1
|
Kosugi T, Iida T, Tanabe M, Iino R, Koga N. Design of allosteric sites into rotary motor V 1-ATPase by restoring lost function of pseudo-active sites. Nat Chem 2023; 15:1591-1598. [PMID: 37414880 PMCID: PMC10624635 DOI: 10.1038/s41557-023-01256-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
Allostery produces concerted functions of protein complexes by orchestrating the cooperative work between the constituent subunits. Here we describe an approach to create artificial allosteric sites in protein complexes. Certain protein complexes contain subunits with pseudo-active sites, which are believed to have lost functions during evolution. Our hypothesis is that allosteric sites in such protein complexes can be created by restoring the lost functions of pseudo-active sites. We used computational design to restore the lost ATP-binding ability of the pseudo-active site in the B subunit of a rotary molecular motor, V1-ATPase. Single-molecule experiments with X-ray crystallography analyses revealed that binding of ATP to the designed allosteric site boosts this V1's activity compared with the wild-type, and the rotation rate can be tuned by modulating ATP's binding affinity. Pseudo-active sites are widespread in nature, and our approach shows promise as a means of programming allosteric control over concerted functions of protein complexes.
Collapse
Affiliation(s)
- Takahiro Kosugi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Tatsuya Iida
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Mikio Tanabe
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Ryota Iino
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Nobuyasu Koga
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.
- Institute for Protein Research (IPR), Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Multitarget-Based Virtual Screening for Identification of Herbal Substances toward Potential Osteoclastic Targets. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Osteoporosis is a complex bone disease indicating porous bone with low bone mass density and fragility. Cathepsin K, V-ATPase, and αVβ3 integrin are exhibited as novel targets for osteoporosis treatment. Our preliminary study uses a state-of-the-art method, including target-based virtual screening and clustering methods to determine promising candidates with multitarget properties. Phytochemicals with osteoprotective properties from the literature are used to elucidate the molecular interactions toward three targets. The binding scores of compounds are normalized and rescored. The K-means and hierarchical clustering methods are applied to filter and define the promising compounds, and the silhouette analysis is supposed to validate the clustering method. We explore 108 herbal compounds by virtual screening and the cluster approach, and find that rutin, sagittatoside A, icariin, and kaempferitrin showed strong binding affinities against Cathepsin K, V-ATPase, and αVβ3 integrin. Dockings of candidates toward three targets also provide the protein-ligand interactions and crucial amino acids for binding. Our study provides a straightforward and less time-consuming approach to exploring the new multitarget candidates for further investigations, using a combination of in silico methods.
Collapse
|
3
|
The Inhibitory Effect of Celangulin V on the ATP Hydrolytic Activity of the Complex of V-ATPase Subunits A and B in the Midgut of Mythimna separata. Toxins (Basel) 2019; 11:toxins11020130. [PMID: 30813232 PMCID: PMC6409644 DOI: 10.3390/toxins11020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
Celangulin V (CV) is a compound isolated from Celastrus angulatus Max that has a toxic activity against agricultural insect pests. CV can bind to subunits a, H, and B of the vacuolar ATPase (V-ATPase) in the midgut epithelial cells of insects. However, the mechanism of action of CV is still unclear. In this study, the soluble complex of the V-ATPase A subunit mutant TSCA which avoids the feedback inhibition by the hydrolysate ADP and V-ATPase B subunit were obtained and then purified using affinity chromatography. The H⁺K⁺-ATPase activity of the complex and the inhibitory activity of CV on ATP hydrolysis were determined. The results suggest that CV inhibits the ATP hydrolysis, resulting in an insecticidal effect. Additionally, the homology modeling of the AB complex and molecular docking results indicate that CV can competitively bind to the AB complex at the ATP binding site, which inhibits ATP hydrolysis. These findings suggest that the AB subunits complex is one of the potential targets for CV and is important for understanding the mechanism of interaction between CV and V-ATPase.
Collapse
|
4
|
Majewski DD, Worrall LJ, Hong C, Atkinson CE, Vuckovic M, Watanabe N, Yu Z, Strynadka NCJ. Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry. Nat Commun 2019; 10:626. [PMID: 30733444 PMCID: PMC6367419 DOI: 10.1038/s41467-019-08477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Many Gram-negative bacteria, including causative agents of dysentery, plague, and typhoid fever, rely on a type III secretion system - a multi-membrane spanning syringe-like apparatus - for their pathogenicity. The cytosolic ATPase complex of this injectisome is proposed to play an important role in energizing secretion events and substrate recognition. We present the 3.3 Å resolution cryo-EM structure of the enteropathogenic Escherichia coli ATPase EscN in complex with its central stalk EscO. The structure shows an asymmetric pore with different functional states captured in its six catalytic sites, details directly supporting a rotary catalytic mechanism analogous to that of the heterohexameric F1/V1-ATPases despite its homohexameric nature. Situated at the C-terminal opening of the EscN pore is one molecule of EscO, with primary interaction mediated through an electrostatic interface. The EscN-EscO structure provides significant atomic insights into how the ATPase contributes to type III secretion, including torque generation and binding of chaperone/substrate complexes.
Collapse
Affiliation(s)
- Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- HRMEM Facility, University of British Columbia, Vancouver, BC, Canada
| | - Chuan Hong
- CryoEM Shared Resources, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
- Merck & Co., Department of Biochemical Engineering and Structure, 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Claire E Atkinson
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- HRMEM Facility, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Nobuhiko Watanabe
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Zhiheng Yu
- CryoEM Shared Resources, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Feng M, Li Y, Chen X, Wei Q, Wu W, Hu Z. Comparative Proteomic Analysis of the Effect of Periplocoside P from Periploca sepium on Brush Border Membrane Vesicles in Midgut Epithelium of Mythimna separata Larvae. Toxins (Basel) 2017; 10:E7. [PMID: 29271902 PMCID: PMC5793094 DOI: 10.3390/toxins10010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
Periplocoside P (PSP), a novel compound isolated from Periploca sepium Bunge, possesses insecticidal activity against some lepidopterans, such as Mythimna separata. In M. separata, the brush border membrane vesicles of the midgut epithelium are the initial site of action of periplocosides. We conducted two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry analysis to analyze differentially expressed proteins (DEPs) from periplocoside P (PSP)-treated M. separata. We successfully isolated seven up-regulated and three down-regulated DEPs that have been previously identified, as well as a novel DEP. The DEPs are implicated in protein degradation, transporter, folding, and synthesis, and in juvenile hormone biosynthesis. DEPs involved in the oxidative phosphorylation energy metabolism pathway are enriched. Through real-time polymerase chain reaction assay, we confirmed that vma1 expression is significantly up-regulated expression levels in PSP-treated M. separata larvae. Enzymology validation further indicated that PSP can significantly inhibit V-type ATPase activity in a concentration-dependent manner. Given these results, we speculate that in M. separata, the V-type ATPase A subunit in the midgut epithelium is the putative target binding site of periplocosides. This finding provides preliminary evidence for the mode of action of periplocosides.
Collapse
Affiliation(s)
- Mingxing Feng
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Yankai Li
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Xueting Chen
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Quansheng Wei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
- Key Laboratory of Crop Pest Integrated Management on the Loess Plateau, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. EUKARYOTIC CELL 2014; 13:706-14. [PMID: 24706019 DOI: 10.1128/ec.00050-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved.
Collapse
|
7
|
Zhang C, Allegretti M, Vonck J, Langer JD, Marcia M, Peng G, Michel H. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli. Biochim Biophys Acta Gen Subj 2013; 1840:34-40. [PMID: 24005236 DOI: 10.1016/j.bbagen.2013.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli. METHODS We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy. RESULTS We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases. CONCLUSIONS Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase. GENERAL SIGNIFICANCE More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.
Collapse
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Kishikawa JI, Ibuki T, Nakamura S, Nakanishi A, Minamino T, Miyata T, Namba K, Konno H, Ueno H, Imada K, Yokoyama K. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One 2013; 8:e64695. [PMID: 23724081 PMCID: PMC3665681 DOI: 10.1371/journal.pone.0064695] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/17/2013] [Indexed: 02/02/2023] Open
Abstract
The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Tatsuya Ibuki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuichi Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Astuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Riken Quantitative Biology Center, Osaka, Japan
| | - Hiroki Konno
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Ueno
- Department of Physics, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| | - Katsumi Imada
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- * E-mail: (KI); (KY)
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
- * E-mail: (KI); (KY)
| |
Collapse
|
9
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
10
|
Kishikawa JI, Yokoyama K. Reconstitution of vacuolar-type rotary H+-ATPase/synthase from Thermus thermophilus. J Biol Chem 2012; 287:24597-603. [PMID: 22582389 PMCID: PMC3397886 DOI: 10.1074/jbc.m112.367813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vacuolar-type rotary H+-ATPase/synthase (VoV1) from Thermus thermophilus, composed of nine subunits, A, B, D, F, C, E, G, I, and L, has been reconstituted from individually isolated V1 (A3B3D1F1) and Vo (C1E2G2I1L12) subcomplexes in vitro. A3B3D and A3B3 also reconstituted with Vo, resulting in a holoenzyme-like complexes. However, A3B3D-Vo and A3B3-Vo did not show ATP synthesis and dicyclohexylcarbodiimide-sensitive ATPase activity. The reconstitution process was monitored in real time by fluorescence resonance energy transfer (FRET) between an acceptor dye attached to subunit F or D in V1 or A3B3D and a donor dye attached to subunit C in Vo. The estimated dissociation constants Kd for VoV1 and A3B3D-Vo were ∼0.3 and ∼1 nm at 25 °C, respectively. These results suggest that the A3B3 domain tightly associated with the two EG peripheral stalks of Vo, even in the absence of the central shaft subunits. In addition, F subunit is essential for coupling of ATP hydrolysis and proton translocation and has a key role in the stability of whole complex. However, the contribution of the F subunit to the association of A3B3 with Vo is much lower than that of the EG peripheral stalks.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | | |
Collapse
|
11
|
Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Proc Natl Acad Sci U S A 2011; 108:19955-60. [PMID: 22114184 DOI: 10.1073/pnas.1108810108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V-ATPases function as ATP-dependent ion pumps in various membrane systems of living organisms. ATP hydrolysis causes rotation of the central rotor complex, which is composed of the central axis D subunit and a membrane c ring that are connected by F and d subunits. Here we determined the crystal structure of the DF complex of the prokaryotic V-ATPase of Enterococcus hirae at 2.0-Å resolution. The structure of the D subunit comprised a long left-handed coiled coil with a unique short β-hairpin region that is effective in stimulating the ATPase activity of V(1)-ATPase by twofold. The F subunit is bound to the middle portion of the D subunit. The C-terminal helix of the F subunit, which was believed to function as a regulatory region by extending into the catalytic A(3)B(3) complex, contributes to tight binding to the D subunit by forming a three-helix bundle. Both D and F subunits are necessary to bind the d subunit that links to the c ring. From these findings, we modeled the entire rotor complex (DFdc ring) of V-ATPase.
Collapse
|
12
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
13
|
Maher MJ, Akimoto S, Iwata M, Nagata K, Hori Y, Yoshida M, Yokoyama S, Iwata S, Yokoyama K. Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. EMBO J 2009; 28:3771-9. [PMID: 19893485 PMCID: PMC2775895 DOI: 10.1038/emboj.2009.310] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/01/2009] [Indexed: 12/01/2022] Open
Abstract
Vacuolar-type ATPases (V-ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A(3)B(3) subcomplex of V-ATPase at 2.8 A resolution. The overall construction of the A(3)B(3) subcomplex is significantly different from that of the alpha(3)beta(3) sub-domain in F(o)F(1)-ATP synthase, because of the presence of a protruding 'bulge' domain feature in the catalytic A subunits. The A(3)B(3) subcomplex structure provides the first molecular insight at the catalytic and non-catalytic interfaces, which was not possible in the structures of the separate subunits alone. Specifically, in the non-catalytic interface, the B subunit seems to be incapable of binding ATP, which is a marked difference from the situation indicated by the structure of the F(o)F(1)-ATP synthase. In the catalytic interface, our mutational analysis, on the basis of the A(3)B(3) structure, has highlighted the presence of a cluster composed of key hydrophobic residues, which are essential for ATP hydrolysis by V-ATPases.
Collapse
Affiliation(s)
- Megan J Maher
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
| | - Satoru Akimoto
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Momi Iwata
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
- Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Koji Nagata
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
| | - Yoshiko Hori
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Masasuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- ICORP, ATP Synthesis Regulation Project, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Koto-ku, Tokyo, Japan
| | - Shigeyuki Yokoyama
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
- Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, UK
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
- Human Receptor Crystallography Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
| | - Ken Yokoyama
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- ICORP, ATP Synthesis Regulation Project, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Koto-ku, Tokyo, Japan
| |
Collapse
|
14
|
Arai S, Yamato I, Shiokawa A, Saijo S, Kakinuma Y, Ishizuka-Katsura Y, Toyama M, Terada T, Shirouzu M, Yokoyama S, Iwata S, Murata T. Reconstitution in vitro of the catalytic portion (NtpA3-B3-D-G complex) of Enterococcus hirae V-type Na+-ATPase. Biochem Biophys Res Commun 2009; 390:698-702. [PMID: 19833097 DOI: 10.1016/j.bbrc.2009.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Enterococcus hirae vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain (V(1); NtpA(3)-B(3)-D-G) and an integral membrane domain (V(0); NtpI-K(10)) connected by a central and peripheral stalk(s) (NtpC and NtpE-F). Here we examined the nucleotide binding of NtpA monomer, NtpB monomer or NtpD-G heterodimer purified by using Escherichia coli expression system in vivo or in vitro, and the reconstitution of the V(1) portion with these polypeptides. The affinity of nucleotide binding to NtpA was 6.6 microM for ADP or 3.1 microM for ATP, while NtpB or NtpD-G did not show any binding. The NtpA and NtpB monomers assembled into NtpA(3)-B(3) heterohexamer in nucleotide binding-dependent manner. NtpD-G bound NtpA(3)-B(3) forming V(1) (NtpA(3)-B(3)-D-G) complex independent of nucleotides. The V(1) formation from individual NtpA and NtpB monomers with NtpD-G heterodimer was absolutely dependent on nucleotides. The ATPase activity of reconstituted V(1) complex was as high as that of native V(1)-ATPase purified from the V(0)V(1) complex by EDTA treatment of cell membrane. This in vitro reconstitution system of E. hirae V(1) complex will be valuable for characterizing the subunit-subunit interactions and assembly mechanism of the V(1)-ATPase complex.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Biological Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|