1
|
Anisenko A, Kan M, Shadrina O, Brattseva A, Gottikh M. Phosphorylation Targets of DNA-PK and Their Role in HIV-1 Replication. Cells 2020; 9:E1907. [PMID: 32824372 PMCID: PMC7464883 DOI: 10.3390/cells9081907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The DNA dependent protein kinase (DNA-PK) is a trimeric nuclear complex consisting of a large protein kinase and the Ku heterodimer. The kinase activity of DNA-PK is required for efficient repair of DNA double-strand breaks (DSB) by non-homologous end joining (NHEJ). We also showed that the kinase activity of DNA-PK is essential for post-integrational DNA repair in the case of HIV-1 infection. Besides, DNA-PK is known to participate in such cellular processes as protection of mammalian telomeres, transcription, and some others where the need for its phosphorylating activity is not clearly elucidated. We carried out a systematic search and analysis of DNA-PK targets described in the literature and identified 67 unique DNA-PK targets phosphorylated in response to various in vitro and/or in vivo stimuli. A functional enrichment analysis of DNA-PK targets and determination of protein-protein associations among them were performed. For 27 proteins from these 67 DNA-PK targets, their participation in the HIV-1 life cycle was demonstrated. This information may be useful for studying the functioning of DNA-PK in various cellular processes, as well as in various stages of HIV-1 replication.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Marina Kan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Olga Shadrina
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Anna Brattseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Marina Gottikh
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
| |
Collapse
|
2
|
Yoshinaga N, Shindo K, Matsui Y, Takiuchi Y, Fukuda H, Nagata K, Shirakawa K, Kobayashi M, Takeda S, Takaori-Kondo A. A screening for DNA damage response molecules that affect HIV-1 infection. Biochem Biophys Res Commun 2019; 513:93-98. [PMID: 30935695 DOI: 10.1016/j.bbrc.2019.03.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/14/2023]
Abstract
Host DNA damage response molecules affect retroviral infection, as DNA intermediates of the viruses play essential roles in the viral life cycles. Although several such molecules have been reported, interactions between HIV-1 and host DNA damage response molecules have not been fully elucidated. To screen DNA damage response molecules that might affect HIV-1 infection, a set of 32 DNA-repair-deficient DT40 isogenic mutant cells were tested for HIV-1 infectivity. Seven out of the 32 clones showed less than 50% infectivity compared to parental DT40 cells, implying that DNA repair molecules deficient in these cells might support HIV-1 infection. Of these, EXO1 -/-, TP53BP1 -/- and WRN -/- cells showed more than twofold accumulation of two long terminal repeat circles and less than 50% integrated proviral DNA in quantitative-PCR analyses, indicating that the integration step is impaired. RAD18 -/- cells showed twofold higher HIV-1 infectivity and increased reverse transcription products at earlier time points, suggesting that RAD18 suppresses reverse transcription. The HIV-1 suppressive effects of RAD18 were confirmed by over-expression and knockdown experiments in human cells. L274P, a DNA-binding-impaired mutant of RAD18, showed impaired HIV-1 suppression and DNA binding, suggesting that binding HIV-1 DNA intermediates is critical for RAD18 to suppress reverse transcription and HIV-1 infection. Our data help understand interactions between host DNA damage response molecules and viral DNA.
Collapse
Affiliation(s)
- Noriyoshi Yoshinaga
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan.
| | - Yusuke Matsui
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Hirofumi Fukuda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
3
|
Maldonado GDC, Terra ON, Arnóbio A, Alfradique GR, Ornellas MH, da Silva RI, de Lima DB. Association Between XRCC1 and WRN as Genetic Markers of Stability and Susceptibility to Cancer in Patients with HIV/AIDS and Cancer: a Cross-Sectional Study. Asian Pac J Cancer Prev 2017; 18:615-620. [PMID: 28440612 PMCID: PMC5464474 DOI: 10.22034/apjcp.2017.18.3.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: HIV-induced immunodeficiency has been implicated as a key factor for risk of cancer. Neoplasia is considered to result from accumulation of damage to the genome. Polymorphisms in repair genes, such as the XRCC1 and WRN, have been associated with susceptibility to development of cancer in patients with HIV/AIDS. The aim of this study was to analyze the frequency of polymorphisms in XRCC1 (Arg399Gln) and WRN (Cys1367Arg) in patients with HIV/AIDS with or without cancer. Materials and Methods: Genotyping for analysis of polymorphisms was carried out by PCR (Polymerase Chain Reaction) and RFLP (Restriction Fragment Length Polymorphism). Results: In the genotypic and allelic analysis, no increased risk of cancer was observed with any genotype or allele of XRCC1 (Arg399Gln) singly (prevalence ratio 2.82; p-value= 0.24). However, with the WRN (Cys1367Arg) gene, the heterozygous genotype and arginine allele were associated with increased risk (prevalence ratio= 25.62; p-value= 0.0001). Correlation analysis showed no association between gender and the risk (male p-value= 0.639 and women p-value> 1); however, a positive association for the increased risk of cancer was shown with XRCC1 (Arg399Arg) wild-type homozygous and WRN (Cys1367Arg) heterozygous (p-value< 0.001), with heterozygous XRCC1 (Arg399Gln) and WRN (Cys1367Arg) (p-value< 0.001), and with variant homozygous XRCC1 (Gln399Gln) and heterozygous WRN (Cys1367Arg) (p-value< 0.001). Conclusions: There is no increased risk of cancer in patients who are HIV/AIDS carriers of the XRCC1 (Arg399Gln) gene singly. However, there is a high risk in patients with HIV/AIDS who have the heterozygous genotype and the arginine allele in the WRN (Cys1367Arg) gene singly. Those with WRN (Cys1367Arg) heterozygote genotype showed a high risk of cancer with all genotypes of the XRCC1 (Arg399Gln) gene.
Collapse
Affiliation(s)
- Gabriel de Carvalho Maldonado
- Department of Infectious and Parasitic Diseases, Rio de Janeiro State University, RJ, Brazil
- Postgraduate Program in Medical Sciences, Rio de Janeiro State University, RJ, Brazil
| | - Orlando Nascimento Terra
- Department of Pathology and Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, RJ, Brazil
| | - Adriano Arnóbio
- Postgraduate Program in Medical Sciences, Rio de Janeiro State University, RJ, Brazil
| | - Guilherme Rohem Alfradique
- Department of Pathology and Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, RJ, Brazil
| | - Maria Helena Ornellas
- Department of Pathology and Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, RJ, Brazil
- Postgraduate Program in Medical Sciences, Rio de Janeiro State University, RJ, Brazil
| | | | - Dirce Bonfim de Lima
- Department of Infectious and Parasitic Diseases, Rio de Janeiro State University, RJ, Brazil
- Postgraduate Program in Medical Sciences, Rio de Janeiro State University, RJ, Brazil
| |
Collapse
|
4
|
Mizutani T, Ishizaka A, Furuichi Y. The Werner Protein Acts as a Coactivator of Nuclear Factor κB (NF-κB) on HIV-1 and Interleukin-8 (IL-8) Promoters. J Biol Chem 2015; 290:18391-9. [PMID: 26037922 DOI: 10.1074/jbc.m115.657155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
The Werner syndrome helicase (WRN) plays a role in maintaining genomic stability. The lack of WRN results in Werner syndrome, a rare autosomal recessive genetic disorder, which causes premature aging accompanied by many complications such as rare forms of cancer and type 2 diabetes. However, the underlying mechanisms of these complications, arising due to the loss of WRN, are poorly understood. In this study, we demonstrated the function of WRN in transcriptional regulation of NF-κB targets. WRN physically interacts via its RecQ C-terminal (RQC) domain with the Rel homology domain of both the RelA (p65) and the p50 subunits of NF-κB. In the steady state, WRN is recruited to HIV-1 long terminal repeat (LTR), a typical NF-κB-responsive promoter, as well as the p50/p50 homodimer, in an NF-κB site-dependent manner. The amount of WRN on LTR increased along with the transactivating RelA/p50 heterodimer in response to TNF-α stimulation. Further, a knockdown of WRN reduced the transactivation of LTR in exogenous RelA/p50-introduced or TNF-α-stimulated cells. Additionally, knockdown of WRN reduced TNF-α stimulation-induced activation of the endogenous promoter of IL-8, an NF-κB-responsive gene, and WRN increased its association with the IL-8 promoter region together with RelA/p50 after TNF-α stimulation. In conjunction with studies that have shown NF-κB to be a key regulator of aging and inflammation, our results indicate a novel role of WRN in transcriptional regulation. Along with NF-κB, the loss of WRN is expected to result in incorrect regulation of downstream targets and leads to immune abnormalities and homeostatic disruption.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- From the Laboratory of Virology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021 and
| | - Aya Ishizaka
- From the Laboratory of Virology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021 and
| | - Yasuhiro Furuichi
- GeneCare Research Institute Co., Ltd., 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| |
Collapse
|
5
|
Sommers JA, Suhasini AN, Brosh RM. Protein degradation pathways regulate the functions of helicases in the DNA damage response and maintenance of genomic stability. Biomolecules 2015; 5:590-616. [PMID: 25906194 PMCID: PMC4496686 DOI: 10.3390/biom5020590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom’s syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the Fanconi Anemia (FA) interstrand cross-link (ICL) repair pathway, influence cell cycle checkpoints, DNA repair, and replication restart. The FANCM DNA translocase can be targeted by checkpoint kinases that exert dramatic effects on FANCM stability and chromosomal integrity. Other work provides evidence that degradation of the F-box DNA helicase (FBH1) helps to balance translesion synthesis (TLS) and homologous recombination (HR) repair at blocked replication forks. Degradation of the helicase-like transcription factor (HLTF), a DNA translocase and ubiquitylating enzyme, influences the choice of post replication repair (PRR) pathway. Stability of the Werner syndrome helicase-nuclease (WRN) involved in the replication stress response is regulated by its acetylation. Turning to transcription, stability of the Cockayne Syndrome Group B DNA translocase (CSB) implicated in transcription-coupled repair (TCR) is regulated by a CSA ubiquitin ligase complex enabling recovery of RNA synthesis. Collectively, these studies demonstrate that helicases can be targeted for degradation to maintain genome homeostasis.
Collapse
Affiliation(s)
- Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Avvaru N Suhasini
- Department of Medicine, Division of Hematology & Medical Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Ariumi Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 2014; 5:423. [PMID: 25538732 PMCID: PMC4257086 DOI: 10.3389/fgene.2014.00423] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022] Open
Abstract
The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research - International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
7
|
Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 2014; 518:249-53. [PMID: 25470060 DOI: 10.1038/nature13923] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.
Collapse
Affiliation(s)
- Eliezer Calo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ryan A Flynn
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joanna Wysocka
- 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
8
|
Yasuda-Inoue M, Kuroki M, Ariumi Y. DDX3 RNA helicase is required for HIV-1 Tat function. Biochem Biophys Res Commun 2013; 441:607-11. [PMID: 24183723 DOI: 10.1016/j.bbrc.2013.10.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Host RNA helicase has been involved in human immunodeficiency virus type 1 (HIV-1) replication, since HIV-1 does not encode an RNA helicase. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether DDX RNA helicases modulate the HIV-1 Tat function. In this study, we demonstrate, for the first time, that DDX3 is required for the HIV-1 Tat function. Notably, DDX3 colocalized and interacted with HIV-1 Tat in cytoplasmic foci. Indeed, DDX3 localized in the cytoplasmic foci P-bodies or stress granules under stress condition after the treatment with arsenite. Importantly, only DDX3 enhanced the Tat function, while various distinct DEAD-box RNA helicases including DDX1, DDX3, DDX5, DDX17, DDX21, and DDX56, stimulated the HIV-1 Rev-dependent RNA export function, indicating a specific role of DDX3 in Tat function. Indeed, the ATPase-dependent RNA helicase activity of DDX3 seemed to be required for the Tat function as well as the colocalization with Tat. Furthermore, the combination of DDX3 with other distinct DDX RNA helicases cooperated to stimulate the Rev but not Tat function. Thus, DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function.
Collapse
|
9
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
10
|
Chen CY, Liu X, Boris-Lawrie K, Sharma A, Jeang KT. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 2013; 171:357-65. [PMID: 22814432 PMCID: PMC3493675 DOI: 10.1016/j.virusres.2012.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Xiang Liu
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Amit Sharma
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Kuan-Teh Jeang
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
11
|
Lorgeoux RP, Guo F, Liang C. From promoting to inhibiting: diverse roles of helicases in HIV-1 Replication. Retrovirology 2012; 9:79. [PMID: 23020886 PMCID: PMC3484045 DOI: 10.1186/1742-4690-9-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/22/2012] [Indexed: 01/09/2023] Open
Abstract
Helicases hydrolyze nucleotide triphosphates (NTPs) and use the energy to modify the structures of nucleic acids. They are key players in every cellular process involving RNA or DNA. Human immunodeficiency virus type 1 (HIV-1) does not encode a helicase, thus it has to exploit cellular helicases in order to efficiently replicate its RNA genome. Indeed, several helicases have been found to specifically associate with HIV-1 and promote viral replication. However, studies have also revealed a couple of helicases that inhibit HIV-1 replication; these findings suggest that HIV-1 can either benefit from the function of cellular helicases or become curtailed by these enzymes. In this review, we focus on what is known about how a specific helicase associates with HIV-1 and how a distinct step of HIV-1 replication is affected. Despite many helicases having demonstrated roles in HIV-1 replication and dozens of other helicase candidates awaiting to be tested, a deeper appreciation of their involvement in the HIV-1 life cycle is hindered by our limited knowledge at the enzymatic and molecular levels regarding how helicases shape the conformation and structure of viral RNA-protein complexes and how these conformational changes are translated into functional outcomes in the context of viral replication.
Collapse
Affiliation(s)
- Rene-Pierre Lorgeoux
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, H3T 1E2, Quebec, Canada
| | | | | |
Collapse
|
12
|
Wu Y, Brosh RM. Helicase-inactivating mutations as a basis for dominant negative phenotypes. Cell Cycle 2011; 9:4080-90. [PMID: 20980836 DOI: 10.4161/cc.9.20.13667] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANCJ helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Lachapelle S, Gagné JP, Garand C, Desbiens M, Coulombe Y, Bohr VA, Hendzel MJ, Masson JY, Poirier GG, Lebel M. Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. J Proteome Res 2011; 10:1216-27. [PMID: 21210717 DOI: 10.1021/pr100990s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA repair, replication, telomere maintenance, and transcription. Here, we present the results of a large-scale proteome analysis to determine protein partners of WRN. We expressed fluorescent tagged-WRN (eYFP-WRN) in human 293 embryonic kidney cells and detected interacting proteins by co-immunoprecipitation from cell extract. We identified by mass spectrometry 220 nuclear proteins that complexed with WRN. This number was reduced to 40 when broad-spectrum nucleases were added to the lysate. We consider these 40 proteins as directly interacting with WRN. Some of these proteins have previously been shown to interact with WRN, whereas most are new partners. Among the top 15 hits, we find the new interactors TMPO, HNRNPU, RPS3, RALY, RPS9 DDX21, and HNRNPM. These proteins are likely important components in understanding the function of WRN in preventing premature aging and deserve further investigation. We have confirmed endogenous WRN interaction with endogenous RPS3, a ribosomal protein with endonuclease activities involved in oxidative DNA damage recognition. Our results suggest that the use of nucleases during cell lysis severely restricts interacting protein partners and thus enhances specificity.
Collapse
Affiliation(s)
- Sophie Lachapelle
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec City, Québec, G1R 2J6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Eekels JJM, Geerts D, Jeeninga RE, Berkhout B. Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Res 2010; 89:43-53. [PMID: 21093490 DOI: 10.1016/j.antiviral.2010.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 12/12/2022]
Abstract
In this study we tested whether HIV-1 replication could be inhibited by stable RNAi-mediated knockdown of cellular co-factors. Cell lines capable of expressing shRNAs against 30 candidate co-factors implicated at different steps of the viral replication cycle were generated and analyzed for effects on cell viability and inhibition of HIV-1 replication. For half of these candidate co-factors we obtained knockdown cell lines that are less susceptible to virus replication. For three co-factors (ALIX, ATG16 and TRBP) the cell lines were resistant to HIV-1 replication for up to 2 months. With these cells we could test the hypothesis that HIV-1 is not able to escape from RNAi-mediated suppression of cellular co-factors, which was indeed not detected.
Collapse
Affiliation(s)
- Julia J M Eekels
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Labbé A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG, Lebel M. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci 2010; 66:264-78. [PMID: 20974729 DOI: 10.1093/gerona/glq184] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Werner syndrome is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many features of Werner syndrome, including a pro-oxidant status and a shorter mean life span. Here, we show that resveratrol supplementation improved the hyperglycemia and the insulin resistance phenotype in these Wrn mutant mice. In addition, resveratrol reversed liver steatosis, lipid peroxidaton, and the defenestration phenotypes observed in such mice. Resveratrol, however, did not improve the hypertriglyceridemia, inflammatory stress, nor extend the mean life span of these mutant mice. Microarray and biologic pathway enrichment analyses on liver tissues revealed that resveratrol mainly decreased lipidogenesis and increased genes involved in the insulin signaling pathway and the glutathione metabolism in Wrn mutant mice. Finally, resveratrol-treated mutant mice exhibited an increase in the frequency of lymphoma and of several solid tumors. These results indicate that resveratrol supplementation might exert at least metabolic benefits for Werner syndrome patients.
Collapse
Affiliation(s)
- Adam Labbé
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Scherer L, Weinberg MS, Rossi JJ. RNA Based Therapies for Treatment of HIV Infection. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lisa Scherer
- Division of Molecular Biology City of Hope Beckman Research Institute Duarte CA
| | - Marc S. Weinberg
- Department of Molecular Medicine and Hematology University of the Witwatersrand Medical School Wits South Africa
| | - John J. Rossi
- Division of Molecular Biology City of Hope Beckman Research Institute Duarte CA
| |
Collapse
|
17
|
Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS One 2008; 3:e1918. [PMID: 18398454 PMCID: PMC2276247 DOI: 10.1371/journal.pone.0001918] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/22/2008] [Indexed: 11/19/2022] Open
Abstract
Background The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol β-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER.
Collapse
|
18
|
Ma J, Rong L, Zhou Y, Roy BB, Lu J, Abrahamyan L, Mouland AJ, Pan Q, Liang C. The requirement of the DEAD-box protein DDX24 for the packaging of human immunodeficiency virus type 1 RNA. Virology 2008; 375:253-64. [PMID: 18289627 DOI: 10.1016/j.virol.2008.01.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/10/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
RNA helicases play important roles in RNA metabolism. Human immunodeficiency virus type 1 (HIV-1) does not carry its own RNA helicase, the virus thus needs to exploit cellular RNA helicases to promote the replication of its RNA at various steps such as transcription, folding and transport. In this study, we report that knockdown of a DEAD-box protein named DDX24 inhibits the packaging of HIV-1 RNA and thus diminishes viral infectivity. The decreased viral RNA packaging as a result of DDX24-knockdown is observed only in the context of the Rev/RRE (Rev response element)-dependent but not the CTE (constitutive transport element)-mediated nuclear export of viral RNA, which is explained by the specific interaction of DDX24 with the Rev protein. We propose that DDX24 acts at the early phase of HIV-1 RNA metabolism prior to nuclear export and the consequence of this action extends to the viral RNA packaging stage during virus assembly.
Collapse
|
19
|
Zhou Y, Ma J, Bushan Roy B, Wu JYY, Pan Q, Rong L, Liang C. The packaging of human immunodeficiency virus type 1 RNA is restricted by overexpression of an RNA helicase DHX30. Virology 2007; 372:97-106. [PMID: 18022663 DOI: 10.1016/j.virol.2007.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/21/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
RNA helicases are a large family of proteins that are able to unwind RNA duplex and remodel the structure of RNA-protein (RNP) complexes using energy derived from hydrolysis of nucleotide triphosphates (NTPs). Every step of cellular RNA metabolism involves the activity of RNA helicases. Not surprisingly, more and more RNA helicases are reported to participate in the replication of viruses including the human immunodeficiency virus type 1 (HIV-1). Here, we provide evidence that overexpression of an RNA helicase named DHX30 enhances HIV-1 gene expression, but leads to the generation of viruses that package significantly low levels of viral RNA and exhibit severely decreased infectivity. These data reveal the complex roles of DHX30 in HIV-1 replication and implicate an inhibitory activity of DHX30 in HIV-1 RNA packaging.
Collapse
Affiliation(s)
- Yongdong Zhou
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Scherer L, Rossi JJ, Weinberg MS. Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther 2007; 14:1057-64. [PMID: 17607313 DOI: 10.1038/sj.gt.3302977] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The current treatment regimen for HIV-infected individuals combines two or more drugs targeting different viral proteins such as RT and gag. Resistance to conventional drugs can develop quickly, and typically persists. The prospect of longer, continuous antiretroviral therapy brings with it the need for new antiretroviral drugs and approaches. In this context, gene therapies have the potential to prolong life and quality of life as an additional therapeutic class and may serve as an adjuvant to traditional treatments. This review focuses on RNA-based hematopoietic cell gene therapy for treatment of HIV infection. Recent advances in our understanding of RNA interference (RNAi) make this an especially attractive candidate for anti-HIV gene therapy although ribozyme and RNA decoy/aptamer approaches can be combined with RNAi to make a combinatorial therapy akin to highly active anti-retroviral therapy.
Collapse
Affiliation(s)
- L Scherer
- Division of Molecular Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | | | | |
Collapse
|
21
|
Futami K, Takagi M, Shimamoto A, Sugimoto M, Furuichi Y. Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase. Biol Pharm Bull 2007; 30:1958-61. [PMID: 17917271 DOI: 10.1248/bpb.30.1958] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Werner syndrome helicase (WRN) participates in a wide range of DNA activities, including replication, double-strand DNA break repair, telomere and retrovirus long terminal repeat maintenance. Mutations of the WRN gene cause Werner syndrome (WS), an autosomal recessive premature ageing disorder associated with various symptoms related to ageing. In this study, we investigated the siRNA that specifically down-regulates WRN expression. WRN silencing increased markedly the chemotherapeutic activity of camptothecin (CPT) on cancer cells in terms of the extent of efficacy and lowering effective drug dosage, accompanied by suppressing recovery from DNA damage caused by CPT. Here, we propose a potential combination therapy of WRN-siRNA and CPT, looking forward to minimizing the inevitable adverse effects associated with cancer chemotherapy.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute Co., Ltd., Kamakura, Kanagawa, Japan
| | | | | | | | | |
Collapse
|