CR3, which also internally interacts with the FH domain. In this heterotypic interplay, FH prevents CR3 from binding to KIX; however, upon binding to the Forkhead response element (FRE) DNA, the FH domain releases the CR3 domain, allowing it to interact with KIX. While previous studies have shown that the transactivation domains of c-Myb and MLL bind to distinct sites on KIX, our results indicate that FOXO3a CR3 has an ability to bind to both of these sites. These results suggest a model of FOXO3a-dependent coactivator recruitment in which the dynamic interplay between KIX and FH domains for binding to CR3 plays a key regulatory role in gene transcription activation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
- Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
- Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Guang-Yao Li
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
- Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 1L7
| | - Kazuo Yamamoto
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
- The Campbell Family Cancer Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, ON, Canada M5G 2C1
| | - Tak W. Mak
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
- The Campbell Family Cancer Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, ON, Canada M5G 2C1
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
- Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
50
|
Chernatynskaya AV, Deleeuw L, Trent JO, Brown T, Lane AN. Structural analysis of the DNA target site and its interaction with Mbp1. Org Biomol Chem 2009; 7:4981-91. [PMID: 19907790 DOI: 10.1039/b912309a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solution structure of a 14 base-pair non-self complementary DNA duplex containing the consensus-binding site of the yeast transcription factor Mbp1 has been determined by NMR using a combination of scalar coupling analysis, time-dependent NOEs, residual dipolar couplings and 13C-edited NMR spectroscopy of a duplex prepared with one strand uniformly labeled with 13C-nucleotides. As expected, the free DNA duplex is within the B-family of structures, and within experimental limits is straight. However, there are clear local structural variations associated with the consensus CGCG element in the binding sequence that are important for sequence recognition. In the complex, the DNA bends around the protein, which also undergoes some conformational rearrangement in the C-terminal region. Structural constraints derived from paramagnetic perturbation experiments with spin-labeled DNA, chemical shift perturbation experiments of the DNA, previous cross-saturation, chemical shift perturbation experiments on the protein, information from mutational analysis, and electrostatics calculations have been used to produce a detailed docked structure using the known solution conformation of the free protein and other spectroscopic information about the Mbp1:DNA complex. A Monte Carlo-based docking procedure with restrained MD in a fully solvated system subjected to available experimental constraints produced models that account for the available structural data, and can rationalize the extensive thermodynamic data about the Mbp1:DNA complex. The protein:DNA interface is closely packed and is associated with a small number of specific contacts. The structure shows an extensive positively charged surface that accounts for the high polyelectrolyte contribution to binding.
Collapse
|