1
|
Reuven N, Barnea-Zohar M, Elson A. Osteoclast Methods in Protein Phosphatase Research. Methods Mol Biol 2024; 2743:57-79. [PMID: 38147208 DOI: 10.1007/978-1-0716-3569-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Osteoclasts are specialized cells that degrade bone and are essential for bone formation and maintaining bone homeostasis. Excess or deficient activity of these cells can significantly alter bone mass, structure, and physical strength, leading to significant morbidity, as in osteoporosis or osteopetrosis, among many other diseases. Protein phosphorylation in osteoclasts plays critical roles in the signaling pathways that govern the production of osteoclasts and regulate their bone-resorbing activity. In this chapter, we describe the isolation of mouse splenocytes and their differentiation into mature osteoclasts on resorptive (e.g., bone) and non-resorptive (e.g., plastic or glass) surfaces, examining matrix resorption by osteoclasts, immunofluorescence staining of these cells, and knocking out genes by CRISPR in the mouse osteoclastogenic cell line RAW264.7.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Golwala ZM, Bhat NG, Xu-Bayford J, Stankova T, Adams S, Morris EC, Qasim W, Booth C, Worth A, Kusters MA, Elfeky R. Non-osteopenic Bone Pathology After Allo-hematopoietic Stem Cell Transplantation in Patients with Inborn Errors of Immunity. J Clin Immunol 2023; 43:1019-1031. [PMID: 36930409 PMCID: PMC10276082 DOI: 10.1007/s10875-023-01465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE There is a lack of data on post-HSCT non-osteopenic bone pathology specifically for children with inborn errors of immunity (IEI). We collected data on non-osteopenic bone pathology in children with IEI post-HSCT over two decades in a large tertiary pediatric immunology center. METHODS Descriptive study with data analysis of bone pathology in allo-HSCT for IEI was performed between 1/1/2000 to 31/12/2018 including patients alive at follow-up to July 2022. Records were analyzed for bone pathology and risk factors. Exclusion criteria included isolated reduced bone density, fractures, and skeletal anomalies due to underlying IEI and short stature without other bone pathology. Bone pathologies were divided into 5 categories: bone tumors; skeletal dysplasia; avascular necrosis; evolving bone deformities; slipped upper femoral epiphysis. RESULTS A total of 429 children received HSCT between 2000 and 2018; 340 are alive at last assessment. Non-osteopenic bone pathology was observed post-HSCT in 9.4% of patients (32/340, mean 7.8 years post-HSCT). Eleven patients (34%) had > 1 category of bone pathology. Seventeen patients (17/32; 53%) presented with bilateral bone pathology. The majority of patients received treosulfan-based conditioning (26/32; 81.2%). Totally, 65.6% (21/32) of patients had a history of prolonged steroid use (> 6 months). Pain was the presenting symptom in 66% of patients, and surgical intervention was required in 43.7%. The highest incidence of bone pathologies was seen in Wiskott-Aldrich syndrome (WAS) (n = 8/34; 23.5%) followed by hemophagocytic lymphohistiocytosis patients (n = 3/16; 18.8%). CONCLUSION Non-osteopenic bone pathology in long-term survivors of allo-HSCT for IEI is not rare. Most patients did not present with complaints until at least 5 years post-HSCT highlighting the need for ongoing bone health assessment for patients with IEI. Children presenting with stunted growth and bone pathology post-HSCT should undergo skeletal survey to rule out development of post-HSCT skeletal dysplasia. Increased rates and complexity of bone pathology were seen amongst patients with Wiskott-Aldrich syndrome.
Collapse
Affiliation(s)
- Zainab M Golwala
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nikita Gireesh Bhat
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Jinhua Xu-Bayford
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Tanja Stankova
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma C Morris
- Department of Immunology, Institute of Immunity and Transplantation, University College London, London, UK
| | - Waseem Qasim
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Austen Worth
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maaike A Kusters
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Reem Elfeky
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
3
|
Honda R, Tempaku Y, Sulidan K, Palmer HEF, Mashima K. Phosphorylation/dephosphorylation of PTP-PEST at Serine 39 is crucial for cell migration. J Biochem 2023; 173:73-84. [PMID: 36250939 DOI: 10.1093/jb/mvac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
We investigated the molecular details of the role of protein tyrosine phosphatase (PTP)-PEST in cell migration. PTP-PEST knockout mouse embryonic fibroblasts (KO MEFs) and MEF cells expressing a dominant-negative mutant of PTP-PEST showed significant suppression of cell migration compared to MEF cells expressing wild-type PTP-PEST (WT MEFs). Moreover, MEF cells harbouring a constitutively active mutant of PTP-PEST (S39A MEFs) showed a marked decrease in cell migration. In addition, MEF cells with no PTP-PEST or little PTP activity rapidly adhered to fibronectin and made many focal adhesions compared to WT MEF cells. In contrast, S39A MEF cells showed weak adhesion to fibronectin and formed a few focal adhesions. Furthermore, investigating the subcellular localization showed that Ser39-phosphorylated PTP-PEST was favourably situated in the adherent area of the pseudopodia. Therefore, we propose that suppression of PTP-PEST enzyme activity due to Ser39-phosphorylation in pseudopodia and at the leading edge of migrating cells induces rapid and good adherence to the extracellular matrix. Thus, suppression of PTP activity by Ser39-phosphorylation is critical for cell migration. Three amino acid substitutions in human PTP-PEST have been previously reported to alter PTP activity. These amino acid substitutions in mouse PTP-PEST altered the migration of MEF cells in a positive correlation.
Collapse
Affiliation(s)
- Reika Honda
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Yasuko Tempaku
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Kaidiliayi Sulidan
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Helen E F Palmer
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Keisuke Mashima
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan.,Life Science Research Center, Rikkyo (St. Paul's) University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| |
Collapse
|
4
|
Lucchese A, Cenciarelli S, Manuelli M, Marcolina M, Barzaghi F, Calbi V, Migliavacca M, Bernardo ME, Tucci F, Gallo V, Fraschetta F, Darin S, Casiraghi M, Aiuti A, Ferrua F, Cicalese MP. Wiskott-Aldrich syndrome: Oral findings and microbiota in children and review of the literature. Clin Exp Dent Res 2022; 8:28-36. [PMID: 35199474 PMCID: PMC8874040 DOI: 10.1002/cre2.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Wiskott–Aldrich syndrome (WAS) is a rare X‐linked primary immunodeficiency, characterized by micro‐thrombocytopenia, recurrent infections, and eczema. This study aims to describe common oral manifestations and evaluate oral microbioma of WAS patients. Material and methods In this cohort study, 11 male WAS patients and 16 male healthy controls were evaluated in our Center between 2010 and 2018. Data about clinical history, oral examination, Gingival Index (GI) and Plaque Index (PI) were collected from both groups. Periodontal microbiological flora was evaluated on samples of the gingival sulcus. Results WAS subjects presented with premature loss of deciduous and permanent teeth, inclusions, eruption disturbance, and significantly worse GI and PI. They also showed a trend toward a higher total bacterial load. Fusobacterium nucleatum, reported to contribute to periodontitis onset, was the most prevalent bacteria, together with Porphyromonas gingivalis and Tannerella forsythia. Conclusions Our data suggest that WAS patients are at greater risk of alterations in the oral cavity. The statistically higher incidence of periodontitis and the trend to higher prevalence of potentially pathological bacterial species in our small cohort, that should be confirmed in future in a larger population, underline the importance of dentistry monitoring as part of the multidisciplinary management of WAS patients.
Collapse
Affiliation(s)
- Alessandra Lucchese
- Unit of Orthodontics, School of Dentistry, Vita-Salute San Raffaele University, Milan, Italy.,Unit of Orthodontics, Division of Dentistry, IRCSS Ospedale San Raffaele Scientific Institute, Milan, Italy.,Unit of Dentistry, Research Center for Oral Pathology and Implantology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Sabina Cenciarelli
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Manuelli
- Unit of Orthodontics, School of Dentistry, Vita-Salute San Raffaele University, Milan, Italy.,Unit of Orthodontics, Division of Dentistry, IRCSS Ospedale San Raffaele Scientific Institute, Milan, Italy.,Private Practice, Milan, Bologna, Pavia, Italy
| | - Marta Marcolina
- Unit of Orthodontics, School of Dentistry, Vita-Salute San Raffaele University, Milan, Italy.,Unit of Orthodontics, Division of Dentistry, IRCSS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Vera Gallo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
6
|
Chellaiah MA. L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts. Cells 2021; 10:2432. [PMID: 34572081 PMCID: PMC8464874 DOI: 10.3390/cells10092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvβ3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Shalev M, Arman E, Stein M, Cohen-Sharir Y, Brumfeld V, Kapishnikov S, Royal I, Tuckermann J, Elson A. PTPRJ promotes osteoclast maturation and activity by inhibiting Cbl-mediated ubiquitination of NFATc1 in late osteoclastogenesis. FEBS J 2021; 288:4702-4723. [PMID: 33605542 DOI: 10.1111/febs.15778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Yael Cohen-Sharir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Royal
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.,Institut du Cancer de Montréal, QC, Canada.,Department of Medicine, University of Montreal, QC, Canada
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Germany
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Chellaiah MA, Moorer MC, Majumdar S, Aljohani H, Morley SC, Yingling V, Stains JP. L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Res 2020; 8:3. [PMID: 31993243 PMCID: PMC6976634 DOI: 10.1038/s41413-019-0079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential target for therapeutic interventions to treat trabecular bone loss.
Collapse
Affiliation(s)
- Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Megan C. Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Sharon C. Morley
- Department of Pediatrics, Division of Infectious Diseases, and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Vanessa Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
9
|
Chellaiah MA, Majumdar S, Aljohani H. Peptidomimetic inhibitors of L-plastin reduce the resorptive activity of osteoclast but not the bone forming activity of osteoblasts in vitro. PLoS One 2018; 13:e0204209. [PMID: 30248139 PMCID: PMC6152981 DOI: 10.1371/journal.pone.0204209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
Sealing ring formation is a requirement for osteoclast function. We have recently identified the role of an actin-bundling protein L-plastin in the assembly of nascent sealing zones (NSZs) at the early phase of sealing ring formation in osteoclasts. TNF-α signaling regulates this actin assembly by the phosphorylation of L-plastin on serine -5 and -7 residues at the amino-terminal end. These NSZs function as a core for integrin localization and coordinating integrin signaling required for maturation into fully functional sealing rings. Our goal is to elucidate the essential function of L-plastin phosphorylation in actin bundling, a process required for NSZs formation. The present study was undertaken to determine whether targeting serine phosphorylation of cellular L-plastin would be the appropriate approach to attenuate the formation of NSZs. Our approach is to use TAT-fused small molecular weight amino-terminal L-plastin peptides (10 amino acids) containing phospho- Ser-5 and Ser-7. We used peptides unsubstituted (P1) and substituted (P2- P4) at serine-to-alanine residues. Immunoblotting, actin staining, and dentine resorption analyses were done to determine cellular L-plastin phosphorylation, NSZ or sealing ring formation, and osteoclast function, respectively. Immunoblotting for bone formation markers, Alizarin red staining and alkaline phosphatase activity assay have been done to determine the effect of peptides on the mineralization process mediated by osteoblasts. Transduction of unsubstituted (P1) and substituted peptides at either Serine 5 or Serine 7 with Alanine (P3 and P4) demonstrated variable inhibitory effects on the phosphorylation of cellular L-plastin protein. Peptide P1 reduces the following processes substantially: 1) cellular L-plastin phosphorylation; 2) formation of nascent sealing zones and sealing rings; 3) bone resorption. Substitution of both Serine-5 and -7 with Alanine (P2) had no effects on the inhibitory activities described above. Furthermore, either the L-plastin (P1-P5) or (P6) control peptides had a little or no impact on the a) assembly/disassembly of podosomes and migration of osteoclasts; b) mineralization process mediated by osteoblasts in vitro. Small molecular weight peptidomimetics of L-plastin inhibits bone resorption by osteoclasts via attenuation of NSZ and sealing ring formation but not bone formation by osteoblasts in vitro. The L-plastin may be a valuable therapeutic target to treat and prevent diseases associated with bone loss without affecting bone formation.
Collapse
Affiliation(s)
- Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Chellaiah MA, Ma T, Majumdar S. L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts. Exp Cell Res 2018; 372:73-82. [PMID: 30244178 DOI: 10.1016/j.yexcr.2018.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The process of sealing ring formation requires major actin filament reorganization. We previously demonstrated that an actin-bundling protein L-plastin has a role in the cross-linking of actin filaments into tight bundles and forms actin aggregates (denoted as nascent sealing zones). These nascent sealing zones mature into fully functional sealing rings. We have shown here that TNF-alpha signaling regulates the phosphorylation of serine-5 and -7 in L-plastin which increases the actin bundling capacity of L-plastin and hence the formation of nascent sealing zones in mouse osteoclasts. Using the TAT-mediated transduction method, we confirmed the role of L-plastin in nascent sealing zones formation at the early phase of the sealing ring assembly. Transduction of TAT-fused full-length L-plastin peptide significantly increases the number of nascent sealing zones and therefore sealing rings. But, transduction of amino-terminal L-plastin peptides consisting of the serine-5 and -7 reduces the formation of both nascent sealing zones and sealing rings. Therefore, bone resorption in vitro was reduced considerably. The decrease was associated with the selective inhibition of cellular L-plastin phosphorylation by the transduced peptides. Neither the formation of podosomes nor the migration was affected in these osteoclasts. Phosphorylation of L- plastin on serine 5 and -7 residues increases the F-actin bundling capacity. The significance of our studies stands on laying the groundwork for a better understanding of L-plastin as a potential regulator at the early phase of sealing ring formation and could be a new therapeutic target to treat bone loss.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences Dental School, University of Maryland, Baltimore, Maryland.
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences Dental School, University of Maryland, Baltimore, Maryland
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences Dental School, University of Maryland, Baltimore, Maryland
| |
Collapse
|
11
|
Shalev M, Elson A. The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:114-123. [PMID: 30026076 DOI: 10.1016/j.bbamcr.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Maintaining the proper balance between osteoblast-mediated production of bone and its degradation by osteoclasts is essential for health. Osteoclasts are giant phagocytic cells that are formed by fusion of monocyte-macrophage precursor cells; mature osteoclasts adhere to bone tightly and secrete protons and proteases that degrade its matrix. Phosphorylation of tyrosine residues in proteins, which is regulated by the biochemically-antagonistic activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is central in regulating the production of osteoclasts and their bone-resorbing activity. Here we review the roles of individual PTPs of the classical and dual-specificity sub-families that are known to support these processes (SHP2, cyt-PTPe, PTPRO, PTP-PEST, CD45) or to inhibit them (SHP1, PTEN, MKP1). Characterizing the functions of PTPs in osteoclasts is essential for complete molecular level understanding of bone resorption and for designing novel therapeutic approaches for treating bone disease.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Tu Y, Zhang L, Tong L, Wang Y, Zhang S, Wang R, Li L, Wang Z. EFhd2/swiprosin-1 regulates LPS-induced macrophage recruitment via enhancing actin polymerization and cell migration. Int Immunopharmacol 2017; 55:263-271. [PMID: 29288926 DOI: 10.1016/j.intimp.2017.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/25/2022]
Abstract
Macrophage motility is vital in innate immunity, which contributes strategically to the defensive inflammation process. During bacterial infection, lipopolysaccharide (LPS) potently activates the migration of macrophages via the NF-κB/iNOS/c-Src signaling pathway. However, the downstream region of c-Src that participates in macrophage migration is unclear. EFhd2, a novel actin bundling protein, was evaluated for its role in LPS-stimulated macrophage migration in this study. We found that LPS stimulated the up-regulation, tyrosine phosphorylation and membrane translocation of EFhd2 in macrophages. The absence of EFhd2 inhibited the recruitment of macrophages in the lungs of LPS-induced septic mice. LPS-induced macrophage migration was neutralized by the deletion of EFhd2. EFhd2-mediated up-regulation of NFPs (including Rac1/Cdc42, N-WASP/WAVE2 and Arp2/3 complex) induced by LPS could be used to explain the role of EFhd2 in promoting actin polymerization. Furthermore, the purified EFhd2 could directly promote actin polymerization in vitro. Dasatinib, a c-Src specific inhibitor, inhibited the up-regulation of EFhd2 stimulated by LPS. Therefore, our study demonstrated that EFhd2 might be involved in LPS-stimulated macrophage migration, which provides a potential target for LPS-activated c-Src during macrophage mobilization.
Collapse
Affiliation(s)
- Ye Tu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China; Department of Medical Department, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Lingchang Tong
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yue Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Su Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Rongmei Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhibin Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
13
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
14
|
Stimulation of osteoclast migration and bone resorption by C-C chemokine ligands 19 and 21. Exp Mol Med 2017; 49:e358. [PMID: 28729639 PMCID: PMC5565950 DOI: 10.1038/emm.2017.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 01/26/2023] Open
Abstract
Osteoclasts are responsible for the bone erosion associated with rheumatoid arthritis (RA). The upregulation of the chemokines CCL19 and CCL21 and their receptor CCR7 has been linked to RA pathogenesis. The purpose of this study was to evaluate the effects of CCL19 and CCL21 on osteoclasts and to reveal their underlying mechanisms. The expression of CCL19, CCL21 and CCR7 was higher in RA patients than in osteoarthritis patients. In differentiating osteoclasts, tumor necrosis factor-α, interleukin-1β and lipopolysaccharide stimulated CCR7 expression. CCL19 and CCL21 promoted osteoclast migration and resorption activity. These effects were dependent on the presence of CCR7 and abolished by the inhibition of the Rho signaling pathway. CCL19 and CCL21 promoted bone resorption by osteoclasts in an in vivo mice calvarial model. These findings demonstrate for the first time that CCL19, CCL21 and CCR7 play important roles in bone destruction by increasing osteoclast migration and resorption activity. This study also suggests that the interaction of CCL19 and CCL21 with CCR7 is an effective strategic focus in developing therapeutics for alleviating inflammatory bone destruction.
Collapse
|
15
|
Abstract
Osteoclasts, specialized cells that degrade bone, are key components of the cellular system that regulates and maintains bone homeostasis. Aberrant function of osteoclasts can lead to pathological loss or gain of bone mass, such as in osteopetrosis, osteoporosis, and several types of cancer that metastasize to bone. Phosphorylation of osteoclast proteins on tyrosine residues is critical for formation of osteoclasts and for their proper function and responses to physiological signals. Here we describe preparation and growth of osteoclasts from bone marrow of mice, use of viral vectors to downregulate expression of endogenous proteins and to express exogenous proteins in osteoclasts, and analysis of signaling processes triggered by M-CSF, estrogen, and physical contact with matrix in these cells.
Collapse
|
16
|
Tsai WC, Chen CL, Chen HC. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling. Oncotarget 2016. [PMID: 26204488 PMCID: PMC4695156 DOI: 10.18632/oncotarget.4313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Lin Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institutue of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
17
|
Li H, Yang F, Liu C, Xiao P, Xu Y, Liang Z, Liu C, Wang H, Wang W, Zheng W, Zhang W, Ma X, He D, Song X, Cui F, Xu Z, Yi F, Sun JP, Yu X. Crystal Structure and Substrate Specificity of PTPN12. Cell Rep 2016; 15:1345-58. [DOI: 10.1016/j.celrep.2016.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/27/2016] [Accepted: 03/29/2016] [Indexed: 01/21/2023] Open
|
18
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
19
|
Motohashi S, Koizumi K, Honda R, Maruyama A, Palmer HEF, Mashima K. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners. Cell Immunol 2014; 289:128-34. [PMID: 24791697 DOI: 10.1016/j.cellimm.2014.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/21/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022]
Abstract
Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways.
Collapse
Affiliation(s)
- Satoru Motohashi
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Karen Koizumi
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Reika Honda
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Atsuko Maruyama
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Helen E F Palmer
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Life Science Research Center, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Keisuke Mashima
- Department of Life Science, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Life Science Research Center, Rikkyo (St. Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
20
|
Finkelshtein E, Lotinun S, Levy-Apter E, Arman E, den Hertog J, Baron R, Elson A. Protein tyrosine phosphatases ε and α perform nonredundant roles in osteoclasts. Mol Biol Cell 2014; 25:1808-18. [PMID: 24694598 PMCID: PMC4038506 DOI: 10.1091/mbc.e14-03-0788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The closely related tyrosine phosphatases PTPa and PTPe fulfill distinct roles in osteoclasts. The various effects of each PTP on podosome organization in osteoclasts are caused by their distinct N-termini. The function of PTPe in these cells requires the presence of its 12 N-terminal residues, in particular serine 2. Female mice lacking protein tyrosine phosphatase ε (PTP ε) are mildly osteopetrotic. Osteoclasts from these mice resorb bone matrix poorly, and the structure, stability, and cellular organization of their podosomal adhesion structures are abnormal. Here we compare the role of PTP ε with that of the closely related PTP α in osteoclasts. We show that bone mass and bone production and resorption, as well as production, structure, function, and podosome organization of osteoclasts, are unchanged in mice lacking PTP α. The varying effects of either PTP on podosome organization in osteoclasts are caused by their distinct N-termini. Osteoclasts express the receptor-type PTP α (RPTPa), which is absent from podosomes, and the nonreceptor form of PTP ε (cyt-PTPe), which is present in these structures. The presence of the unique 12 N-terminal residues of cyt-PTPe is essential for podosome regulation; attaching this sequence to the catalytic domains of PTP α enables them to function in osteoclasts. Serine 2 within this sequence regulates cyt-PTPe activity and its effects on podosomes. We conclude that PTPs α and ε play distinct roles in osteoclasts and that the N-terminus of cyt-PTPe, in particular serine 2, is critical for its function in these cells.
Collapse
Affiliation(s)
- Eynat Finkelshtein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Einat Levy-Apter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeroen den Hertog
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, 3584 CX Utrecht, NetherlandsInstitute of Biology Leiden, Leiden University, 2333 BE Leiden, Netherlands
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 2014; 123:2703-14. [PMID: 24421327 DOI: 10.1182/blood-2013-07-516948] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.
Collapse
|
22
|
McGovern KW, DeFea KA. Molecular mechanisms underlying beta-arrestin-dependent chemotaxis and actin-cytoskeletal reorganization. Handb Exp Pharmacol 2014; 219:341-359. [PMID: 24292838 DOI: 10.1007/978-3-642-41199-1_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
β-Arrestins play a crucial role in cell migration downstream of multiple G-protein-coupled receptors (GPCRs) through multiple mechanisms. There is considerable evidence that β-arrestin-dependent scaffolding of actin assembly proteins facilitates the formation of a leading edge in response to a chemotactic signal. Conversely, there is substantial support for the hypothesis that β-arrestins facilitate receptor turnover through their ability to desensitize and internalize GPCRs. This chapter discusses both theories for β-arrestin-dependent chemotaxis in the context of recent studies, specifically addressing known actin assembly proteins regulated by β-arrestins, chemokine receptors, and signaling by chemotactic receptors.
Collapse
Affiliation(s)
- Kathryn W McGovern
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA, USA
| | | |
Collapse
|
23
|
Eleniste PP, Huang S, Wayakanon K, Largura HW, Bruzzaniti A. Osteoblast differentiation and migration are regulated by dynamin GTPase activity. Int J Biochem Cell Biol 2013; 46:9-18. [PMID: 24387844 DOI: 10.1016/j.biocel.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Su Huang
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Kornchanok Wayakanon
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Heather W Largura
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Angela Bruzzaniti
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
24
|
Oikawa T, Kuroda Y, Matsuo K. Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci 2013; 70:3341-53. [PMID: 23296124 PMCID: PMC3753467 DOI: 10.1007/s00018-012-1238-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022]
Abstract
Osteoclasts are bone-resorbing cells of monocytic origin. An imbalance between bone formation and resorption can lead to osteoporosis or osteopetrosis. Osteoclastogenesis is triggered by RANKL- and IP3-induced Ca2+ influx followed by activation of NFATc1, a master transcription factor for osteoclastogenic gene regulation. During differentiation, osteoclasts undergo cytoskeletal remodeling to migrate and attach to the bone surface. Simultaneously, they fuse with each other to form multinucleated cells. These processes require PI3-kinase-dependent cytoskeletal protein activation to initiate cytoskeletal remodeling, resulting in the formation of circumferential podosomes and fusion-competent protrusions. In multinucleated osteoclasts, circumferential podosomes mature into stabilized actin rings, which enables the formation of a ruffled border where intensive membrane trafficking is executed. Membrane lipids, especially phosphoinositides, are key signaling molecules that regulate osteoclast morphology and act as second messengers and docking sites for multiple important effectors. We examine the critical roles of phosphoinositides in the signaling cascades that regulate osteoclast functions.
Collapse
Affiliation(s)
- Tsukasa Oikawa
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | | |
Collapse
|
25
|
TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function. Cell Mol Life Sci 2012; 70:1269-84. [PMID: 23149425 DOI: 10.1007/s00018-012-1203-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The protein T cell ubiquitin ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members, only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation, suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of immune-receptor-tyrosine-based-activation-motif (ITAM)-mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function.
Collapse
|
26
|
Hendriks WJAJ, Elson A, Harroch S, Pulido R, Stoker A, den Hertog J. Protein tyrosine phosphatases in health and disease. FEBS J 2012; 280:708-30. [DOI: 10.1111/febs.12000] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ari Elson
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot; Israel
| | - Sheila Harroch
- Department of Neuroscience; Institut Pasteur; Paris; France
| | - Rafael Pulido
- Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Andrew Stoker
- Neural Development Unit; Institute of Child Health; University College London; UK
| | | |
Collapse
|
27
|
Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 2012; 64:1341-57. [PMID: 21945356 DOI: 10.1016/j.addr.2011.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders.
Collapse
|
28
|
Xiao H, Han B, Lodyga M, Bai XH, Wang Y, Liu M. The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure. Cell Mol Life Sci 2012; 69:1137-51. [PMID: 21984596 PMCID: PMC11114525 DOI: 10.1007/s00018-011-0812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/15/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Actin filament-associated protein (AFAP) plays a critical role in the regulation of actin filament integrity, formation and maintenance of the actin network, function of focal contacts, and cell migration. Here, we show that endogenous AFAP was present not only in the cytoskeletal but also in the cytosolic fraction. Depolymerization of actin filaments with cytochalasin D or latrunculin A increased AFAP in the cytosolic fraction. AFAP harbors an actin-binding domain (ABD) in its C-terminus. AFAPΔABD, an AFAP mutant with selective ABD deletion, was mainly in the cytosolic fraction when overexpressed in the cells, which was associated with a disorganized cytoskeleton with reduced stress fibers, accumulation of F-actin on cellular membrane, and formation of actin-rich small dots. Cortactin, a well-known podosome marker, was colocalized with AFAPΔABD in these small dots at the ventral surface of the cell, indicating that these small dots fulfill certain criteria of podosomes. However, these podosome-like small dots did not digest gelatin matrix. This may be due to the reduced interaction between AFAPΔABD and c-Src. When AFAPΔABD-transfected cells were stimulated with phorbol ester, they formed podosome-like structures with larger sizes, less numerous and longer life span, in comparison with wild-type AFAP-transfected cells. These results indicate that the association of AFAP with F-actin through ABD is crucial for AFAP to regulate cytoskeletal structures. The AFAPΔABD, as cytosolic proteins, may be more accessible to the cellular membrane, podosome-like structures, and thus be more interactive for the regulation of cellular functions.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Monika Lodyga
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Xiao-Hui Bai
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Yingchun Wang
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Mingyao Liu
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Room TMDT 2-814, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
29
|
Dovas A, Cox D. Regulation of WASp by phosphorylation: Activation or other functions? Commun Integr Biol 2011; 3:101-5. [PMID: 20585499 DOI: 10.4161/cib.3.2.10759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 11/28/2009] [Indexed: 11/19/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASp) is an actin nucleation-promoting factor that regulates actin polymerisation via the Arp2/3 complex. Its mutation in human syndromes has led to extensive studies on the regulation and activities of this molecule. Several mechanisms for the regulation of WASp activity have been proposed, however, the role of tyrosine phosphorylation remains controversial, particularly due to inconsistencies between results obtained through biochemical and cell biological approaches. In this mini-review, we are addressing the major aspects of WASp regulation with an emphasis on the role of tyrosine phosphorylation on WASp activities.
Collapse
|
30
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
31
|
Dovas A, Cox D. Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal 2011; 23:1225-34. [PMID: 21342664 DOI: 10.1016/j.cellsig.2011.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | | |
Collapse
|
32
|
Milatovic D, Jenkins JW, Hood JE, Yu Y, Rongzhu L, Aschner M. Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. Neurotoxicology 2011; 32:578-85. [PMID: 21241737 DOI: 10.1016/j.neuro.2011.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/21/2010] [Accepted: 01/07/2011] [Indexed: 11/19/2022]
Abstract
Among several available antimalarial drugs, mefloquine has proven to be effective against drug-resistant Plasmodium falciparum and remains the drug of choice for both therapy and chemoprophylaxis. However, mefloquine is known to cause adverse neurological and/or psychiatric symptoms, which offset its therapeutic advantage. The exact mechanisms leading to the adverse neurological effects of mefloquine are poorly defined. Alterations in neurotransmitter release and calcium homeostasis, the inhibition of cholinesterases and the interaction with adenosine A(2A) receptors have been hypothesized to play prominent roles in mediating the deleterious effects of this drug. Our recent data have established that mefloquine can also trigger oxidative damage and subsequent neurodegeneration in rat cortical primary neurons. Furthermore, we have utilized a system biology-centered approach and have constructed a pathway model of cellular responses to mefloquine, identifying non-receptor tyrosine kinase 2 (Pyk2) as a critical target in mediating mefloquine neurotoxicity. In this study, we sought to establish an experimental validation of Pyk2 using gene-silencing techniques (siRNA). We have examined whether the downregulation of Pyk2 in primary rat cortical neurons alters mefloquine neurotoxicity by evaluating cell viability, apoptosis and oxidative stress. Results from our study have confirmed that mefloquine neurotoxicity is associated with apoptotic response and oxidative injury, and we have demonstrated that mefloquine affects primary rat cortical neurons, at least in part, via Pyk2. The implication of these findings may prove beneficial in suppressing the neurological side effects of mefloquine and developing effective therapeutic modalities to offset its adverse effects.
Collapse
Affiliation(s)
- Dejan Milatovic
- Department of Pediatrics, Division of Clinical Pharmacology and Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ma T, Sadashivaiah K, Madayiputhiya N, Chellaiah MA. Regulation of sealing ring formation by L-plastin and cortactin in osteoclasts. J Biol Chem 2010; 285:29911-24. [PMID: 20650888 DOI: 10.1074/jbc.m109.099697] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be involved in the initial and maturation phases of sealing ring formation, respectively. siRNA to cortactin inhibits this maturation process but not the formation of actin aggregates. Osteoclasts treated as above but with TNF-α demonstrated very similar effects as observed with RANKL. Osteoclasts treated with a neutralizing antibody to TNF-α displayed podosome-like structures in the entire subsurface and at the periphery of osteoclast. It is possible that TNF-α and RANKL-mediated signaling may play a role in the early phase of sealing ring configuration (i.e. either in the disassembly of podosomes or formation of actin aggregates). Furthermore, osteoclasts treated with alendronate or αv reduced the formation of the sealing ring but not actin aggregates. The present study demonstrates a novel mechanistic link between L-plastin and cortactin in sealing ring formation. These results suggest that actin aggregates formed by L-plastin independent of integrin signaling function as a core in assembling signaling molecules (integrin αvβ3, Src, cortactin, etc.) involved in the maturation process.
Collapse
Affiliation(s)
- Tao Ma
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
34
|
Monypenny J, Chou HC, Bañón-Rodríguez I, Thrasher AJ, Antón IM, Jones GE, Calle Y. Role of WASP in cell polarity and podosome dynamics of myeloid cells. Eur J Cell Biol 2010; 90:198-204. [PMID: 20609498 PMCID: PMC3037472 DOI: 10.1016/j.ejcb.2010.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 11/29/2022] Open
Abstract
The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.
Collapse
Affiliation(s)
- James Monypenny
- Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Impaired NK-cell migration in WAS/XLT patients: role of Cdc42/WASp pathway in the control of chemokine-induced beta2 integrin high-affinity state. Blood 2010; 115:2818-26. [PMID: 20130240 DOI: 10.1182/blood-2009-07-235804] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We analyzed the involvement of Wiskott-Aldrich syndrome protein (WASp), a critical regulator of actin cytoskeleton remodeling, in the control of natural killer (NK)-cell migration. NK cells derived from patients with Wiskott-Aldrich syndrome/X-linked thrombocytopenia (WAS/XLT), carrying different mutations in the WASP coding gene, displayed reduced migration through intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), or endothelial cells in response to CXCL12/stromal cell-derived factor-1 and CX3CL1/fractalkine. Inhibition of WAS/XLT NK-cell migration was associated with reduced ability of these cells to up-regulate the expression of CD18 activation neoepitope and to adhere to ICAM-1 or VCAM-1 following chemokine stimulation. Moreover, chemokine receptor or beta1 or beta2 integrin engagement on NK cells rapidly resulted in Cdc42 activation and WASp tyrosine phosphorylation as well as in WASp association with Fyn and Pyk-2 tyrosine kinases. NK-cell pretreatment with wiskostatin, to prevent Cdc42/WASp association, impaired chemokine-induced NK-cell migration through ICAM-1 and beta2 integrin activation-dependent neoepitope expression. These results show that the Cdc42/WASp pathway plays a crucial role in the regulation of NK-cell migration by acting as a critical component of the chemokine-induced inside-out signaling that regulates lymphocyte function-associated antigen-1 function and suggest that after integrin or chemokine receptor engagement WASp function is regulated by the coordinate action of both Cdc42 and tyrosine kinases.
Collapse
|
36
|
Nakamura K, Palmer HEF, Ozawa T, Mashima K. Protein phosphatase 1alpha associates with protein tyrosine phosphatase-PEST inducing dephosphorylation of phospho-serine 39. J Biochem 2009; 147:493-500. [PMID: 19919952 DOI: 10.1093/jb/mvp191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatase (PTP)-PEST is expressed in a wide variety of several cell types and is an efficient regulator of cell adhesion, spreading and migration. PTP-PEST-associating molecules are important in elucidating the function of PTP-PEST. Herein, we have identified protein phosphatase 1alpha (PP1alpha) as a novel PTP-PEST binding protein, and then we aimed to determine how PP1alpha contributes to the phosphorylation at Ser39 of PTP-PEST, whose phosphorylation suppresses PTP-PEST enzymatic activity. The HEK 293 cells overexpressing exogenous PTP-PEST were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) and the phosphorylation of PTP-PEST at Ser39 was evaluated using an anti-phospho-Ser39 PTP-PEST specific antibody (anti-pS39-PEST Ab). It was demonstrated that the phosphorylation at Ser39 detected by anti-pS39-PEST Ab was dependent on TPA treatment and a significant inverse correlation between the PTP activity of PTP-PEST and anti-pS39-PEST Ab-immunoreactive band intensity. The phosphorylation of Ser39 was suppressed by co-transfection of a plasmid encoding wild-type PP1alpha, but not by that of the dominant-negative PP1alpha mutant. Furthermore, TPA-induced phosphorylation could take place in PTP-PEST catalytic domain, but the phosphorylation of PTP-PEST catalytic domain could not be abrogated by co-transfection of a plasmid expressing wild-type PP1alpha. In conclusion, PP1alpha associates with the non-catalytic domain of PTP-PEST and regulates PTP activity via dephosphorylation of phospho-Ser39.
Collapse
Affiliation(s)
- Kana Nakamura
- Department of Life Science, Rikkyo (St Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
37
|
Dovas A, Gevrey JC, Grossi A, Park H, Abou-Kheir W, Cox D. Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J Cell Sci 2009; 122:3873-82. [PMID: 19808890 DOI: 10.1242/jcs.051755] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Podosomes, adhesion structures capable of matrix degradation, have been linked with the ability of cells to perform chemotaxis and invade tissues. Wiskott-Aldrich Syndrome protein (WASp), an effector of the RhoGTPase Cdc42 and a Src family kinase substrate, regulates macrophage podosome formation. In this study, we demonstrate that WASp is active in podosomes by using TIRF-FRET microscopy. Pharmacological and RNA interference approaches suggested that continuous WASp activity is required for podosome formation and function. Rescue experiments using point mutations demonstrate an absolute requirement for Cdc42 binding to WASp in podosome formation. Although tyrosine phosphorylation was not absolutely required for podosome formation, phosphorylation did regulate the rate of podosome nucleation and actin filament stability. Importantly, WASp tyrosine phosphorylation does not alter WASp activation, instead phosphorylation appears to be important for the restriction of WASp activity to podosomes. In addition, the matrix-degrading ability of cells requires WASp phosphorylation. Chemotactic responses to CSF-1 were also attenuated in the absence of endogenous WASp, which could not be rescued with either tyrosine mutation. These results suggest a more complex role for tyrosine phosphorylation than simply in the regulation of WASp activity, and suggest a link between podosome dynamics and macrophage migration.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
38
|
Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc Natl Acad Sci U S A 2009; 106:15738-43. [PMID: 19805221 DOI: 10.1073/pnas.0904346106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is a key cytoskeletal regulator in hematopoietic cells. Covalent modification of a conserved tyrosine by phosphorylation has emerged as an important potential determinant of activity, although the physiological significance remains uncertain. In a murine knockin model, mutation resulting in inability to phosphorylate Y293 (Y293F) mimicked many features of complete WASp-deficiency. Although a phosphomimicking mutant Y293E conferred enhanced actin-polymerization, the cellular phenotype was similar due to functional dysregulation. Furthermore, steady-state levels of Y293E-WASp were markedly reduced compared to wild-type WASp and Y293F-WASp, although partially recoverable by treatment of cells with proteasome inhibitors. Consequently, tyrosine phosphorylation plays a critical role in normal activation of WASp in vivo, and is indispensible for multiple tasks including proliferation, phagocytosis, chemotaxis, and assembly of adhesion structures. Furthermore, it may target WASp for proteasome-mediated degradation, thereby providing a default mechanism for self-limiting stimulation of the Arp2/3 complex.
Collapse
|
39
|
Chellaiah MA, Schaller MD. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro. J Cell Physiol 2009; 220:382-93. [PMID: 19350555 DOI: 10.1002/jcp.21777] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, USA.
| | | |
Collapse
|
40
|
Abstract
Osteoclasts, the primary cell type mediating bone resorption, are multinucleated, giant cells derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclast activity is, in a large part, regulated by protein-tyrosine phosphorylation. While information about functional roles of several protein-tyrosine kinases (PTK), including c-Src, in osteoclastic resorption has been accumulated, little is known about the roles of protein-tyrosine phosphatases (PTPs) in regulation of osteoclast activity. Recent evidence implicates important regulatory roles for four PTPs (SHP-1, cyt-PTP-epsilon, PTP-PEST, and PTPoc) in osteoclasts. Cyt-PTP-epsilon, PTP-PEST, and PTP-oc are positive regulators of osteoclast activity, while SHP-1 is a negative regulator. Of these PTPs in osteoclasts, only PTP-oc is a positive regulator of c-Src PTK through dephosphorylation of the inhibitory phosphotyrosine-527 residue. Although some information about mechanisms of action of these PTPs to regulate osteoclast activity is reviewed in this article, much additional work is required to provide more comprehensive details about their functions in osteoclasts.
Collapse
Affiliation(s)
- M. H.-C. Sheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - K.-H. W. Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92350 USA
| |
Collapse
|
41
|
Rufanova VA, Alexanian A, Wakatsuki T, Lerner A, Sorokin A. Pyk2 mediates endothelin-1 signaling via p130Cas/BCAR3 cascade and regulates human glomerular mesangial cell adhesion and spreading. J Cell Physiol 2009; 219:45-56. [PMID: 19086031 DOI: 10.1002/jcp.21649] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calcium-regulated non-receptor proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of endothelin-1 (ET-1) signaling in human glomerular mesangial cells (GMC). We aimed to identify which small G-protein is acting downstream of Pyk2. Dominant interfering Pyk2 construct, termed calcium regulated non kinase (CRNK) or green fluorescent protein (control) were expressed in GMC using adenovirus-mediated gene transfer. ET-1 stimulation resulted in a significant increase of Pyk2 phosphorylation accompanied by GTP-loading of Rap1 and RhoA. CRNK expression inhibited ET-1-induced autophosphorylation of endogenous Pyk2 and diminished Rap1, but not RhoA, activation. The mechanism linking Pyk2 and Rap1 included (1) increased autophosphorylation of Pyk2 associated with p130Cas, (2) augmented p130Cas Y165 and Y249 phosphorylation, and (3) enhanced p130Cas-BCAR3 complex formation. CRNK expression prevented p130Cas phosphorylation and attenuated p130Cas association with BCAR3. Downregulation of endogenous BCAR3 protein expression using an siRNA technique led to a significant decrease in Rap1 activation in response to ET-1. We observed that endogenous Pyk2 was important for GMC adhesion and spreading. Our data suggest that ET-1 stimulated the GTPase Rap1 (but neither RhoA nor Ras) by a mechanism involving Pyk2 activation and recruitment of the p130Cas/BCAR3 complex in GMC.
Collapse
Affiliation(s)
- Victoriya A Rufanova
- Division of Nephrology, Department of Medicine, Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
42
|
Ory S, Brazier H, Pawlak G, Blangy A. Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 2008; 87:469-77. [PMID: 18436334 DOI: 10.1016/j.ejcb.2008.03.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 01/05/2023] Open
Abstract
Cells from the myeloid lineage, namely macrophages, dendritic cells and osteoclasts, develop podosomes instead of stress fibers and focal adhesions to adhere and migrate. Podosomes share many components with focal adhesions but differ in their molecular organization, with a dense core of polymerized actin surrounded by scaffolding proteins, kinases and integrins. Podosomes are found either isolated both in macrophages and dendritic cells or arranged into superstructures in osteoclasts. When osteoclasts resorb bone, they form an F-actin rich sealing zone, which is a dense array of connected podosomes that firmly anchors osteoclasts to bone. It delineates a compartment in which protons and proteases are secreted to dissolve and degrade the mineralized matrix. Since Rho GTPases have been shown to control F-actin stress fibers and focal adhesions in mesenchymal cells, the question of whether they could also control podosome formation and arrangement in cells from the myeloid lineage, and particularly in osteoclasts, rapidly emerged. This article considers recent advances made in our understanding of podosome arrangements in osteoclasts and how Rho GTPases may control it.
Collapse
Affiliation(s)
- Stéphane Ory
- Centre de Recherche de Biochimie Macromoléculaire, UM2, CNRS, Montpellier, France.
| | | | | | | |
Collapse
|
43
|
Granot-Attas S, Elson A. Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption. Eur J Cell Biol 2008; 87:479-90. [PMID: 18342392 DOI: 10.1016/j.ejcb.2008.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 01/06/2023] Open
Abstract
Osteoclasts are large cells derived from the monocyte-macrophage hematopoietic cell lineage. Their primary function is to degrade bone in various physiological contexts. Osteoclasts adhere to bone via podosomes, specialized adhesion structures whose structure and subcellular organization are affected by mechanical contact of the cell with bone matrix. Ample evidence indicates that reversible tyrosine phosphorylation of podosomal proteins plays a major role in determining the organization and dynamics of podosomes. Although roles of several tyrosine kinases are known in detail in this respect, little is known concerning the roles of protein tyrosine phosphatases (PTPs) in regulating osteoclast adhesion. Here we summarize available information concerning the known and hypothesized roles of the best-researched PTPs in osteoclasts - PTPRO, PTP epsilon, SHP-1, and PTP-PEST. Of these, PTPRO, PTP epsilon, and PTP-PEST appear to support osteoclast activity while SHP-1 inhibits it. Additional studies are required to provide full molecular details of the roles of these PTPs in regulating osteoclast adhesion, and to uncover additional PTPs that participate in this process.
Collapse
Affiliation(s)
- Shira Granot-Attas
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
44
|
Desai B, Ma T, Chellaiah MA. Invadopodia and matrix degradation, a new property of prostate cancer cells during migration and invasion. J Biol Chem 2008; 283:13856-66. [PMID: 18337256 DOI: 10.1074/jbc.m709401200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study demonstrated that invadopodia are associated with invasion by degradation of matrix in prostate cancer cells PC3. To find out the presence of invadopodia in PC3 cells, we performed a few comparative analyses with osteoclasts, which utilize podosomes for migration. Our investigations indeed demonstrated that invadopodia are comparable to podosomes in the localization of Wiskott-Aldrich syndrome protein (WASP)/matrix metalloproteinase-9 and the degradation of matrix. Invadopodia are different from podosomes in the localization of actin/vinculin, distribution during migration, and the mode of degradation of extracellular matrix. Invadopodia enable polarized invasion of PC3 cells into the gelatin matrix in a time-dependent manner. Gelatin degradation was confined within the periphery of the cell. Osteoclasts demonstrated directional migration with extensive degradation of matrix underneath and around the osteoclasts. A pathway of degradation of matrix representing a migratory track was observed due to the rearrangement of podosomes as rosettes or clusters at the leading edge. Reducing the matrix metalloproteinase-9 levels by RNA interference inhibited the degradation of matrix but not the formation of podosomes or invadopodia. Competition experiments with TAT-fused WASP peptides suggest that actin polymerization and formation of invadopodia involve the WASP-Arp2/3 complex pathway. Moreover, PC3 cells overexpressing osteopontin (OPN) displayed an increase in the number of invadopodia and gelatinolytic activity as compared with PC3 cells and PC3 cells expressing mutant OPN in integrin-binding domain and null for OPN. Thus, we conclude that OPN/integrin alphavbeta3 signaling participates in the process of migration and invasion of PC3 cells through regulating processes essential for the formation and function of invadopodia.
Collapse
Affiliation(s)
- Bhavik Desai
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
45
|
Dramatic inhibition of osteoclast sealing ring formation and bone resorption in vitro by a WASP-peptide containing pTyr294 amino acid. J Mol Signal 2008; 3:4. [PMID: 18289379 PMCID: PMC2266921 DOI: 10.1186/1750-2187-3-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/20/2008] [Indexed: 11/15/2022] Open
Abstract
Wiskott Aldrich Syndrome protein (WASP) has a unique regulatory role in sealing ring formation and bone resorption in osteoclasts. Here, using the TAT-transduction method, we show the possible role of WASP domain(s) in sealing ring formation and bone resorption. Transduction of TAT-fused full-length WASP peptide induced Arp2/3 complex formation, F-actin content, sealing ring formation and bone resorption. Transduction of WASP peptides containing basic, verpolin-central, pTyr294, and proline-rich regions inhibited the processes listed above at various levels. The ability to resorb bone by WASP peptides containing basic, verpolin-central, and proline-rich regions was reduced and the resorbed area matched the size of the sealing ring. However, osteoclasts transduced with WASP peptide containing pTyr294aa demonstrated the following: a) a considerable decrease in the interaction and phosphorylation of c-Src with endogenous WASP; b) total loss of sealing ring-like structures; c) formation of actin-rich patches at the peripheral edge that contains filopodia-like projections; d) reduced capacity for bone resorption in vitro. These findings suggest that modulation of phosphorylation state of pTyr294aa assists in integrating multiple signaling molecule and pathways that partake in the assembly of sealing ring.
Collapse
|
46
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
47
|
Tsuboi S, Meerloo J. Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J Biol Chem 2007; 282:34194-203. [PMID: 17890224 DOI: 10.1074/jbc.m705999200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phagocytosis is a vital first-line host defense mechanism against infection involving the ingestion and digestion of foreign materials such as bacteria by specialized cells, phagocytes. For phagocytes to ingest the foreign materials, they form an actin-based membrane structure called phagocytic cup at the plasma membranes. Formation of the phagocytic cup is impaired in phagocytes from patients with a genetic immunodeficiency disorder, Wiskott-Aldrich syndrome (WAS). The gene defective in WAS encodes Wiskott-Aldrich syndrome protein (WASP). Mutation or deletion of WASP causes impaired formation of the phagocytic cup, suggesting that WASP plays an important role in the phagocytic cup formation. However, the molecular details of its formation remain unknown. We have shown that the WASP C-terminal activity is critical for the phagocytic cup formation in macrophages. We demonstrated that WASP is phosphorylated on tyrosine 291 in macrophages, and the WASP phosphorylation is important for the phagocytic cup formation. In addition, we showed that WASP and WASP-interacting protein (WIP) form a complex at the phagocytic cup and that the WASP.WIP complex plays a critical role in the phagocytic cup formation. Our results indicate that the phosphorylation of WASP and the complex formation of WASP with WIP are the essential molecular steps for the efficient formation of the phagocytic cup in macrophages, suggesting a possible disease mechanism underlying phagocytic defects and recurrent infections in WAS patients.
Collapse
Affiliation(s)
- Shigeru Tsuboi
- Infectious and Inflammatory Disease Center and Cell Imaging Facility, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|