1
|
Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. PLoS One 2020; 15:e0234910. [PMID: 32559200 PMCID: PMC7304595 DOI: 10.1371/journal.pone.0234910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
Aging in mammals is the gradual decline of an organism's physical, mental, and physiological capacity. Aging leads to increased risk for disease and eventually to death. Here, we show that Brd2 haploinsufficiency (Brd2+/-) extends lifespan and increases healthspan in C57B6/J mice. In Brd2+/- mice, longevity is increased by 23% (p<0.0001), and, relative to wildtype animals (Brd2+/+), cancer incidence is reduced by 43% (p<0.001). In addition, relative to age-matched wildtype mice, Brd2 heterozygotes show healthier aging including: improved grooming, extended period of fertility, and lack of age-related decline in kidney function and morphology. Our data support a role for haploinsufficiency of Brd2 in promoting healthy aging. We hypothesize that Brd2 affects aging by protecting against the accumulation of molecular and cellular damage. Given the recent advances in the development of BET inhibitors, our research provides impetus to test drugs that target BRD2 as a way to understand and treat/prevent age-related diseases.
Collapse
|
2
|
Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res 2019; 29:2088-2103. [PMID: 31754020 PMCID: PMC6886498 DOI: 10.1101/gr.253880.119] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Aging is a pleiotropic process affecting many aspects of mammalian physiology. Mammals are composed of distinct cell type identities and tissue environments, but the influence of these cell identities and environments on the trajectory of aging in individual cells remains unclear. Here, we performed single-cell RNA-seq on >50,000 individual cells across three tissues in young and old mice to allow for direct comparison of aging phenotypes across cell types. We found transcriptional features of aging common across many cell types, as well as features of aging unique to each type. Leveraging matrix factorization and optimal transport methods, we found that both cell identities and tissue environments exert influence on the trajectory and magnitude of aging, with cell identity influence predominating. These results suggest that aging manifests with unique directionality and magnitude across the diverse cell identities in mammals.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Lolita Penland
- Calico Life Sciences, South San Francisco, California 94080, USA
| | | | | | - David R Kelley
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Adam Z Rosenthal
- Calico Life Sciences, South San Francisco, California 94080, USA
| |
Collapse
|
3
|
Chung J, Karkhanis V, Baiocchi RA, Sif S. Protein arginine methyltransferase 5 (PRMT5) promotes survival of lymphoma cells via activation of WNT/β-catenin and AKT/GSK3β proliferative signaling. J Biol Chem 2019; 294:7692-7710. [PMID: 30885941 DOI: 10.1074/jbc.ra119.007640] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Indexed: 02/02/2023] Open
Abstract
Epigenetic regulation by the type II protein arginine methyltransferase, PRMT5, plays an essential role in the control of cancer cell proliferation and tumorigenesis. In this report, we investigate the relationship between PRMT5 and WNT/β-CATENIN as well as AKT/GSK3β proliferative signaling in three different types of non-Hodgkin's lymphoma cell lines, clinical samples, and mouse primary lymphoma cells. We show that PRMT5 stimulates WNT/β-CATENIN signaling through direct epigenetic silencing of pathway antagonists, AXIN2 and WIF1, and indirect activation of AKT/GSK3β signaling. PRMT5 inhibition with either shRNA-mediated knockdown or a specific small molecule PRMT5 inhibitor, CMP-5, not only leads to derepression of WNT antagonists and decreased levels of active phospho-AKT (Thr-450 and Ser-473) and inactive phospho-GSK3β (Ser-9) but also results in decreased transcription of WNT/β-CATENIN target genes, CYCLIN D1, c-MYC, and SURVIVIN, and enhanced lymphoma cell death. Furthermore, PRMT5 inhibition leads to reduced recruitment of co-activators CBP, p300, and MLL1, as well as enhanced recruitment of co-repressors HDAC2 and LSD1 to the WNT/β-CATENIN target gene promoters. These results indicate that PRMT5 governs expression of prosurvival genes by promoting WNT/β-CATENIN and AKT/GSK3β proliferative signaling and that its inhibition induces lymphoma cell death, which warrants further clinical evaluation.
Collapse
Affiliation(s)
- Jihyun Chung
- From the Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, Ohio 43210 and
| | - Vrajesh Karkhanis
- From the Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, Ohio 43210 and
| | - Robert A Baiocchi
- From the Division of Hematology, Department of Internal Medicine, the Ohio State University, Columbus, Ohio 43210 and
| | - Saïd Sif
- the Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Knockdown of epigenetic transcriptional co-regulator Brd2a disrupts apoptosis and proper formation of hindbrain and midbrain-hindbrain boundary (MHB) region in zebrafish. Mech Dev 2017; 146:10-30. [PMID: 28549975 DOI: 10.1016/j.mod.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Brd2 is a member of the bromodomain-extraterminal domain (BET) family of proteins and functions as an acetyl-histone-directed transcriptional co-regulator and recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. While Brd2 acts as a protooncogene in mammalian blood, developmental studies link it to regulation of neuronal apoptosis and epilepsy, and complete knockout of the gene is invariably embryonic lethal. In Drosophila, the Brd2 homolog acts as a maternal effect factor necessary for segment formation and identity and proper expression of homeotic loci, including Ultrabithorax and engrailed. To test the various roles attributed to Brd2 in a single developmental system representing a non-mammalian vertebrate, we conducted a phenotypic characterization of Brd2a deficient zebrafish embryos produced by morpholino knockdown and corroborated by Crispr-Cas9 disruption and small molecule inhibitor treatments. brd2aMO morphants exhibit reduced hindbrain with an ill-defined midbrain-hindbrain boundary (MHB) region; irregular notochord, neural tube, and somites; and abnormalities in ventral trunk and ventral nerve cord interneuron positioning. Using whole mount TUNEL and confocal microscopy, we uncover a significant decrease, then a dramatic increase, of p53-independent cell death at the start and end of segmentation, respectively. In contrast, using qualitative and quantitative analyses of BrdU incorporation, phosphohistone H3-tagging, and flow cytometry, we detect little effect of Brd2a knockdown on overall proliferation levels in embryos. RNA in situ hybridization shows reduced or absent expression of homeobox gene eng2a and paired box gene pax2a, in the hindbrain domain of the MHB region, and an overabundance of pax2a-positive kidney progenitors, in knockdowns. Together, these results suggest an evolutionarily conserved role for Brd2 in the proper formation and/or patterning of segmented tissues, including the vertebrate CNS, where it acts as a bi-modal regulator of apoptosis, and is necessary, directly or indirectly, for proper expression of genes that pattern the MHB and/or regulate differentiation in the anterior hindbrain.
Collapse
|
5
|
Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:45-50. [PMID: 27769357 DOI: 10.1016/j.ddtec.2016.06.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/21/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4. Each BET protein controls distinct transcriptional pathways that are important for functions beyond cancer cell proliferation, including insulin production, cytokine gene transcription, T cell differentiation, adipogenesis and most seriously, active repression of dangerous latent viruses like HIV. BET inhibitors have been shown to reactivate HIV in human cells. Failure to appreciate that at concentrations used, no available BET inhibitor is member-selective, or to develop a sound biological basis to understand the diverse functions of BET proteins before undertaking for these clinical trials is reckless and likely to lead to adverse events. More mechanistic information from new basic science studies should enable proper focus on the most relevant cancers and define the expected side effect profiles.
Collapse
Affiliation(s)
- Guillaume Andrieu
- Department of Medicine, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, United States
| | - Anna C Belkina
- Flow Cytometry Core Facility, Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gerald V Denis
- Department of Medicine, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
6
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
7
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
8
|
BRD4 inhibitor inhibits colorectal cancer growth and metastasis. Int J Mol Sci 2015; 16:1928-48. [PMID: 25603177 PMCID: PMC4307342 DOI: 10.3390/ijms16011928] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Post-translational modifications have been identified to be of great importance in cancers and lysine acetylation, which can attract the multifunctional transcription factor BRD4, has been identified as a potential therapeutic target. In this paper, we identify that BRD4 has an important role in colorectal cancer; and that its inhibition substantially wipes out tumor cells. Treatment with inhibitor MS417 potently affects cancer cells, although such effects were not always outright necrosis or apoptosis. We report that BRD4 inhibition also limits distal metastasis by regulating several key proteins in the progression of epithelial-to-mesenchymal transition (EMT). This effect of BRD4 inhibitor is demonstrated via liver metastasis in animal model as well as migration and invasion experiments in vitro. Together, our results demonstrate a new application of BRD4 inhibitor that may be of clinical use by virtue of its ability to limit metastasis while also being tumorcidal.
Collapse
|
9
|
Abstract
B cell neoplasms comprise >50% of blood cancers. However, many types of B cell malignancies remain incurable. Identification and validation of novel genetic risk factors and oncogenic signaling pathways are imperative for the development of new therapeutic strategies. We and others recently identified TRAF3, a cytoplasmic adaptor protein, as a novel tumor suppressor in B lymphocytes. We found that TRAF3 inactivation results in prolonged survival of mature B cells, which eventually leads to spontaneous development of B lymphomas in mice. Corroborating our findings, TRAF3 deletions and inactivating mutations frequently occur in human B cell chronic lymphocytic leukemia, splenic marginal zone lymphoma, mantle cell lymphoma, multiple myeloma, Waldenström’s macroglobulinemia, and Hodgkin lymphoma. In this context, we have been investigating TRAF3 signaling mechanisms in B cells, and are developing new therapeutic strategies to target TRAF3 downstream signaling pathways in B cell neoplasms. Here we discuss our new translational data that demonstrate the therapeutic potential of targeting TRAF3 downstream signaling pathways in B lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Carissa R Moore
- Department of Cell Biology and Neuroscience, New Jersey, USA
| | - Shanique Ke Edwards
- Department of Cell Biology and Neuroscience, New Jersey, USA ; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, New Jersey, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, New Jersey, USA ; Member, Rutgers Cancer Institute of New Jersey, USA
| |
Collapse
|
10
|
Edwards SKE, Desai A, Liu Y, Moore CR, Xie P. Expression and function of a novel isoform of Sox5 in malignant B cells. Leuk Res 2013; 38:393-401. [PMID: 24418753 DOI: 10.1016/j.leukres.2013.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/11/2013] [Accepted: 12/14/2013] [Indexed: 01/04/2023]
Abstract
Using a mouse model with the tumor suppressor TRAF3 deleted from B cells, we identified Sox5 as a gene strikingly up-regulated in B lymphomas. Sox5 proteins were not detected in normal or premalignant TRAF3(-/-) B cells even after treatment with B cell stimuli. The Sox5 expressed in TRAF3(-/-) B lymphomas represents a novel isoform of Sox5, and was localized in the nucleus of malignant B cells. Overexpression of Sox5 inhibited cell cycle progression, and up-regulated the protein levels of p27 and β-catenin in human multiple myeloma cells. Together, our findings indicate that Sox5 regulates the proliferation of malignant B cells.
Collapse
Affiliation(s)
- Shanique K E Edwards
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, United States
| | - Anand Desai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, United States.
| |
Collapse
|
11
|
Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J Leukoc Biol 2013; 95:451-60. [PMID: 24319289 DOI: 10.1189/jlb.1112588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.
Collapse
Affiliation(s)
- Anna C Belkina
- 1.72 East Concord St., Rm. K520, Boston, MA 02118, USA. ; Twitter: http://www.twitter.com/GdenisBoston
| | | | | | | |
Collapse
|
12
|
Chung J, Karkhanis V, Tae S, Yan F, Smith P, Ayers LW, Agostinelli C, Pileri S, Denis GV, Baiocchi RA, Sif S. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J Biol Chem 2013; 288:35534-47. [PMID: 24189068 DOI: 10.1074/jbc.m113.510669] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation mediated by lysine- and arginine-specific enzymes plays an essential role in tumorigenesis, and enhanced expression of the type II protein arginine methyltransferase PRMT5 as well as the polycomb repressor complex PRC2 has been associated with increased cell proliferation and survival. Here, we show that PRMT5 is overexpressed in three different types of non-Hodgkin lymphoma cell lines and clinical samples as well as in mouse primary lymphoma cells and that it up-regulates PRC2 expression through inactivation of the retinoblastoma proteins RB1 and RBL2. Although PRMT5 epigenetically controls RBL2 expression, it indirectly promotes RB1 phosphorylation through enhanced cyclin D1 expression. Furthermore, we demonstrate that PRMT5 knockdown in non-Hodgkin lymphoma cell lines and mouse primary lymphoma cells leads to RBL2 derepression and RB1 reactivation, which in turn inhibit PRC2 expression and trigger derepression of its CASP10, DAP1, HOXA5, and HRK pro-apoptotic target genes. We also show that reduced PRMT5 expression leads to cyclin D1 transcriptional repression via loss of TP53K372 methylation, which results in decreased BCL3 expression and enhanced recruitment of NF-κB p52-HDAC1 repressor complexes to the cyclin D1 promoter. These findings indicate that PRMT5 is a master epigenetic regulator that governs expression of its own target genes and those regulated by PRC2 and that its inhibition could offer a promising therapeutic strategy for lymphoma patients.
Collapse
Affiliation(s)
- Jihyun Chung
- From the Departments Molecular and Cellular Biochemistry and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tompkins VS, Han SS, Olivier A, Syrbu S, Bair T, Button A, Jacobus L, Wang Z, Lifton S, Raychaudhuri P, Morse HC, Weiner G, Link B, Smith BJ, Janz S. Identification of candidate B-lymphoma genes by cross-species gene expression profiling. PLoS One 2013; 8:e76889. [PMID: 24130802 PMCID: PMC3793908 DOI: 10.1371/journal.pone.0076889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023] Open
Abstract
Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.
Collapse
Affiliation(s)
- Van S. Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seong-Su Han
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alicia Olivier
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sergei Syrbu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Bair
- Bioinformatics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Anna Button
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Laura Jacobus
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Samuel Lifton
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Statistics & Actuarial Science, University of Iowa College of Liberal Arts & Sciences, Iowa City, Iowa, United States of America
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - George Weiner
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian Link
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian J. Smith
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
14
|
Barbieri I, Cannizzaro E, Dawson MA. Bromodomains as therapeutic targets in cancer. Brief Funct Genomics 2013; 12:219-30. [DOI: 10.1093/bfgp/elt007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Nieto Y, Thall P, Valdez B, Andersson B, Popat U, Anderlini P, Shpall EJ, Bassett R, Alousi A, Hosing C, Kebriaei P, Qazilbash M, Frazier E, Gulbis A, Chancoco C, Bashir Q, Ciurea S, Khouri I, Parmar S, Shah N, Worth L, Rondon G, Champlin R, Jones RB. High-dose infusional gemcitabine combined with busulfan and melphalan with autologous stem-cell transplantation in patients with refractory lymphoid malignancies. Biol Blood Marrow Transplant 2012; 18:1677-86. [PMID: 22643322 PMCID: PMC4010147 DOI: 10.1016/j.bbmt.2012.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
Abstract
We developed a new high-dose combination of infusional gemcitabine with busulfan and melphalan for lymphoid tumors. Gemcitabine dose was escalated by extending infusions at a fixed rate of 10 mg/m(2)/min in sequential cohorts, in daily, 3-dose or 2-dose schedules. Each gemcitabine dose immediately preceded busulfan (adjusted targeting area under the curve 4,000 μM/min(-1)/day × 4 days) or melphalan (60 mg/m(2)/day × 2 days). We enrolled 133 patients (80 Hodgkin lymphoma [HL], 46 non-Hodgkin lymphoma [NHL], 7 myeloma), median 3 prior regimens; primary refractory disease in 63% HL/45% NHL and positron emission tomography positive tumors at transplantation in 50% patients. Two patients died from early posttransplantation infections. The major toxicity was mucositis. The daily and 3-dose schedules caused substantial cutaneous toxicity. In contrast, the 2-dose schedule was better tolerated, which allowed us to extend the infusions from 15 to 270 minutes. Pretransplantation values of C-reactive protein, B-type natriuretic peptide, ferritin, or haptoglobin did not correlate with toxicity. Overall response and complete response rates were 87%/62% (HL), 100%/69% B large-cell lymphoma (B-LCL), 66%/66% (T-NHL), and 71%/57% (myeloma). At median follow-up of 24 months (range, 3-63 months), the event-free/overall survival rates were 54%/72% (HL), 60%/89% (B-LCL), 70%/70% (T-NHL), and 43%/43% (myeloma). In conclusion, gemcitabine/busulfan/melphalan is a feasible regimen with substantial activity against a range of lymphoid malignancies. This regimen merits further evaluation in phase II and III trials.
Collapse
Affiliation(s)
- Yago Nieto
- Department of Stem-Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.
Collapse
Affiliation(s)
- Anna C Belkina
- Cancer Research Center, Nutrition Obesity Research Center, Departments of Medicine and Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
17
|
Chen G, Ghosh P, O'Farrell T, Munk R, Rezanka LJ, Sasaki CY, Longo DL. Transforming growth factor β1 (TGF-β1) suppresses growth of B-cell lymphoma cells by p14(ARF)-dependent regulation of mutant p53. J Biol Chem 2012; 287:23184-95. [PMID: 22621932 DOI: 10.1074/jbc.m112.351411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previously we reported that TGF-β1-induced growth suppression was associated with a decrease in mutant p53 levels in B-cell lymphoma cells. The goal of the present study was to understand the mechanism involved in TGF-β1-mediated down-regulation of mutant p53. In RL and CA46, two B-cell lymphoma cell lines, TGF-β1 treatment caused down-regulation of E2F-1 transcription factor resulting in the down-regulation of both p14(ARF) and mutant p53, leading to growth arrest. Experimental overexpression of E2F-1 increased p14(ARF) level and blocked TGF-β1-induced down-regulation of p14(ARF). Overexpression of p14(ARF) blocked the down-regulation of mutant p53 and prevented growth arrest. p14(ARF) also attenuated TGF-β1-induced p21(Cip1/WAF1) induction, which was reversible by p53 siRNA, indicating the involvement of mutant p53 in controlling the TGF-β1-induced expression of p21(Cip1/WAF1). The interaction observed between phospho-Smad2 and mutant p53 in the nucleus could be the mechanism responsible for blocking the growth-suppressive effects of TGF-β1. In RL cells, p14(ARF) is present in a trimer consisting of mutant p53-Mdm2-p14(ARF) and in a dimer consisting of Mdm2-p14(ARF). Because it is known that Mdm2 can degrade p53, it is possible that, in its trimeric form, p14(ARF) is able to stabilize mutant p53 by inhibiting Mdm2. In its dimeric form, p14(ARF) may be sequestering Mdm2, limiting its ability to degrade p53. Collectively, these data demonstrate a unique mechanism in which the inhibition of TGF-β1-mediated growth suppression by mutant p53 can be reversed by the down-regulation of its stabilizing protein p14(ARF). This work suggests that the high levels of p14(ARF) often found in tumor cells could be a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Chen
- Lymphocyte Cell Biology Unit, Laboratory of Molecular Biology and Immunology, Intramural Research Program, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep 2012; 2:342. [PMID: 22461973 PMCID: PMC3314989 DOI: 10.1038/srep00342] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/01/2012] [Indexed: 12/04/2022] Open
Abstract
Considerable evidence suggests that during the progression of complex diseases, the deteriorations are not necessarily smooth but are abrupt, and may cause a critical transition from one state to another at a tipping point. Here, we develop a model-free method to detect early-warning signals of such critical transitions, even with only a small number of samples. Specifically, we theoretically derive an index based on a dynamical network biomarker (DNB) that serves as a general early-warning signal indicating an imminent bifurcation or sudden deterioration before the critical transition occurs. Based on theoretical analyses, we show that predicting a sudden transition from small samples is achievable provided that there are a large number of measurements for each sample, e.g., high-throughput data. We employ microarray data of three diseases to demonstrate the effectiveness of our method. The relevance of DNBs with the diseases was also validated by related experimental data and functional analysis.
Collapse
|
19
|
Denis GV. Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. DISCOVERY MEDICINE 2010; 10:489-499. [PMID: 21189220 PMCID: PMC3025494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Double bromodomain proteins bind to acetylated lysines in histones, bringing associated histone modification and nucleosome remodeling activity to chromatin. The ability of bromodomain regulators to alter chromatin status and control gene expression has long been appreciated to be important in the development of certain human cancers. However, bromodomain proteins have now been found also to be critical, non-redundant players in diverse, non-malignant phenotypes, directing transcriptional programs that control adipogenesis, energy metabolism and inflammation. The fact that such different processes are functionally linked by the same molecular machinery suggests a common epigenetic basis to understand and interpret the origins of several important co-morbidities, such as asthma or cancer that occurs in obesity, and complex inflammatory diseases like cardiovascular disease, systemic lupus erythematosus, rheumatoid arthritis and insulin resistance that may be built on a common pro-inflammatory foundation.
Collapse
Affiliation(s)
- Gerald V Denis
- Cancer Research Center, Boston University School of Medicine, 72 East Concord Street, K520, Boston, Massachusetts 02118, USA.
| |
Collapse
|
20
|
Denis GV, Nikolajczyk BS, Schnitzler GR. An emerging role for bromodomain-containing proteins in chromatin regulation and transcriptional control of adipogenesis. FEBS Lett 2010; 584:3260-8. [PMID: 20493850 DOI: 10.1016/j.febslet.2010.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/16/2010] [Indexed: 12/11/2022]
Abstract
Transcriptional co-activators, co-repressors and chromatin remodeling machines are essential elements in the transcriptional programs directed by the master adipogenic transcription factor PPARgamma. Many of these components have orthologs in other organisms, where they play roles in development and pattern formation, suggesting new links between cell fate decision-making and adipogenesis. This review focuses on bromodomain-containing protein complexes recently shown to play a critical role in adipogenesis. Deeper understanding of these pathways is likely to have major impact on treatment of obesity-associated diseases, including metabolic syndrome, cardiovascular disease and Type 2 diabetes. The research effort is urgent because the obesity epidemic is serious; the medical community is ill prepared to cope with the anticipated excess morbidity and mortality associated with diet-induced obesity.
Collapse
Affiliation(s)
- Gerald V Denis
- Cancer Research Center, Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
21
|
Wegner N, Lundberg K, Kinloch A, Fisher B, Malmström V, Feldmann M, Venables PJ. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev 2010; 233:34-54. [PMID: 20192991 DOI: 10.1111/j.0105-2896.2009.00850.x] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is now clearly a true autoimmune disease with accumulating evidence of pathogenic disease-specific autoimmunity to citrullinated proteins. Citrullination, also termed deimination, is a modification of arginine side chains catalyzed by peptidylarginine deiminase (PAD) enzymes. This post-translational modification has the potential to alter the structure, antigenicity, and function of proteins. In RA, antibodies to cyclic citrullinated peptides are now well established for clinical diagnosis, though we argue that the identification of specific citrullinated antigens, as whole proteins, is necessary for exploring pathogenic mechanisms. Four citrullinated antigens, fibrinogen, vimentin, collagen type II, and alpha-enolase, are now well established, with others awaiting further characterization. All four proteins are expressed in the joint, and there is evidence that antibodies to citrullinated fibrinogen and collagen type II mediate inflammation by the formation of immune complexes, both in humans and animal models. Antibodies to citrullinated proteins are associated with HLA 'shared epitope' alleles, and autoimmunity to at least one antigenic sequence, the CEP-1 peptide from citrullinated alpha-enolase (KIHAcitEIFDScitGNPTVE), shows a specific association with HLA-DRB1*0401, *0404, 620W PTPN22, and smoking. Periodontitis, in which Porphyromonas gingivalis is a major pathogenic bacterium, has been linked to RA in epidemiological studies and also shares similar gene/environment associations. This is also the only bacterium identified that expresses endogenous citrullinated proteins and its own bacterial PAD enzyme, though the precise molecular mechanisms of bacterial citrullination have yet to be explored. Thus, both smoking and Porphyromonas gingivalis are attractive etiological agents for further investigation into the gene/environment/autoimmunity triad of RA.
Collapse
Affiliation(s)
- Natalia Wegner
- The Kennedy Institute of Rheumatology, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Romesser PB, Perlman DH, Faller DV, Costello CE, McComb ME, Denis GV. Development of a malignancy-associated proteomic signature for diffuse large B-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:25-35. [PMID: 19498000 PMCID: PMC2708791 DOI: 10.2353/ajpath.2009.080707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2009] [Indexed: 11/20/2022]
Abstract
The extreme pathological diversity of non-Hodgkin's lymphomas has made their accurate histological assessment difficult. New diagnostics and treatment modalities are urgently needed for these lymphomas, particularly in drug development for cancer-specific targets. Previously, we showed that a subset of B cell lymphoma, diffuse large B cell lymphoma, may be characterized by two major, orthogonal axes of gene expression: one set of transcripts that is differentially expressed between resting and proliferating, nonmalignant cells (ie, a "proliferative signature") and another set that is expressed only in proliferating malignant cells (ie, a "cancer signature"). A differential proteomic analysis of B cell proliferative states, similar to previous transcriptional profiling analyses, holds great promise either to reveal novel factors that participate in lymphomagenesis or to define biomarkers of onset or progression. Here, we use a murine model of diffuse large B cell lymphoma to conduct unbiased two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic analyses of malignant proliferating B cells and tissue-matched, normal resting, or normal proliferating cells. We show that the expression patterns of particular proteins or isoforms across these states fall into eight specific trends that provide a framework to identify malignancy-associated biomarkers and potential drug targets, a signature proteome. Our results support the central hypothesis that clusters of proteins of known function represent a panel of expression markers uniquely associated with malignancy and not normal proliferation.
Collapse
Affiliation(s)
- Paul B Romesser
- Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
23
|
Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn 2009; 238:908-17. [PMID: 19301389 DOI: 10.1002/dvdy.21911] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The BET subfamily of bromodomain-containing genes is characterized by the presence of two bromodomains and a unique ET domain at their carboxyl termini. Here, we show that the founding member of this subfamily, Brd2, is an essential gene by generating a mutant mouse line lacking Brd2 function. Homozygous Brd2 mutants are embryonic lethal, with most Brd2(-/-) embryos dying by embryonic day 11.5. Before death, the homozygous embryos were notably smaller and exhibited abnormalities in the neural tube where the gene is highly expressed. Brd2-deficient embryonic fibroblast cells were observed to proliferate more slowly than controls. Experiments to explore whether placental insufficiency could be a cause of the embryonic lethality showed that injecting diploid mutant embryonic stem cells into tetraploid wild-type blastocysts did not rescue the lethality; that is Brd2-deficient embryos could not be rescued by wild-type extraembryonic tissues. Furthermore, there were enhanced levels of cell death in Brd2-deficient embryos.
Collapse
Affiliation(s)
- Enyuan Shang
- Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health and Department of Psychiatry, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
24
|
Longe HO, Romesser PB, Rankin AM, Faller DV, Eller MS, Gilchrest BA, Denis GV. Telomere homolog oligonucleotides induce apoptosis in malignant but not in normal lymphoid cells: mechanism and therapeutic potential. Int J Cancer 2009; 124:473-82. [PMID: 19003960 DOI: 10.1002/ijc.23946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human B- or T-cell lymphoma lines and primary murine lymphomas were treated with DNA oligonucleotides homologous to the telomere (TTAGGG repeat; "T-oligo"), either alone or in combination with standard, widely-used anticancer chemotherapeutic agents. T-oligo induces cell cycle arrest and apoptosis in cultured human or murine B or T-lymphoma cell lines and primary tumor cells, but exerts no detectable toxicity on normal human or murine primary lymphocytes. Exposure to T-oligo is hypothesized to mimic exposure of the 3' telomere repeat sequence, activating the ataxia telangiectasia mutated kinase, which phosphorylates downstream effectors such as p53, but effects are not dependent solely on functional p53. T-oligo causes early S-phase arrest and cooperates well with G(2)- or M-phase-specific anticancer agents; when combined at 1/10th of the conventional dose, vincristine and T-oligo produce greater-than-additive killing of human or murine lymphoma cells (78% of cells undergoing apoptosis after 6 hr vs. 5% of control cells). In mice, 1/10th of the conventional dose of a standard combination of cyclophosphamide, adriamycin, vincristine and prednisone is twice as effective when used in combination with low dose T-oligo. Thus, T-oligo sensitizes tumors to traditional anticancer agents and represents a potentially important new addition to the therapeutic arsenal for aggressive lymphomas.
Collapse
Affiliation(s)
- Harold O Longe
- Department of Medicine, Cancer Research Center, Boston University School of Medicine (BUSM), Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Larsen E, Kleppa L, Meza TJ, Meza-Zepeda LA, Rada C, Castellanos CG, Lien GF, Nesse GJ, Neuberger MS, Laerdahl JK, William Doughty R, Klungland A. Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants. Cancer Res 2008; 68:4571-9. [PMID: 18559501 DOI: 10.1158/0008-5472.can-08-0168] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet Medical Center and University of Oslo, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
DiBenedetto AJ, Guinto JB, Ebert TD, Bee KJ, Schmidt MM, Jackman TR. Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence. BMC DEVELOPMENTAL BIOLOGY 2008; 8:39. [PMID: 18402692 PMCID: PMC2373290 DOI: 10.1186/1471-213x-8-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 04/10/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The brd2 ortholog in Drosophila is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of Brd2 developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of brd2 cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates. RESULTS We identify cDNAs representing two paralogous brd2 loci in zebrafish, brd2a on chromosome 19 and brd2b on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of brd2 after gene duplication in fishes. brd2 paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA in situ hybridizations in oocytes and embryos implicate brd2a and brd2b as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of brd2 developmental expression in zebrafish are consistent with its proposed role in Homeobox gene regulation. CONCLUSION Expression profiles of zebrafish brd2 paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of brd2, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of brd2 paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.
Collapse
Affiliation(s)
| | - Jake B Guinto
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Katharine J Bee
- Center for Molecular Cardiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Michael M Schmidt
- Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, USA
| |
Collapse
|