1
|
El Salamouni NS, Buckley BJ, Lee R, Ranson M, Kelso MJ, Yu H. Ion Transport and Inhibitor Binding by Human NHE1: Insights from Molecular Dynamics Simulations and Free Energy Calculations. J Phys Chem B 2024; 128:440-450. [PMID: 38185879 DOI: 10.1021/acs.jpcb.3c05863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human Na+/H+ exchanger (NHE1) plays a crucial role in maintaining intracellular pH by regulating the electroneutral exchange of a single intracellular H+ for one extracellular Na+ across the plasma membrane. Understanding the molecular mechanisms governing ion transport and the binding of inhibitors is of importance in the development of anticancer therapeutics targeting NHE1. In this context, we performed molecular dynamics (MD) simulations based on the recent cryo-electron microscopy (cryo-EM) structures of outward- and inward-facing conformations of NHE1. These simulations allowed us to explore the dynamics of the protein, examine the ion-translocation pore, and confirm that Asp267 is the ion-binding residue. Our free energy calculations did not show a significant difference between Na+ and K+ binding at the ion-binding site. Consequently, Na+ over K+ selectivity cannot be solely explained by differences in ion binding. Our MD simulations involving NHE1 inhibitors (cariporide and amiloride analogues) maintained stable interactions with Asp267 and Glu346. Our study highlights the importance of the salt bridge between the positively charged acylguanidine moiety and Asp267, which appears to play a role in the competitive inhibitory mechanism for this class of inhibitors. Our computational study provides a detailed mechanistic interpretation of experimental data and serves the basis of future structure-based inhibitor design.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Li X, Fliegel L. Permissive role of Na +/H + exchanger isoform 1 in migration and invasion of triple-negative basal-like breast cancer cells. Mol Cell Biochem 2022; 477:1207-1216. [PMID: 35084672 DOI: 10.1007/s11010-022-04370-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
In breast cancer, it is the resulting metastasis that is the primary cause of fatality. pH regulatory proteins and the tumor microenvironment play an important role in metastasis of cancer cells and acid-extruding proteins are critical in this process. There are several types of breast cancer and triple-negative breast cancer tends to be more metastatic and invasive and is itself is composed of several types. MDA-MB-468 are a triple-negative breast cancer cell line and are classified as basal-like and basal tumors account for up to 15% of breast cancers. Here we examined the effect of removal of the acid-extruding protein, the Na+/H+ exchanger isoform one, from MDA-MB-468 cells. NHE1 was deleted from these cells using the CRISPR/Cas9 system. Western blotting and measurement of activity confirmed the absence of the protein. In wounding/cell migration experiments, deletion of NHE1 reduced the rate of cell migration in the presence of low- or high-serum concentrations. Anchorage-dependent colony formation was also greatly reduced by deletion of the NHE1 protein. Cell proliferation was not affected by knockout of NHE1. The results demonstrate that NHE1 has an important role in migration and invasion of basal-like triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, Faculty of Medicine, University Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
3
|
Li X, Buckley B, Stoletov K, Jing Y, Ranson M, Lewis JD, Kelso M, Fliegel L. Roles of the Na +/H + Exchanger Isoform 1 and Urokinase in Prostate Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms222413263. [PMID: 34948058 PMCID: PMC8705693 DOI: 10.3390/ijms222413263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1-alone, or with inhibitors combining NHE1 or uPA inhibition-generally did not prevent prostate cancer cell migration. However, uPA inhibition-but not NHE1 inhibition-prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Benjamin Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Yang Jing
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.S.); (J.D.L.)
| | - Mike Kelso
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (B.B.); (M.R.); (M.K.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (Y.J.)
- Correspondence: ; Tel.: +1-780-492-1848
| |
Collapse
|
4
|
Amino Acids 785, 787 of the Na +/H + Exchanger Cytoplasmic Tail Modulate Protein Activity and Tail Conformation. Int J Mol Sci 2021; 22:ijms222111349. [PMID: 34768780 PMCID: PMC8583816 DOI: 10.3390/ijms222111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane protein ubiquitously present in humans. It regulates intracellular pH by removing an intracellular proton in exchange for an extracellular sodium. It consists of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. Here, we investigated the effect of mutation of two amino acids of the regulatory tail, Ser785 and Ser787, that were similar in location and context to two amino acids of the Arabidopsis Na+/H+ exchanger SOS1. Mutation of these two amino acids to either Ala or phosphomimetic Glu did not affect surface targeting but led to a slight reduction in the level of protein expressed. The activity of the NHE1 protein was reduced in the phosphomimetic mutations and the effect was due to a decrease in Vmax activity. The Ser to Glu mutations also caused a change in the apparent molecular weight of both the full-length protein and of the cytosolic tail of NHE1. A conformational change in this region was indicated by differential trypsin sensitivity. We also found that a peptide containing amino acids 783–790 bound to several more proximal regions of the NHE1 tail in in vitro protein interaction experiments. The results are the first characterization of these two amino acids and show that they have significant effects on enzyme kinetics and the structure of the NHE1 protein.
Collapse
|
5
|
Dong Y, Gao Y, Ilie A, Kim D, Boucher A, Li B, Zhang XC, Orlowski J, Zhao Y. Structure and mechanism of the human NHE1-CHP1 complex. Nat Commun 2021; 12:3474. [PMID: 34108458 PMCID: PMC8190280 DOI: 10.1038/s41467-021-23496-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.
Collapse
Affiliation(s)
- Yanli Dong
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Alina Ilie
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - DuSik Kim
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Annie Boucher
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Bin Li
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C. Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - John Orlowski
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Yan Zhao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Characterization of modeled inhibitory binding sites on isoform one of the Na +/H + exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183648. [PMID: 33992631 DOI: 10.1016/j.bbamem.2021.183648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022]
Abstract
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40-70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50-70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.
Collapse
|
7
|
Buckley BJ, Kumar A, Aboelela A, Bujaroski RS, Li X, Majed H, Fliegel L, Ranson M, Kelso MJ. Screening of 5- and 6-Substituted Amiloride Libraries Identifies Dual-uPA/NHE1 Active and Single Target-Selective Inhibitors. Int J Mol Sci 2021; 22:ijms22062999. [PMID: 33804289 PMCID: PMC8000185 DOI: 10.3390/ijms22062999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co-screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.
Collapse
Affiliation(s)
- Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
- Correspondence: (B.J.B.); (M.J.K.); Tel.: +61-2-4221-5085 (M.J.K.)
| | - Ashna Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ashraf Aboelela
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Richard S. Bujaroski
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (L.F.)
| | - Hiwa Majed
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (L.F.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Michael J. Kelso
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (B.J.B.); (M.J.K.); Tel.: +61-2-4221-5085 (M.J.K.)
| |
Collapse
|
8
|
Blair S, Li X, Dutta D, Chamot D, Fliegel L, Goss G. Rainbow Trout ( Oncorhynchus mykiss) Na +/H + Exchangers tNhe3a and tNhe3b Display Unique Inhibitory Profiles Dissimilar from Mammalian NHE Isoforms. Int J Mol Sci 2021; 22:ijms22042205. [PMID: 33672216 PMCID: PMC7926675 DOI: 10.3390/ijms22042205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 01/05/2023] Open
Abstract
Freshwater fishes maintain an internal osmolality of ~300 mOsm, while living in dilute environments ranging from 0 to 50 mOsm. This osmotic challenge is met at least partially, by Na+/H+ exchangers (NHE) of fish gill and kidney. In this study, we cloned, expressed, and pharmacologically characterized fish-specific Nhes of the commercially important species Oncorhynchus mykiss. Trout (t) Nhe3a and Nhe3b isoforms from gill and kidney were expressed and characterized in an NHE-deficient cell line. Western blotting and immunocytochemistry confirmed stable expression of the tagged trout tNhe proteins. To measure NHE activity, a transient acid load was induced in trout tNhe expressing cells and intracellular pH was measured. Both isoforms demonstrated significant activity and recovered from an acute acid load. The effect of the NHE transport inhibitors amiloride, EIPA (5-(N-ethyl-N-isopropyl)-amiloride), phenamil, and DAPI was examined. tNhe3a was inhibited in a dose-dependent manner by amiloride and EIPA and tNhe3a was more sensitive to amiloride than EIPA, unlike mammalian NHE1. tNhe3b was inhibited by high concentrations of amiloride, while even in the presence of high concentrations of EIPA (500 µM), some activity of tNhe3b remained. Phenamil and DAPI were ineffective at inhibiting tNhe activity of either isoform. The current study aids in understanding the pharmacology of fish ion transporters. Both isoforms display inhibitory profiles uniquely different from mammalian NHEs and show resistance to inhibition. Our study allows for more direct interpretation of past, present, and future fish-specific sodium transport studies, with less reliance on mammalian NHE data for interpretation.
Collapse
Affiliation(s)
- Salvatore Blair
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA;
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (D.D.); (L.F.)
| | - Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (D.D.); (L.F.)
| | - Danuta Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (D.D.); (L.F.)
| | - Greg Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Correspondence: ; Tel.: +1-780-492-1276; Fax: +1-780-492-9234
| |
Collapse
|
9
|
Acidic residues of extracellular loop 3 of the Na +/H + exchanger type 1 are important in cation transport. Mol Cell Biochem 2020; 468:13-20. [PMID: 32130622 DOI: 10.1007/s11010-020-03707-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Mammalian Na+/H+ exchanger type I isoform (NHE1) is a ubiquitously expressed membrane protein that regulates intracellular pH (pHi) by removing one intracellular proton in exchange for one extracellular sodium ion. Abnormal activity of the protein occurs in cardiovascular disease and breast cancer. The purpose of this study is to examine the role of negatively charged amino acids of extracellular loop 3 (EL3) in the activity of the NHE protein. We mutated glutamic acid 217 and aspartic acid 226 to alanine, and to glutamine and asparagine, respectively. We examined effects on expression levels, cell surface targeting and activity of NHE1, and also characterized affinity for extracellular sodium and lithium ions. Individual mutation of these amino acids had little effect on protein function. However, mutation of both these amino acids together impaired transport, decreasing the Vmax for both Na+ and Li+ ions. We suggested that amino acids E217 and D226 form part of a negatively charged coordination sphere, which facilitates cation transport in the NHE1 protein.
Collapse
|
10
|
Amino Acids 563-566 of the Na +/H + Exchanger Isoform 1 C-Terminal Cytosolic Tail Prevent Protein Degradation and Stabilize Protein Expression and Activity. Int J Mol Sci 2020; 21:ijms21051737. [PMID: 32138345 PMCID: PMC7084640 DOI: 10.3390/ijms21051737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/28/2022] Open
Abstract
Isoform one of the mammalian Na+/H+ exchanger is a plasma membrane protein that is ubiquitously present in humans. It regulates intracellular pH through the removal of one intracellular proton in exchange for a single extracellular sodium. It consists of a 500 amino acid membrane domain plus a 315 amino acid, C-terminal tail. We examined amino acids of the C-terminal tail that are important in the targeting and activity of the protein. A previous study demonstrated that stop codon polymorphisms can result in decreased activity, expression, targeting and enhanced protein degradation. Here, we determine elements that are critical in these anomalies. A series of progressive deletions of the C-terminal tail demonstrated a progressive decrease in activity and targeting, though these remained until a final drop off with the deletion of amino acids 563–566. The deletion of the 562LIAGERS568 sequence or the alteration to the 562LAAAARS568 sequence caused the decreased protein expression, aberrant targeting, reduced activity and enhanced degradation of the Na+/H+ exchanger (NHE1) protein. The 562LIAGERS568 sequence bound to other regions of the C-terminal cytosolic domain. We suggest this region is necessary for the activity, targeting, stability, and expression of the NHE1 protein. The results define a new sequence that is important in maintenance of NHE1 protein levels and activity.
Collapse
|
11
|
Kerner-Rossi M, Gulinello M, Walkley S, Dobrenis K. Pathobiology of Christianson syndrome: Linking disrupted endosomal-lysosomal function with intellectual disability and sensory impairments. Neurobiol Learn Mem 2019; 165:106867. [PMID: 29772390 PMCID: PMC6235725 DOI: 10.1016/j.nlm.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities.
Collapse
Affiliation(s)
- Mallory Kerner-Rossi
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
13
|
A Christianson syndrome-linked deletion mutation (Δ287ES288) in SLC9A6 impairs hippocampal neuronal plasticity. Neurobiol Dis 2019; 130:104490. [PMID: 31175985 DOI: 10.1016/j.nbd.2019.104490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Christianson Syndrome is a rare but increasingly diagnosed X-linked intellectual disability disorder that arises from mutations in SLC9A6/NHE6, a pH-regulating transporter that localizes to early and recycling endosomes. We have recently reported that one of the originally identified disease-causing mutations in NHE6 (p.E287-S288del, or ΔES) resulted in a loss of its pH regulatory function. However, the impact of this mutation upon neuronal synapse formation and plasticity is unknown. Here, we investigate the consequences of the ΔES mutant upon mouse hippocampal pyramidal neurons by expressing a fluorescently-labeled ΔES NHE6 construct into primary hippocampal neurons. Neurons expressing the ΔES mutant showed significant reductions in mature dendritic spine density with a concurrent increase in immature filopodia. Furthermore, compared to wild-type (WT), ΔES-containing endosomes are redirected away from early and recycling endosomes toward lysosomes. In parallel, the ΔES mutant reduced the trafficking of glutamatergic AMPA receptors to excitatory synapses and increased their accumulation within lysosomes for potential degradation. Upon long-term potentiation (LTP), neurons expressing ΔES failed to undergo significant structural and functional changes as observed in controls and WT transfectants. Interestingly, synapse density and LTP-induced synaptic remodeling in ΔES-expressing neurons were partially restored by bafilomycin, a vesicular alkalinisation agent, or by leupeptin, an inhibitor of lysosomal proteolytic degradation. Overall, our results demonstrate that the ∆ES mutation attenuates synapse density and structural and functional plasticity in hippocampal neurons. These deficits may be partially due to the mistargeting of AMPA receptors and other cargos to lysosomes, thereby preventing their trafficking during synaptic remodeling. This mechanism may contribute to the cognitive learning deficits observed in patients with Christianson Syndrome and suggests a potential therapeutic strategy for treatment.
Collapse
|
14
|
Wong KY, McKay R, Liu Y, Towle K, Elloumi Y, Li X, Quan S, Dutta D, Sykes BD, Fliegel L. Diverse residues of intracellular loop 5 of the Na +/H + exchanger modulate proton sensing, expression, activity and targeting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:191-200. [PMID: 30071192 DOI: 10.1016/j.bbamem.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH (pHi) by removing a single intracellular proton in exchange for one extracellular sodium ion. It is involved in cardiac hypertrophy and ischemia reperfusion damage to the heart and elevation of its activity is a trigger for breast cancer metastasis. NHE1 has an extensive 500 amino acid N-terminal membrane domain that mediates transport and consists of 12 transmembrane segments connected by intracellular and extracellular loops. Intracellular loops are hypothesized to modulate the sensitivity to pHi. In this study, we characterized the structure and function of intracellular loop 5 (IL5), specifically amino acids 431-443. Mutation of eleven residues to alanine caused partial or nearly complete inhibition of transport; notably, mutation of residues L432, T433, I436, N437, R440 and K443 demonstrated these residues had critical roles in NHE1 function independent of effects on targeting or expression. The nuclear magnetic resonance (NMR) solution spectra of the IL5 peptide in a membrane mimetic sodium dodecyl sulfate solution revealed that IL5 has a stable three-dimensional structure with substantial alpha helical character. NMR chemical shifts indicated that K438 was in close proximity with W434. Overall, our results show that IL5 is a critical, intracellular loop with a propensity to form an alpha helix, and many residues of this intracellular loop are critical to proton sensing and ion transport.
Collapse
Affiliation(s)
- Ka Yee Wong
- Dept of Biochemistry, University of Alberta, Canada
| | - Ryan McKay
- Dept of Chemistry, University of Alberta, Canada.
| | | | | | | | - Xiuju Li
- Dept of Biochemistry, University of Alberta, Canada
| | - Sicheng Quan
- Dept of Biochemistry, University of Alberta, Canada
| | | | | | - Larry Fliegel
- Dept of Biochemistry, University of Alberta, Canada.
| |
Collapse
|
15
|
Dutta D, Fliegel L. Molecular modeling and inhibitor docking analysis of the Na +/H + exchanger isoform one 1. Biochem Cell Biol 2018; 97:333-343. [PMID: 30058365 DOI: 10.1139/bcb-2018-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Na+/H+ exchanger isoform one (NHE1) is a mammalian plasma membrane protein that removes intracellular protons, thereby elevating intracellular pH (pHi). NHE1 uses the energy of allowing an extracellular sodium down its gradient into cells to remove one intracellular proton. The ubiquitous protein has several important physiological and pathological influences on mammalian cells as a result of its activity. The three-dimensional structure of human NHE1 (hNHE1) is not known. Here, we modeled NHE1 based on the structure of MjNhaP1 of Methanocaldoccocus jannaschii in combination with biochemical surface accessibility data. hNHE1 contained 12 transmembrane segments including a characteristic Na+/H+ antiporter fold of two transmembrane segments with a helix - extended region - helix conformation crossing each other within the membrane. Amino acids 363-410 mapped principally to the extracellular surface as an extracellular loop (EL5). A large preponderance of amino acids shown to be surface accessible by biochemical experiments mapped near to, or on, the extracellular surface. Docking of Na+/H+ exchanger inhibitors to the extracellular surface suggested that inhibitor binding on an extracellular site is made up from several amino acids of different regions of the protein. The results present a novel testable, three-dimensional model illustrating NHE1 structure and accounting for experimental biochemical data.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
16
|
Dutta D, Fliegel L. Structure and function of yeast and fungal Na + /H + antiporters. IUBMB Life 2017; 70:23-31. [PMID: 29219228 DOI: 10.1002/iub.1701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022]
Abstract
Sodium proton antiporters (or sodium proton exchangers [NHEs]) are a critical family of membrane proteins that exchange sodium for protons across cell membranes. In yeast and plants, their primary function is to keep the sodium concentration low inside the cytoplasm. One class of NHE constitutively expressed in yeast is the plasma membrane Na+ /H+ antiporter, and another class is expressed on the endosomal/vacuolar membrane. At present, four bacterial plasma membrane antiporter structures are known and nuclear magnetic resonance structures are available for the membrane spanning transmembrane helices of mammalian and yeast NHEs. Additionally, a vast amount of mutational data are available on the role of individual amino acids and critical motifs involved in transport. We combine this information to obtain a more detailed picture of the yeast NHE plasma membrane protein and review mechanisms of transport, conserved motifs, unique residues important in function, and regulation of these proteins. The Na+ /H+ antiporter of Schizosaccharomyces pombe, SpNHE1, is an interesting model protein in an easy to study system and is representative of fungal Na+ /H+ antiporters. © IUBMB Life, 70(1):23-31, 2018.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
18
|
Dutta D, Shin K, Rainey JK, Fliegel L. Transmembrane Segment XI of the Na +/H + Antiporter of S. pombe is a Critical Part of the Ion Translocation Pore. Sci Rep 2017; 7:12793. [PMID: 29038548 PMCID: PMC5643542 DOI: 10.1038/s41598-017-12701-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023] Open
Abstract
The Na+/H+ exchanger of the plasma membrane of S. pombe (SpNHE1) removes intracellular sodium in exchange for an extracellular proton. We examined the structure and functional role of amino acids 360–393 of putative transmembrane (TM) segment XI of SpNHE1. Structural analysis suggested that it had a helical propensity over amino acids 360–368, an extended region from 369–378 and was helical over amino acids 379–386. TM XI was sensitive to side chain alterations. Mutation of eight amino acids to alanine resulted in loss of one or both of LiCl or NaCl tolerance when re-introduced into SpNHE1 deficient S. pombe. Mutation of seven other amino acids had minor effects. Analysis of structure and functional mutations suggested that Glu361 may be involved in cation coordination on the cytoplasmic face of the protein with a negative charge in this position being important. His367, Ile371 and Gly372 were important in function. Ile371 may have important hydrophobic interactions with other residues and Gly372 may be important in maintaining an extended conformation. Several residues from Val377 to Leu384 are important in function possibly involved in hydrophobic interactions with other amino acids. We suggest that TM XI forms part of the ion translocation core of this Na+/H+ exchanger.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
19
|
Protein mediated regulation of the NHE1 isoform of the Na + /H + exchanger in renal cells. A regulatory role of Hsp90 and AKT kinase. Cell Signal 2017; 36:145-153. [DOI: 10.1016/j.cellsig.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/28/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
|
20
|
Li X, Augustine A, Chen S, Fliegel L. Stop Codon Polymorphisms in the Human SLC9A1 Gene Disrupt or Compromise Na+/H+ Exchanger Function. PLoS One 2016; 11:e0162902. [PMID: 27636896 PMCID: PMC5026351 DOI: 10.1371/journal.pone.0162902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The NHE1 isoform of the mammalian Na+/H+ exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in mammalian cells by removing one intracellular proton in exchange for one extracellular sodium. Deletion of the NHE1 gene (SLC9A1) affects the growth and motor ability of mice and humans but mutations and polymorphisms of the gene are only beginning to be characterized. NHE1 has a cytosolic C-terminal regulatory tail of approximately 315 amino acids and a 500 amino acid membrane domain. We examined the functional effects of three human stop codon mutations at amino acids 321, 449 and 735 in comparison with a mutant that had a shortened tail region (543 stop codon). The short mutants, 321, 449 and 543 stop codon mutant proteins, lost NHE1 activity and expression, and did not target to the plasma membrane. Protein for these short mutants was more rapidly degraded than the wild type and 735 ending proteins. The 735 terminating mutant, with the membrane domain and much of the cytosolic tail, had reduced protein expression and activity. The results demonstrate that early stop codon polymorphisms have significant and deleterious effects on the activity of the SLC9A1 protein product. The 735-NHE1 mutant, without the last 80 amino acids, had more minor defects. Surprisingly, retention of a proximal 43 amino acids adjacent to the membrane domain did little to maintain NHE1 expression, targeting and activity.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Aruna Augustine
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shuo Chen
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
- * E-mail:
| |
Collapse
|
21
|
Ilie A, Gao AYL, Reid J, Boucher A, McEwan C, Barrière H, Lukacs GL, McKinney RA, Orlowski J. A Christianson syndrome-linked deletion mutation (∆(287)ES(288)) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Mol Neurodegener 2016; 11:63. [PMID: 27590723 PMCID: PMC5010692 DOI: 10.1186/s13024-016-0129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/27/2016] [Indexed: 01/19/2023] Open
Abstract
Background Christianson Syndrome, a recently identified X-linked neurodevelopmental disorder, is caused by mutations in the human gene SLC9A6 encoding the recycling endosomal alkali cation/proton exchanger NHE6. The patients have pronounced limitations in cognitive ability, motor skills and adaptive behaviour. However, the mechanistic basis for this disorder is poorly understood as few of the more than 20 mutations identified thus far have been studied in detail. Methods Here, we examined the molecular and cellular consequences of a 6 base-pair deletion of amino acids Glu287 and Ser288 (∆ES) in the predicted seventh transmembrane helix of human NHE6 expressed in established cell lines (CHO/AP-1, HeLa and neuroblastoma SH-SY5Y) and primary cultures of mouse hippocampal neurons by measuring levels of protein expression, stability, membrane trafficking, endosomal function and cell viability. Results In the cell lines, immunoblot analyses showed that the nascent mutant protein was properly synthesized and assembled as a homodimer, but its oligosaccharide maturation and half-life were markedly reduced compared to wild-type (WT) and correlated with enhanced ubiquitination leading to both proteasomal and lysosomal degradation. Despite this instability, a measurable fraction of the transporter was correctly sorted to the plasma membrane. However, the rates of clathrin-mediated endocytosis of the ∆ES mutant as well as uptake of companion vesicular cargo, such as the ligand-bound transferrin receptor, were significantly reduced and correlated with excessive endosomal acidification. Notably, ectopic expression of ∆ES but not WT induced apoptosis when examined in AP-1 cells. Similarly, in transfected primary cultures of mouse hippocampal neurons, membrane trafficking of the ∆ES mutant was impaired and elicited marked reductions in total dendritic length, area and arborization, and triggered apoptotic cell death. Conclusions These results suggest that loss-of-function mutations in NHE6 disrupt recycling endosomal function and trafficking of cargo which ultimately leads to neuronal degeneration and cell death in Christianson Syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0129-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Andy Y L Gao
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jonathan Reid
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Cassandra McEwan
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Hervé Barrière
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
22
|
Counillon L, Bouret Y, Marchiq I, Pouysségur J. Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2465-80. [PMID: 26944480 DOI: 10.1016/j.bbamcr.2016.02.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
The Na(+)/H(+)-exchanger NHE1 and the monocarboxylate transporters MCT1 and MCT4 are crucial for intracellular pH regulation, particularly under active metabolism. NHE1, a reversible antiporter, uses the energy provided by the Na(+) gradient to expel H(+) ions generated in the cytosol. The reversible H(+)/lactate(-) symporters MCT1 and 4 cotransport lactate and proton, leading to the net extrusion of lactic acid in glycolytic tumors. In the first two sections of this article we review important features and remaining questions on the structure, biochemical function and cellular roles of these transporters. We then use a fully-coupled mathematical model to simulate their relative contribution to pH regulation in response to lactate production, as it occurs in highly hypoxic and glycolytic tumor cells. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Laurent Counillon
- University of Nice-Sophia Antipolis, LP2M UMR7370, Faculty of Medicine, 28 Avenue Valombrose, 06107 Nice France; Laboratories of Excellence Ion Channel Science and Therapeutics, France.
| | - Yann Bouret
- University of Nice-Sophia Antipolis, LPMC UMR 7336, 28 Avenue Valrose, 06108 Nice, France
| | - Ibtissam Marchiq
- IRCAN, Centre A. Lacassagne, University of Nice-Sophia Antipolis, 33 Avenue Valombrose, 06107 Nice, France
| | - Jacques Pouysségur
- IRCAN, Centre A. Lacassagne, University of Nice-Sophia Antipolis, 33 Avenue Valombrose, 06107 Nice, France; Centre Scientifique de Monaco (CSM), 8, Quai Antoine 1er, Monaco.
| |
Collapse
|
23
|
Amith SR, Wilkinson JM, Fliegel L. Assessing Na +/H + exchange and cell effector functionality in metastatic breast cancer. BIOCHIMIE OPEN 2016; 2:16-23. [PMID: 29632834 PMCID: PMC5889484 DOI: 10.1016/j.biopen.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022]
Abstract
Metastasis is the leading cause of mortality in patients with breast cancer. In triple-negative breast cancer, high recurrence rates, increased invasive capacity of cells, and their aggressive ability to metastasize at secondary sites dictate patient survival. The Na+/H+ exchanger isoform 1 (NHE1) plays a critical role in controlling the metastatic potential of these cells. Its activity results in an elevation of intracellular pH and in extracellular acidification, a key step in the establishment of the tumor microenvironment. Here, we describe assays for characterization of Na+/H+ exchanger activity and its related downstream physiological effects on triple-negative breast cancer cells. Na+/H+ exchanger activity can be routinely and rapidly measured in live cells with a fluorometric assay that assesses changes in intracellular pH. Characterization of downstream cell effector function as a result of Na+/H+ exchanger activation can be evaluated by measuring directed cell migration and invasion. Cell migration is assessed with wound-healing assays, where a gap is introduced in a confluent monolayer of cells and the rate of gap closure is measured over time. Cell invasion is assessed in the short-term by transwell invasion assays that track cell movement through an extracellular matrix. Long-term invasiveness, growth and proliferation can be assessed with 3-D invasion assays using transwell inserts fitted with specialized scaffolds optimized for 3-D cell culture. Taken together these assays provide powerful tools for testing the effects of altering Na+/H+ exchanger activity with chemical inhibition on the metastatic capacity of breast cancer cells. The Na+/H+ exchanger in breast cancer cells is assayed by rapid fluorometric assay. Migration of triple negative breast cancer cells is assessed by wound healing. Cell invasion is measured via transwell 3D invasion assays.
Collapse
Affiliation(s)
- Schammim Ray Amith
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Jodi Marie Wilkinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
24
|
Jinadasa T, Josephson CB, Boucher A, Orlowski J. Determinants of Cation Permeation and Drug Sensitivity in Predicted Transmembrane Helix 9 and Adjoining Exofacial Re-entrant Loop 5 of Na+/H+ Exchanger NHE1. J Biol Chem 2015; 290:18173-18186. [PMID: 26063808 DOI: 10.1074/jbc.m115.642199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 12/25/2022] Open
Abstract
Mammalian Na(+)/H(+) exchangers (NHEs) regulate numerous physiological processes and are involved in the pathogenesis of several diseases, including tissue ischemia and reperfusion injuries, cardiac hypertrophy and failure, and cancer progression. Hence, NHEs are being targeted for pharmaceutical-based clinical therapies, but pertinent information regarding the structural elements involved in cation translocation and drug binding remains incomplete. Molecular manipulations of the prototypical NHE1 isoform have implicated several predicted membrane-spanning (M) helices, most notably M4, M9, and M11, as important determinants of cation permeation and drug sensitivity. Here, we have used substituted-cysteine accessibility mutagenesis and thiol-modifying methanethiosulfonate (MTS) reagents to further probe the involvement of evolutionarily conserved sites within M9 (residues 342-363) and the adjacent exofacial re-entrant loop 5 between M9 and M10 (EL5; residues 364-415) of a cysteine-less variant of rat NHE1 on its kinetic and pharmacological properties. MTS treatment significantly reduced the activity of mutants containing substitutions within M9 (H353C, S355C, and G356C) and EL5 (G403C and S405C). In the absence of MTS, mutants S355C, G403C, and S405C showed modest to significant decreases in their apparent affinities for Na(+) o and/or H(+) i. In addition, mutations Y370C and E395C within EL5, whereas failing to confer sensitivity to MTS, nevertheless, reduced the affinity for Na(+) o, but not for H(+) i. The Y370C mutant also exhibited higher affinity for ethylisopropylamiloride, a competitive antagonist of Na(+) o transport. Collectively, these results further implicate helix M9 and EL5 of NHE1 as important elements involved in cation transport and inhibitor sensitivity, which may inform rational drug design.
Collapse
Affiliation(s)
- Tushare Jinadasa
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6
| | - Colin B Josephson
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6; Division of Clinical Neurosciences, University of Calgary Foothills Medical Centre, Calgary, Alberta T2N 2T9, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6
| | - John Orlowski
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6.
| |
Collapse
|
25
|
Read J, Clancy EK, Sarker M, de Antueno R, Langelaan DN, Parmar HB, Shin K, Rainey JK, Duncan R. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor. PLoS Pathog 2015; 11:e1004962. [PMID: 26061049 PMCID: PMC4464655 DOI: 10.1371/journal.ppat.1004962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. The fusogenic ortho- and aquareoviruses are the only known nonenveloped viruses that induce syncytium formation. Cell-cell fusion is a virulence determinant of fusogenic reoviruses, and is mediated by a singular family of fusion-associated small transmembrane (FAST) proteins, the smallest known viral fusogens. Unlike their enveloped virus counterparts, reovirus FAST proteins have exceptionally small ectodomains and considerable larger cytoplasmic endodomains, suggesting FAST protein interactions with the cytoplasmic leaflet of the plasma membrane likely play a prominent role in the fusion process. We determined that the baboon reovirus p15 FAST protein endodomain contains a novel type of helix-loop-helix lipid packing sensor that partitions into hydrophobic defects present in highly curved membranes. This fusion-inducing lipid packing sensor (FLiPS) is required for pore formation, and can be functionally replaced by heterologous lipid packing sensors. By masking hydrophobic defects appearing in the highly curved rim of nascent fusion pores, the FliPS would make the forward reaction to pore formation a more energetically favored means of resolving an unstable hemifusion intermediate. These results define a new role for curvature sensing motifs, and reveal how viral fusion proteins can drive pore formation without having to rely on membrane stresses induced by complex refolding of large ectodomains.
Collapse
Affiliation(s)
- Jolene Read
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eileen K. Clancy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Muzaddid Sarker
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roberto de Antueno
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David N. Langelaan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiren B. Parmar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kyungsoo Shin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K. Rainey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
26
|
Li X, Fliegel L. A novel human mutation in the SLC9A1 gene results in abolition of Na+/H+ exchanger activity. PLoS One 2015; 10:e0119453. [PMID: 25760855 PMCID: PMC4356549 DOI: 10.1371/journal.pone.0119453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
27
|
Li X, Ma Y, Fliegel L. Functional role of arginine 425 in the mammalian Na+/H+ exchanger. Biochem Cell Biol 2014; 92:541-6. [DOI: 10.1139/bcb-2014-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na+/H+ exchanger isoform 1 (NHE1) is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium ion. Critical transmembrane segments of Na+/H+ exchangers have discontinuous transmembrane helices, which result in a dipole within the membrane. Amino acid R425 has been suggested to play an important role in neutralizing one such helix dipole. To investigate this hypothesis, R425 was mutated to alanine, glutamine, histidine, or lysine and the mutant NHE1 proteins were expressed and characterized in NHE1-deficient cells. The R425A and R425E mutants exhibited complete loss of expression of mature, fully glycosylated NHE1, reduced expression overall, and greatly reduced cell surface targeting. The cell surface targeting, expression, and activity of the R425H and R425K mutant proteins were also impaired, though residual NHE1 activity remained. When reduced targeting and expression were accounted for, the R425H and R425K mutant proteins had activity similar to that of the wild-type protein. The results suggest that R425 is critical for NHE1 expression, targeting, and activity and that replacement with another basic residue can rescue activity. The findings are consistent with a role for R425 in both neutralizing a helix dipole and maintaining NHE1 structure and function.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Yike Ma
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
28
|
Guissart C, Li X, Leheup B, Drouot N, Montaut-Verient B, Raffo E, Jonveaux P, Roux AF, Claustres M, Fliegel L, Koenig M. Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet 2014; 24:463-70. [DOI: 10.1093/hmg/ddu461] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
29
|
Alves C, Ma Y, Li X, Fliegel L. Characterization of human mutations in phosphorylatable amino acids of the cytosolic regulatory tail of SLC9A1. Biochem Cell Biol 2014; 92:524-9. [PMID: 25162926 DOI: 10.1139/bcb-2014-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The NHE1 isoform of the mammalian Na(+)/H(+) exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in cells by removing one intracellular proton in exchange for one extracellular sodium. Genetic defects in NHE1 have been shown to affect the growth and motor ability of mice, but mutations in humans have not been studied. NHE1 has a cytosolic C-terminal regulatory domain of approximately 300 amino acids. We investigated the functional effects of two human mutations found in the regulatory phosphorylatable amino acids Ser(703) and Ser(771). A Ser703Pro mutant protein had essentially the same activity, expression, and targeting as the wild type NHE1 protein. In contrast, the Ser771Pro protein had reduced activity and expression of NHE1 protein, though cell surface targeting was normal. In dual pulse assays the Ser771Pro mutant was not further activated by sustained intracellular acidosis but displayed an unusual activation by brief pulses of acidosis. The results demonstrate that the Ser771Pro human genetic mutation has significant and detrimental physiological effects on the activity of the NHE1 protein, SLC9A1.
Collapse
Affiliation(s)
- Claudia Alves
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|
30
|
Alves C, Lee BL, Sykes BD, Fliegel L. Structural and Functional Analysis of the Transmembrane Segment Pair VI and VII of the NHE1 Isoform of the Na+/H+ Exchanger. Biochemistry 2014; 53:3658-70. [DOI: 10.1021/bi500392y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claudia Alves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian L. Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
31
|
Kemp G, Fliegel L, Young HS. Membrane transport piece by piece: production of transmembrane peptides for structural and functional studies. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2014; 75:29.8.1-29.8.28. [PMID: 24510677 DOI: 10.1002/0471140864.ps2908s75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins are involved in all cellular processes from signaling cascades to nutrient uptake and waste disposal. Because of these essential functions, many membrane proteins are recognized as important, yet elusive, clinical targets. Recent advances in structural biology have answered many questions about how membrane proteins function, yet one of the major bottlenecks remains the ability to obtain sufficient quantities of pure and homogeneous protein. This is particularly true for human membrane proteins, where novel expression strategies and structural techniques are needed to better characterize their function and therapeutic potential. One way to approach this challenge is to determine the structure of smaller pieces of membrane proteins that can be assembled into models of the complete protein. This unit describes the rationale for working with single or multiple transmembrane segments and provides a description of strategies and methods to express and purify them for structural and functional studies using a maltose binding protein (MBP) fusion. The bulk of the unit outlines a detailed methodology and justification for producing these peptides under native-like conditions.
Collapse
Affiliation(s)
- Grant Kemp
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
34
|
Structural and functional insights into the cardiac Na+/H+ exchanger. J Mol Cell Cardiol 2013; 61:60-7. [DOI: 10.1016/j.yjmcc.2012.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022]
|
35
|
Ullah A, Kemp G, Lee B, Alves C, Young H, Sykes BD, Fliegel L. Structural and functional analysis of transmembrane segment IV of the salt tolerance protein Sod2. J Biol Chem 2013; 288:24609-24. [PMID: 23836910 DOI: 10.1074/jbc.m113.483065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sod2 is the plasma membrane Na(+)/H(+) exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) ((126)FPQINFLGSLLIAGCITSTDPVLSALI(152)) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125-154). NMR analysis yielded a model with two helical regions (amino acids 128-142 and 147-154) separated by an unwound region (amino acids 143-146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na(+)/H(+) exchanger and TM VI of isoform 1 of mammalian Na(+)/H(+) exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Structural changes in the C-terminal regulatory region of the Na⁺/H⁺ exchanger mediate phosphorylation induced regulation. J Mol Cell Cardiol 2013; 61:153-63. [PMID: 23602949 DOI: 10.1016/j.yjmcc.2013.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/21/2013] [Accepted: 04/09/2013] [Indexed: 11/23/2022]
Abstract
The Na(+)/H(+) exchanger isoform 1 (NHE1) is a plasma membrane pH regulatory protein that removes one intracellular H(+) in exchange for an extracellular Na(+). NHE1 is regulated by phosphorylation of the cytoplasmic regulatory region and amino acids Ser(770) and Ser(771) of the regulatory domain are necessary for activation by sustained intracellular acidosis. The phosphomimetic mutations (S770D/S771D) resulted in an activated form of the protein. Immunoprecipitation of full length NHE1 protein showed that the phosphomimetic mutant had increased sensitivity to digestion with trypsin indicating a conformational change. Tryptic digestion of purified C-terminal regulatory region showed that the S770D/S771D mutation altered sensitivity to trypsin digestion. Wild type and phosphomimetic purified C-terminal region (577-815) of human NHE1 were compared and tryptophan fluorescence indicated that there were pH-dependent differences in the conformation of the proteins. Native polyacrylamide gel electrophoresis demonstrated that the phosphomimetic mutant had a more compact structure. Bottom-up hydrogen/deuterium exchange mass spectrometry demonstrated that a peptide fragment containing the phosphomimetic mutations became strongly stabilized relative to the wild type protein. Overall, the results suggested that phosphorylation of S770/S771 changes the conformation of the C-terminal regulatory region in a pH-dependent manner, resulting in a more compact region that affects NHE1 activity. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
|
37
|
Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupré DJ, Rainey JK. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1471-83. [PMID: 23438363 DOI: 10.1016/j.bbamem.2013.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/17/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins with rich functional diversity. Signaling through the apelin receptor (AR or APJ) influences the cardiovascular system, central nervous system and glucose regulation. Pathophysiological involvement of apelin has been shown in atherosclerosis, cancer, human immunodeficiency virus-1 (HIV-1) infection and obesity. Here, we present the high-resolution nuclear magnetic resonance (NMR) spectroscopy-based structure of the N-terminus and first transmembrane (TM) segment of AR (residues 1-55, AR55) in dodecylphosphocholine micelles. AR55 consists of two disrupted helices, spanning residues D14-K25 and A29-R55(1.59). Molecular dynamics (MD) simulations of AR built from a hybrid of experimental NMR and homology model-based restraints allowed validation of the AR55 structure in the context of the full-length receptor in a hydrated bilayer. AR55 structural features were functionally probed using mutagenesis in full-length AR through monitoring of apelin-induced extracellular signal-regulated kinase (ERK) phosphorylation in transiently transfected human embryonic kidney (HEK) 293A cells. Residues E20 and D23 form an extracellular anionic face and interact with lipid headgroups during MD simulations in the absence of ligand, producing an ideal binding site for a cationic apelin ligand proximal to the membrane-water interface, lending credence to membrane-catalyzed apelin-AR binding. In the TM region of AR55, N46(1.50) is central to a disruption in helical character. G42(1.46), G45(1.49) and N46(1.50), which are all involved in the TM helical disruption, are essential for proper trafficking of AR. In summary, we introduce a new correlative NMR spectroscopy and computational biochemistry methodology and demonstrate its utility in providing some of the first high-resolution structural information for a peptide-activated GPCR TM domain.
Collapse
Affiliation(s)
- David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Lee BL, Liu Y, Li X, Sykes BD, Fliegel L. Structural and functional analysis of extracellular loop 4 of the Nhe1 isoform of the Na(+)/H(+) exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2783-90. [PMID: 22772156 DOI: 10.1016/j.bbamem.2012.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/29/2022]
Abstract
The mammalian Na(+)/H(+) exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein. It regulates intracellular pH by removing a single intracellular H(+) in exchange for one extracellular Na(+). The membrane domain of NHE1 comprises the 500 N-terminal amino acids and is made of 12 transmembrane segments. The extracellular loops of the transmembrane segments are thought to be involved in cation coordination and inhibitor sensitivity. We have characterized the structure and function of amino acids 278-291 representing extracellular loop 4. When mutated to Cys, residues F277, F280, N282 and E284 of EL4 were sensitive to mutation and reaction with MTSET inhibiting NHE1 activity. In addition they were found to be accessible to extracellular applied MTSET. A peptide of the amino acids of EL4 was mostly unstructured suggesting that it does not provide a rigid structured link between TM VII and TM VIII. Our results suggest that EL4 makes an extension upward from TM VII to make up part of the mouth of the NHE1 protein and is involved in cation selectivity or coordination. EL4 provides a flexible link to TM VIII which may either allow movement of TM VII or allow TM VIII to not be adjacent to TM VII.
Collapse
Affiliation(s)
- Brian L Lee
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | | | | | | | | |
Collapse
|
39
|
Diab M, Rimon A, Tzubery T, Padan E. Helix VIII of NhaA Na(+)/H(+) antiporter participates in the periplasmic cation passage and pH regulation of the antiporter. J Mol Biol 2011; 413:604-14. [PMID: 21907722 DOI: 10.1016/j.jmb.2011.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 11/15/2022]
Abstract
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na(+)/H(+) antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent K(m) of the antiporter to both Na(+) (10-fold) and Li(+) (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size-rather than the chemical modification or the charge-of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.
Collapse
Affiliation(s)
- Mohammad Diab
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
40
|
Elevated expression of activated Na(+)/H(+) exchanger protein induces hypertrophy in isolated rat neonatal ventricular cardiomyocytes. Mol Cell Biochem 2011; 358:179-87. [PMID: 21720766 DOI: 10.1007/s11010-011-0933-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
The plasma membrane protein the Na(+)/H(+) exchanger isoform1 (NHE1) has been implicated in various cardiac pathologies including ischemia/reperfusion damage to the myocardium and cardiac hypertrophy. Levels of NHE1 protein and activity are elevated in cardiac disease; however, the mechanism by which these factors contribute to the accompanying hypertrophy in the myocardium is still not clear. To investigate the mechanism of NHE1-induced hypertrophy in the myocardium we constructed two adenoviral vectors expressing either wild type NHE1 protein or a constitutively active NHE1 protein. Infection of neonatal rat ventricular cardiomyocytes (NRVM) resulted in elevated expression of both wild type NHE1 or constitutively active NHE1. Only expression of activated NHE1 protein resulted in an increase in cell size and in an increase in protein synthesis in isolated cardiomyocyte cells. The results demonstrate that expression of activated NHE1 promotes cardiac hypertrophy in isolated cardiac cells and that simple elevation of levels of wild type NHE1 protein does not have a significant hypertrophic effect in NRVM. The results suggest that regulation of NHE1 activity is a critical direct effector of the hypertrophic effect induced in the myocardium by the NHE1 protein.
Collapse
|
41
|
Structural and functional analysis of critical amino acids in TMVI of the NHE1 isoform of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2327-35. [PMID: 21600870 DOI: 10.1016/j.bbamem.2011.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 01/16/2023]
Abstract
The mammalian Na(+)/H(+) exchanger isoform 1 (NHE1) resides on the plasma membrane and exchanges one intracellular H(+) for one extracellular Na(+). It maintains intracellular pH and regulates cell volume, and cell functions including growth and cell differentiation. Previous structural and functional studies on TMVI revealed several amino acids that are potentially pore lining. We examined these and other critical residues by site-directed mutagenesis substituting Asn227→Ala, Asp, Arg; Ile233→Ala; Leu243→Ala; Glu247→Asp, Gln; Glu248→Asp, Gln. Mutant NHE1 proteins were characterized in AP-1 cells, which do not express endogenous NHE1. All the TMVI critical amino acids were highly sensitive to substitution and changes often lead to a dysfunctional protein. Mutations of Asn227→Ala, Asp, Arg; Ile233→Ala; Leu243→Ala; Glu247→Asp; Glu248→Gln yielded significant reduction in NHE1 activity. Mutants of Asn227 demonstrated defects in protein expression, targeting and activity. Substituting Asn227→Arg and Ile233→Ala decreased the surface localization and expression of NHE1 respectively. The pore lining amino acids Ile233 and Leu243 were both essential for activity. Glu247 was not essential, but the size of the residue at this location was important while the charge on residue Glu248 was more critical to NHE1 function. Limited trypsin digestion on Leu243→Ala and Glu248→Gln revealed that they had increased susceptibility to proteolytic attack, indicating an alteration in protein conformation. Modeling of TMVI with TMXI suggests that these TM segments form part of the critical fold of NHE1 with Ile233 and Leu465 of TMXI forming a critical part of the extracellular facing ion conductance pathway.
Collapse
|
42
|
Lee BL, Sykes BD, Fliegel L. Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approachThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:189-99. [DOI: 10.1139/o10-140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The sodium/proton exchanger isoform 1 (NHE1) is an ubiquitous plasma membrane protein that regulates intracellular pH by removing excess intracellular acid. NHE1 is important in heart disease and cancer, making it an attractive therapeutic target. Although much is known about the function of NHE1, current structural knowledge of NHE1 is limited to two conflicting topology models: a low-resolution molecular envelope from electron microscopy, and comparison with a crystal structure of a bacterial homologue, NhaA. Our laboratory has used high-resolution nuclear magnetic resonance (NMR) spectroscopy to investigate the structures of individual transmembrane helices of NHE1 — a divide and conquer approach to the study of this membrane protein. In this review, we discuss the structural and functional insights obtained from this approach in combination with functional data obtained from mutagenesis experiments on the protein. We also compare the known structure of NHE1 transmembrane segments with the structural and functional insights obtained from a bacterial sodium/proton exchanger homologue, NhaA. The structures of regions of the NHE1 protein that have been determined have both similarities and specific differences to the crystal structure of the NhaA protein. These have allowed insights into both the topology and the function of the NHE1 protein.
Collapse
Affiliation(s)
- Brian L. Lee
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brian D. Sykes
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
43
|
Tzeng J, Lee BL, Sykes BD, Fliegel L. Structural and functional analysis of transmembrane segment VI of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 2010; 285:36656-65. [PMID: 20843797 PMCID: PMC2978594 DOI: 10.1074/jbc.m110.161471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/23/2010] [Indexed: 01/17/2023] Open
Abstract
The Na(+)/H(+) exchanger isoform 1 is a ubiquitously expressed integral membrane protein. It resides on the plasma membrane of cells and regulates intracellular pH in mammals by extruding an intracellular H(+) in exchange for one extracellular Na(+). We characterized structural and functional aspects of the transmembrane segment (TM) VI (residues 227-249) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM VI was mutated to cysteine in the background of the cysteineless NHE1 protein, and the sensitivity to water-soluble sulfhydryl-reactive compounds (2-(trimethylammonium)ethyl)methanethiosulfonate (MTSET) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) was determined for those residues with significant activity remaining. Three residues were essentially inactive when mutated to Cys: Asp(238), Pro(239), and Glu(247). Of the remaining residues, proteins with the mutations N227C, I233C, and L243C were strongly inhibited by MTSET, whereas amino acids Phe(230), Gly(231), Ala(236), Val(237), Ala(244), Val(245), and Glu(248) were partially inhibited by MTSET. MTSES did not affect the activity of the mutant NHE1 proteins. The structure of a peptide representing TM VI was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. TM VI contains two helical regions oriented at an approximate right angle to each other (residues 229-236 and 239-250) surrounding a central unwound region. This structure bears a resemblance to TM IV of the Escherichia coli protein NhaA. The results demonstrate that TM VI of NHE1 is a discontinuous pore-lining helix with residues Asn(227), Ile(233), and Leu(243) lining the translocation pore.
Collapse
Affiliation(s)
- Jennifer Tzeng
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Brian L. Lee
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Brian D. Sykes
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Larry Fliegel
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
44
|
Dietvorst J, Karhumaa K, Kielland-Brandt MC, Brandt A. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae. Yeast 2010; 27:131-8. [PMID: 20014043 DOI: 10.1002/yea.1737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Snf3 is a plasma membrane protein in Saccharomyces cerevisiae able to sense the presence of glucose. Although the Snf3 protein does not transport sugars, it shares sequence similarity with various glucose transporters from other organisms. We investigated the sugar specificity/preferences of Snf3. The ability of cells to sense sugars in vivo was monitored by following the degradation of the Mth1 protein, an early event in the signal pathway. Our study reveals that Snf3, in addition to glucose, also senses fructose and mannose, as well as the glucose analogues 2-deoxyglucose, 3-O-methylglucoside and 6-deoxyglucose. The signalling proficiency of a non-phosphorylatable analogue strongly supports the notion that sensing through Snf3 does not require sugar phosphorylation. Sequence comparisons of Snf3 to glucose transporters indicated amino acid residues possibly involved in sensing of sugars other than glucose. By site-specific mutagenesis of the structural gene, roles of specific residues in Snf3 could be established. Change of isoleucine-374 to valine in transmembrane segment 7 of Snf3 partially abolished sensing of fructose and mannose, while mutagenesis causing a change of phenylalanine-462 to tyrosine in transmembrane segment 10 of Snf3 abolished sensing of fructose. Neither of these amino acid changes affected the ability of Snf3 to sense glucose, nor did they permit Snf3 to sense galactose. These data indicate a similarity between a ligand binding site of the sensor Snf3 and binding sites used for facilitated hexose transport in the GLUT proteins.
Collapse
Affiliation(s)
- Judith Dietvorst
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
45
|
Reddy T, Li X, Fliegel L, Sykes BD, Rainey JK. Correlating structure, dynamics, and function in transmembrane segment VII of the Na+/H+ exchanger isoform 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:94-104. [DOI: 10.1016/j.bbamem.2009.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/17/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
46
|
Schushan M, Xiang M, Bogomiakov P, Padan E, Rao R, Ben-Tal N. Model-guided mutagenesis drives functional studies of human NHA2, implicated in hypertension. J Mol Biol 2010; 396:1181-96. [PMID: 20053353 DOI: 10.1016/j.jmb.2009.12.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/27/2009] [Indexed: 11/18/2022]
Abstract
Human NHA2 is a poorly characterized Na(+)/H(+) antiporter recently implicated in essential hypertension. We used a range of computational tools and evolutionary conservation analysis to build and validate a three-dimensional model of NHA2 based on the crystal structure of a distantly related bacterial transporter, NhaA. The model guided mutagenic evaluation of transport function, ion selectivity, and pH dependence of NHA2 by phenotype screening in yeast. We describe a cluster of essential, highly conserved titratable residues located in an assembly region made of two discontinuous helices of inverted topology, each interrupted by an extended chain. Whereas in NhaA, oppositely charged residues compensate for partial dipoles generated within this assembly, in NHA2, polar but uncharged residues suffice. Our findings led to a model for transport mechanism that was compared to the well-known electroneutral NHE1 and electrogenic NhaA subtypes. This study establishes NHA2 as a prototype for the poorly understood, yet ubiquitous, CPA2 antiporter family recently recognized in plants and metazoans and illustrates a structure-driven approach to derive functional information on a newly discovered transporter.
Collapse
Affiliation(s)
- Maya Schushan
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Yeagle PL, Albert AD. Membrane protein fragments reveal both secondary and tertiary structure of membrane proteins. Methods Mol Biol 2010; 654:283-301. [PMID: 20665272 DOI: 10.1007/978-1-60761-762-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Structural data on membrane proteins, while crucial to understanding cellular function, are scarce due to difficulties in applying to membrane proteins the common techniques of structural biology. Fragments of membrane proteins have been shown to reflect, in many cases, the secondary structure of the parent protein with fidelity and are more amenable to study. This chapter provides many examples of how the study of membrane protein fragments has provided new insight into the structure of the parent membrane protein.
Collapse
Affiliation(s)
- Philip L Yeagle
- Office of the Dean of Arts & Sciences, Rutgers University, Newark, NJ, USA.
| | | |
Collapse
|
48
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
49
|
Lee BL, Li X, Liu Y, Sykes BD, Fliegel L. Structural and functional analysis of extracellular loop 2 of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2481-8. [DOI: 10.1016/j.bbamem.2009.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
|
50
|
Lee BL, Li X, Liu Y, Sykes BD, Fliegel L. Structural and functional analysis of transmembrane XI of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 2009; 284:11546-56. [PMID: 19176522 DOI: 10.1074/jbc.m809201200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Na(+)/H(+) exchanger isoform 1 is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammals by extruding an intracellular H(+) in exchange for one extracellular Na(+). We characterized structural and functional aspects of the critical transmembrane (TM) segment XI (residues 449-470) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM XI was mutated to cysteine in the background of the cysteine-less protein and the sensitivity to water-soluble sulfhydryl reactive compounds MTSET ((2-(trimethylammonium) ethyl)methanethiosulfonate) and MTSES ((2-sulfonatoethyl) methanethiosulfonate) was determined for those residues with at least moderate activity remaining. Of the residues tested, only proteins with mutations L457C, I461C, and L465C were inhibited by MTSET. The activity of the L465C mutant was almost completely eliminated, whereas that of the L457C and I461C mutants was partially affected. The structure of a peptide representing TM XI (residues Lys(447)-Lys(472)) was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. The structure consisted of helical regions between Asp(447)-Tyr(454) and Phe(460)-Lys(471) at the N and C termini of the peptide, respectively, connected by a region with poorly defined, irregular structure consisting of residues Gly(455)-Gly(459). TM XI of NHE1 had a structural similarity to TM XI of the Escherichia coli Na(+)/H(+) exchanger NhaA. The results suggest that TM XI is a discontinuous helix, with residue Leu(465) contributing to the pore.
Collapse
Affiliation(s)
- Brian L Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|