1
|
Scavuzzo MA, Szlachcic WJ, Hill MC, Ziojla NM, Teaw J, Carlson JC, Tiessen J, Chmielowiec J, Martin JF, Borowiak M. Pancreatic organogenesis mapped through space and time. Exp Mol Med 2025:10.1038/s12276-024-01384-y. [PMID: 39779976 DOI: 10.1038/s12276-024-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 01/11/2025] Open
Abstract
The spatial organization of cells within a tissue is dictated throughout dynamic developmental processes. We sought to understand whether cells geometrically coordinate with one another throughout development to achieve their organization. The pancreas is a complex cellular organ with a particular spatial organization. Signals from the mesenchyme, neurons, and endothelial cells instruct epithelial cell differentiation during pancreatic development. To understand the cellular diversity and spatial organization of the developing pancreatic niche, we mapped the spatial relationships between single cells over time. We found that four transcriptionally unique subtypes of mesenchyme in the developing pancreas spatially coordinate throughout development, with each subtype at fixed locations in space and time in relation to other cells, including beta cells, vasculature, and epithelial cells. Our work provides insight into the mechanisms of pancreatic development by showing that cells are organized in a space and time manner.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Natalia M Ziojla
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Jessica Teaw
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey C Carlson
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Tiessen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX, USA
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- The Texas Heart Institute, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX, USA.
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Ellergezen P, Coşkun BN, Bozkurt ZY, Çeçen GS, Ağca H, Pehlivan Y, Dalkılıç HE, Çavun S, Yanar YB. α9β1 integrin & its ligands as new potential biomarkers in FMF. Indian J Med Res 2024; 160:102-108. [PMID: 39382510 PMCID: PMC11463857 DOI: 10.25259/ijmr_985_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Familial Mediterranean Fever (FMF) manifests as a hereditary condition characterized by repeated bouts of fever, abdominal, chest, and joint discomfort, and swelling. Colchicine is the most common form of treatment, but it does not eliminate the disease. The underlying causes of the inflammatory mechanism are still not fully known. Methods A total of 20 healthy controls, 16 individuals with FMF in the attack period, and 14 in the remission period participated in the study. ITGA9, ITGB1, OPN, TNC, VEGF, VCAM-1, TGM2, TSP-1, Emilin-1, and vWF levels were measured by ELISA by obtaining serum from blood samples of individuals. In addition, gene expressions of α9β1 (ITGA9, ITGB1) and its best known ligands (TNC, SPP1) were analyzed by quantitative real-time PCR (qPCR). Results The findings of this study showed that serum levels of α9β1 and its ligands were higher in individuals with FMF in the attack period than in the healthy controls and the FMF group in the remission period (P<0.05). The marker levels of the healthy group were also higher than those in the remission period (p<0.05). In addition, when the gene expressions were compared between the healthy controls and FMF group, no significant difference was found for ITGA9, ITGB1, TNC, and SPP1 genes. Interpretation & conclusions The function of α9β1 and its ligands in FMF disease was investigated for the first time in this study as per our knowledge. Serum levels of these biomarkers may help identify potential new targets for FMF disease diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Pınar Ellergezen
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Belkıs Nihan Coşkun
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Zeynep Yılmaz Bozkurt
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Gülce Sevdar Çeçen
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Harun Ağca
- Department of Medical Microbiology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Yavuz Pehlivan
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Hüseyin Ediz Dalkılıç
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Sinan Çavun
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Yusuf Berkcan Yanar
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| |
Collapse
|
3
|
Longoni A, Major GS, Jiang S, Farrugia BL, Kieser DC, Woodfield TBF, Rnjak-Kovacina J, Lim KS. Pristine gelatin incorporation as a strategy to enhance the biofunctionality of poly(vinyl alcohol)-based hydrogels for tissue engineering applications. Biomater Sci 2023; 12:134-150. [PMID: 37933486 DOI: 10.1039/d3bm01172k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Synthetic polymers, such as poly(vinyl alcohol) (PVA), are popular biomaterials for the fabrication of hydrogels for tissue engineering and regenerative medicine (TERM) applications, as they provide excellent control over the physico-chemical properties of the hydrogel. However, their bioinert nature is known to limit cell-biomaterial interactions by hindering cell infiltration, blood vessel recruitment and potentially limiting their integration with the host tissue. Efforts in the field have therefore focused on increasing the biofunctionality of synthetic hydrogels, without limiting the advantages associated with their tailorability and controlled release capacity. The aim of this study was to investigate the suitability of pristine gelatin to enhance the biofunctionality of tyraminated PVA (PVA-Tyr) hydrogels, by promoting cell infiltration and host blood vessel recruitment for TERM applications. Pure PVA-Tyr hydrogels and PVA-Tyr hydrogels incorporated with vascular endothelial growth factor (VEGF), a well-known pro-angiogenic stimulus, were used for comparison. Incorporating increasing concentrations of VEGF (0.01-10 μg mL-1) or gelatin (0.01-5 wt%) did not influence the physical properties of PVA-Tyr hydrogels. However, their presence within the polymer network (>0.1 μg mL-1 VEGF and >0.1 wt% gelatin) promoted endothelial cell interactions with the hydrogels. The covalent binding of unmodified gelatin or VEGF to the PVA-Tyr network did not hamper their inherent bioactivity, as they both promoted angiogenesis in a chick chorioallantoic membrane (CAM) assay, performing comparably with the unbound VEGF control. When the PVA-Tyr hydrogels were implanted subcutaneously in mice, it was observed that cell infiltration into the hydrogels was possible in the absence of gelatin or VEGF at 1- or 3-weeks post-implantation, highlighting a clear difference between in vitro an in vivo cell-biomaterial interaction. Nevertheless, the presence of gelatin or VEGF was necessary to enhance blood vessel recruitment and infiltration, although no significant difference was observed between these two biological molecules. Overall, this study highlights the potential of gelatin as a standalone pro-angiogenic cue to enhance biofunctionality of synthetic hydrogels and provides promise for their use in a variety of TERM applications.
Collapse
Affiliation(s)
- Alessia Longoni
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Gretel S Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Shaoyuan Jiang
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Brooke L Farrugia
- School of Biomedical Engineering, University of Melbourne, Australia
| | - David C Kieser
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
| | | | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, New Zealand.
- Light-Activated Biomaterials Group, School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
4
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
5
|
Liu H, Chen L, Wang C, Zhou H. The expression and significance of vascular endothelial growth factor A in adenoid cystic carcinoma of palatal salivary gland. Eur Arch Otorhinolaryngol 2022; 279:5869-5875. [PMID: 35781742 DOI: 10.1007/s00405-022-07502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To explore the VEGF-A expression in salivary gland adenoid cystic carcinoma tissues and detect the relationship between the mechanism of occurrence, development and metastasis of jaws with salivary gland adenoid cystic carcinoma and VEGF-A expression. METHODS Paraffin samples from 58 cases of SACC of the palate and ten cases of normal salivary gland tissues were collected. The expression levels of VEGF-A protein were detected using the immunohistochemistry EnVision system. RESULTS Among the 58 cases, there were 20 cases of the cribriform type, 17 cases of the tubular type, and 21 cases of the solid type. There were 9 cases with lymph node metastasis and 21 cases without lymph node metastasis. And there were 8 cases of T1, 15 cases of T2, and 7 cases of T3/T4. The positive expression rate of VEGF-A in SACC of the palate was 74.1%, which was higher than that found in normal salivary gland tissues (10%). The VEGF-A was localized in the cytoplasm/cell membrane. CONCLUSION VEGF-A is highly expressed in SACC of the palate. The level of expression is closely related to the pathological grade, lymph node metastasis, and clinical stage of the tumor, and it can thus be used as an important indicator for judging the biological behavior of SACC of the palate.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Oral and Maxillofacial Surgery, First People's Hospital of Jiujiang City, Jiujiang, 332000, Jiangxi, China
| | - Linlin Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nanchang University, No. 49 Fuzhou Road, Nanchang, 320049, Jiangxi, China.
| | - Chenliang Wang
- Department of Pathology, First People's Hospital of Jiujiang City, Jiujiang, 332000, Jiangxi, China
| | - Haibo Zhou
- Department of Oral and Maxillofacial Surgery, First People's Hospital of Jiujiang City, Jiujiang, 332000, Jiangxi, China
| |
Collapse
|
6
|
Rivera-Caraballo KA, Nair M, Lee TJ, Kaur B, Yoo JY. The complex relationship between integrins and oncolytic herpes Simplex Virus 1 in high-grade glioma therapeutics. Mol Ther Oncolytics 2022; 26:63-75. [PMID: 35795093 PMCID: PMC9233184 DOI: 10.1016/j.omto.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas (HGGs) are lethal central nervous system tumors that spread quickly through the brain, making treatment challenging. Integrins are transmembrane receptors that mediate cell-extracellular matrix (ECM) interactions, cellular adhesion, migration, growth, and survival. Their upregulation and inverse correlation in HGG malignancy make targeting integrins a viable therapeutic option. Integrins also play a role in herpes simplex virus 1 (HSV-1) entry. Oncolytic HSV-1 (oHSV) is the most clinically advanced oncolytic virotherapy, showing a superior safety and efficacy profile over standard cancer treatment of solid cancers, including HGG. With the FDA-approval of oHSV for melanoma and the recent conditional approval of oHSV for malignant glioma in Japan, usage of oHSV for HGG has become of great interest. In this review, we provide a systematic overview of the role of integrins in relation to oHSV, with a special focus on its therapeutic potential against HGG. We discuss the pros and cons of targeting integrins during oHSV therapy: while integrins play a pro-therapeutic role by acting as a gateway for oHSV entry, they also mediate the innate antiviral immune responses that hinder oHSV therapeutic efficacy. We further discuss alternative strategies to regulate the dual functionality of integrins in the context of oHSV therapy.
Collapse
Affiliation(s)
- Kimberly Ann Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mitra Nair
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Wu M, Chen L, Qi Y, Ci H, Mou S, Yang J, Yuan Q, Yao W, Wang Z, Sun J. Human umbilical cord mesenchymal stem cell promotes angiogenesis via integrin β1/ERK1/2/HIF-1α/VEGF-A signaling pathway for off-the-shelf breast tissue engineering. Stem Cell Res Ther 2022; 13:99. [PMID: 35255978 PMCID: PMC8900416 DOI: 10.1186/s13287-022-02770-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Background Mesenchymal stem cells (MSC)-based tissue engineered breast represent the visible future for breast reconstruction after mastectomy. However, autologous MSCs might not be appropriate for the large graft construction due to cell senescence during excessive cell expansion, thus hindering its further off-the-shelf application. The human umbilical cord mesenchymal stem cells (hUCMSCs) have been found to induce low immune response and can be easily stored, making them ideal for off-the-shelf tissue engineering application. Here, we explored the feasibility of using umbilical cord mesenchymal stem cells as tissue-engineered breast seed cells.
Methods The allogenic hUCMSCs were injected into transplanted fat tissue with or without breast scaffolds as an alternative for breast tissue engineering in vivo, and its potential mechanism of angiogenesis in vitro was explored. Results Transplantation of hUCMSCs promoted proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) through paracrine mechanism by activating the integrin β1/ERK1/2/HIF-1α/VEGF-A signaling pathway. Histological examination of grafted fat revealed that the group which received hUCMSCs transplantation had more fat tissue [(93.60 ± 2.40) %] and fewer MAC2+CD206− M1 macrophages [(0.50 ± 0.47) cells/field] compared to the control group [fat tissue (45.42 ± 5.96) and macrophage cells/field (5.00 ± 2.23)]. Moreover, the hUCMSCs- labeled with a tracing dye differentiated into adipocytes and vascular endothelial cells in the adipose tissue. When applied to the tissue-engineered breast with a scaffold, the group treated with hUCMSCs had more adipose tissues and CD31+ cells than the control group. Conclusions These results demonstrate that allogeneic hUCMSCs promote the regeneration of adipose tissue and can be used to construct a tissue engineered breast. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02770-x.
Collapse
Affiliation(s)
- Mian Wu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Yuhan Qi
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Qiaoyu Yuan
- Wuhan Optics Valley Zhongyuan Concord Cell Gene Technology Co., Ltd, Wuhan, People's Republic of China
| | - Weiqi Yao
- National Industrial Base for Stem Cell Engineering Products, Tianjin, People's Republic of China.,Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China. .,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China. .,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
8
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mechanosensitive Regulation of Fibrosis. Cells 2021; 10:cells10050994. [PMID: 33922651 PMCID: PMC8145148 DOI: 10.3390/cells10050994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in the human body experience and integrate a wide variety of environmental cues. A growing interest in tissue mechanics in the past four decades has shown that the mechanical properties of tissue drive key biological processes and facilitate disease development. However, tissue stiffness is not only a potent behavioral cue, but also a product of cellular signaling activity. This review explores both roles of tissue stiffness in the context of inflammation and fibrosis, and the important molecular players driving such processes. During inflammation, proinflammatory cytokines upregulate tissue stiffness by increasing hydrostatic pressure, ECM deposition, and ECM remodeling. As the ECM stiffens, cells involved in the immune response employ intricate molecular sensors to probe and alter their mechanical environment, thereby facilitating immune cell recruitment and potentiating the fibrotic phenotype. This powerful feedforward loop raises numerous possibilities for drug development and warrants further investigation into the mechanisms specific to different fibrotic diseases.
Collapse
|
10
|
Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021; 12:638400. [PMID: 33790909 PMCID: PMC8005531 DOI: 10.3389/fimmu.2021.638400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.
Collapse
Affiliation(s)
- Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
11
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
12
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
13
|
A prognostic index based on an eleven gene signature to predict systemic recurrences in colorectal cancer. Exp Mol Med 2019; 51:1-12. [PMID: 31578316 PMCID: PMC6802642 DOI: 10.1038/s12276-019-0319-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/12/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately half of colorectal cancer (CRC) patients experience disease recurrence and metastasis, and these individuals frequently fail to respond to treatment due to their clinical and biological diversity. Here, we aimed to identify a prognostic signature consisting of a small gene group for precisely predicting CRC heterogeneity. We performed transcriptomic profiling using RNA-seq data generated from the primary tissue samples of 130 CRC patients. A prognostic index (PI) based on recurrence-associated genes was developed and validated in two larger independent CRC patient cohorts (n = 795). The association between the PI and prognosis of CRC patients was evaluated using Kaplan–Meier plots, log-rank tests, a Cox regression analysis and a RT-PCR analysis. Transcriptomic profiling in 130 CRC patients identified two distinct subtypes associated with systemic recurrence. Pathway enrichment and RT-PCR analyses revealed an eleven gene signature incorporated into the PI system, which was a significant prognostic indicator of CRC. Multivariate and subset analyses showed that PI was an independent risk factor (HR = 1.812, 95% CI = 1.342–2.448, P < 0.001) with predictive value to identify low-risk stage II patients who responded the worst to adjuvant chemotherapy. Finally, a comparative analysis with previously reported Consensus Molecular Subgroup (CMS), high-risk patients classified by the PI revealed a distinct molecular property similar to CMS4, associated with a poor prognosis. This novel PI predictor based on an eleven gene signature likely represents a surrogate diagnostic tool for identifying high-risk CRC patients and for predicting the worst responding patients for adjuvant chemotherapy. A prognostic tool that searches for eleven genes associated with colorectal cancer recurrence shows promise in initial trials. The complexity of colorectal cancer (CRC) makes it challenging to treat. A significant number of patients relapse or experience metastasis even after surgical intervention, and fail to respond to post-surgical chemotherapy. Yong Sung Kim at the Korea Research Institute of Bioscience and Biotechnology, Daejeon, and Jin Cheon Kim from the University of Ulsan, Seoul, South Korea, and co-workers, conducted RNA-sequencing analysis on samples from 130 patients with CRC, 58 of whom had suffered relapse. They pinpointed eleven genes strongly associated with recurrence-free survival. They used these to develop a prognostic tool to identify high-risk patients and those more likely to respond poorly to chemotherapy. The tool was validated on a further 795 patients with CRC.
Collapse
|
14
|
Zhou R, Wang S, Wen H, Wang M, Wu M. The bispecific antibody HB-32, blockade of both VEGF and DLL4 shows potent anti-angiogenic activity in vitro and anti-tumor activity in breast cancer xenograft models. Exp Cell Res 2019; 380:141-148. [DOI: 10.1016/j.yexcr.2019.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
15
|
Wang Z, Li Y, Xiao Y, Lin HP, Yang P, Humphries B, Gao T, Yang C. Integrin α9 depletion promotes β-catenin degradation to suppress triple-negative breast cancer tumor growth and metastasis. Int J Cancer 2019; 145:2767-2780. [PMID: 31008533 DOI: 10.1002/ijc.32359] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
Although integrin α9 (ITGA9) is known to be involved in cell adhesion and motility, its expression in cancer and its role in tumor growth and metastasis remain largely unknown. Our study was designed to investigate the role of ITGA9 in triple-negative breast cancer (TNBC). ITGA9 expression in TNBC cells was knocked out (KO) using CRISPR/Cas9 technology. Four orthotopic mouse mammary xenograft tumor models coupled with cell culture studies were performed to determine the effect of ITGA9 depletion on TNBC tumor growth and metastasis and the underlying mechanism. Bioinformatics analysis showed that ITGA9 level is significantly higher in TNBC than other breast cancer subtypes, and higher ITGA9 level is associated with significantly worse distant metastasis-free survival and recurrence-free survival in TNBC patients. Experimentally, ITGA9 KO significantly reduced TNBC cell cancer stem cell (CSC)-like property, tumor angiogenesis, tumor growth and metastasis by promoting β-catenin degradation. Further mechanistic studies revealed that ITGA9 KO causes integrin-linked kinase (ILK) relocation from the membrane region to the cytoplasm, where it interacts with protein kinase A (PKA) and inhibits PKA activity leading to increased activity of glycogen synthase kinase 3 (GSK3) and subsequent β-catenin degradation. Overexpressing β-catenin in ITGA9 KO cells reversed the inhibitory effect of ITGA9 KO on tumor growth and metastasis. Furthermore, ITGA9 downregulation in TNBC tumors by nanoparticle-mediated delivery of ITGA9 siRNA drastically decreased tumor angiogenesis, tumor growth and metastasis. These findings indicate that ITGA9 depletion suppresses TNBC tumor growth and metastasis by promoting β-catenin degradation through the ILK/PKA/GSK3 pathway.
Collapse
Affiliation(s)
- Zhishan Wang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yunfei Li
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Yajuan Xiao
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY.,Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| | - Ping Yang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY.,School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Brock Humphries
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, and Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
16
|
Parveen A, Subedi L, Kim HW, Khan Z, Zahra Z, Farooqi MQ, Kim SY. Phytochemicals Targeting VEGF and VEGF-Related Multifactors as Anticancer Therapy. J Clin Med 2019; 8:E350. [PMID: 30871059 PMCID: PMC6462934 DOI: 10.3390/jcm8030350] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
The role of vascular endothelial growth factor (VEGF) in cancer cells is not limited to angiogenesis; there are also multiple factors, such as neuropilins (non-tyrosine kinases receptors), tyrosine kinases receptors, immunodeficiencies, and integrins, that interact with VEGF signaling and cause cancer initiation. By combating these factors, tumor progression can be inhibited or limited. Natural products are sources of several bioactive phytochemicals that can interact with VEGF-promoting factors and inhibit them through various signaling pathways, thereby inhibiting cancer growth. This review provides a deeper understanding of the relation and interaction of VEGF with cancer-promoting factors and phytochemicals in order to develop multi-targeted cancer prevention and treatment.
Collapse
Affiliation(s)
- Amna Parveen
- Department of Pharmacognosy, Faculty of Pharmaceutical Science, Government College University, Faisalabad, Faisalabad 38000, Pakistan.
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Lalita Subedi
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Heung Wan Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Zahra Khan
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Zahra Zahra
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| | | | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, No. 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
17
|
Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 2018; 37:92. [PMID: 29703238 PMCID: PMC5924434 DOI: 10.1186/s13046-018-0763-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway.
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| |
Collapse
|
18
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the Nervous System in Tumor Angiogenesis. CANCER MICROENVIRONMENT 2018; 11:1-11. [PMID: 29502307 DOI: 10.1007/s12307-018-0207-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the development of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have been reported to play an important role in tumor angiogenesis.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia.
| |
Collapse
|
19
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
20
|
Liu Y, Li X, Jiang S, Ge Q. Inhibitory effect of Gypsophila oldhamiana gypsogenin on NCI-N87 gastric cancer cell line. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218818958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer is one of the major cancers threatening people’s lives worldwide. Recent studies showed that Gypsophila oldhamiana gypsogenin (GOG) exhibits inhibition effects and cytotoxic activities against different cell lines. The aim of this study was to explore the inhibitory effect and dose response of GOG on gastric cancer cell line NCI-N87 and to provide the theoretical basis for clinical anti-tumor therapy. The experiments showed that GOG could inhibit the proliferation and promote the apoptosis of human gastric cancer cell line NCI-N87. GOG could dose dependently reduce the expression of vascular endothelial growth factor (VEGF) and matrix metalloprotein (MMP)-9 proteins, while increase the expression of caspase-3 and Bax proteins. Compared with model group, tumor volume (TV), relative tumor volume (RTV), and relative tumor increment rate (T/C) in the mid-dose and high-dose GOG groups were significantly reduced, and the inhibition rate (IR) in the two groups was significantly increased. The results indicated that the anti-tumor effect of GOG on gastric cancer cells may be related with the downregulation of caspase-3 and Bax and the upregulation of MMP-9 and VEGF.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Pharmacy, Yantaishan Hospital, Yantai, China
| | - Xu Li
- Department of Pharmacy, Yantai Infectious Disease Hospital, Yantai, China
| | - Shanling Jiang
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Quanli Ge
- Department of Pharmacy, Yantaishan Hospital, Yantai, China
| |
Collapse
|
21
|
Abstract
During vascular development, endothelial cells (ECs) and neighboring stromal cells interact and communicate through autocrine and paracrine signaling mechanisms involving extracellular matrix (ECM) proteins and their cell surface integrin adhesion receptors. Integrin-mediated adhesion and signaling pathways are crucial for normal vascular development and physiology, and alterations in integrin expression and/or function drive several vascular-related pathologies including thrombosis, autoimmune disorders, and cancer. The purpose of this chapter is to discuss integrin adhesion and signaling pathways important for EC growth, survival, and migration. Integrin-mediated paracrine links between ECs and surrounding stromal cells in the organ microenvironment will also be discussed. Lastly, we will review roles for integrins in vascular pathologies and discuss possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Paola A Guerrero
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph H McCarty
- University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
22
|
The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J Cell Commun Signal 2017; 12:333-342. [PMID: 28975544 DOI: 10.1007/s12079-017-0413-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Collapse
|
23
|
Platelet releasate promotes breast cancer growth and angiogenesis via VEGF-integrin cooperative signalling. Br J Cancer 2017; 117:695-703. [PMID: 28697175 PMCID: PMC5572171 DOI: 10.1038/bjc.2017.214] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Selective platelet release of pro- or anti-angiogenic factors distinctly regulated angiogenesis. We hypothesised that selective release of platelet angiogenic factors could differently regulate tumour growth. Methods: Breast cancer cell proliferation, cancer cell-induced endothelial tube formation in vitro, and tumour growth in vivo were studied in the presence of protease-activated receptor 1-stimulated platelet releasate (PAR1-PR; rich in pro-angiogenic factors) or PAR4-PR (rich in anti-angiogenic factors). Results: The PAR1-PR and PAR4-PR supplementation (10%) similarly enhanced cell proliferation of MCF-7 and MDA-MB-231 breast cancer cells. The cancer cells triggered capillary-like tube formation of endothelial cells that was further enhanced by pro-angiogenic factor-rich PAR1-PR. The VEGF, but not SDF-1α, receptor blockade abolished PAR1-PR/PAR4-PR-enhanced cancer cell proliferation. Integrin blockade by RGDS had identical effects as VEGF inhibition. The Src and ERK inhibition diminished, whereas PI3K and PKC blockade abolished platelet releasate-enhanced cancer cell proliferation. Using a model of subcutaneous implantation of MDA-MB-231 cells in nude mice, PAR1-PR enhanced tumour growth more markedly than PAR4-PR, and seemed to achieve the exaggeration by promoting more profound tumour angiogenesis. Conclusions: Platelet releasate increases breast cancer cell proliferation through VEGF–integrin cooperative signalling. Pro-angiogenic factor-rich platelet releasate enhances cancer cell-induced angiogenesis more markedly, and thus exaggerates tumour growth in vivo.
Collapse
|
24
|
Zhang J, Schwartz MP, Hou Z, Bai Y, Ardalani H, Swanson S, Steill J, Ruotti V, Elwell A, Nguyen BK, Bolin J, Stewart R, Thomson JA, Murphy WL. A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture. Stem Cell Reports 2017; 8:907-918. [PMID: 28343999 PMCID: PMC5390115 DOI: 10.1016/j.stemcr.2017.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
A defined protocol for efficiently deriving endothelial cells from human pluripotent stem cells was established and vascular morphogenesis was used as a model system to understand how synthetic hydrogels influence global biological function compared with common 2D and 3D culture platforms. RNA sequencing demonstrated that gene expression profiles were similar for endothelial cells and pericytes cocultured in polyethylene glycol (PEG) hydrogels or Matrigel, while monoculture comparisons identified distinct vascular signatures for each cell type. Endothelial cells cultured on tissue-culture polystyrene adopted a proliferative phenotype compared with cells cultured on or encapsulated in PEG hydrogels. The proliferative phenotype correlated to increased FAK-ERK activity, and knockdown or inhibition of ERK signaling reduced proliferation and expression for cell-cycle genes while increasing expression for “3D-like” vasculature development genes. Our results provide insight into the influence of 2D and 3D culture formats on global biological processes that regulate cell function. Defined, high-efficiency differentiation of human PSCs to endothelial cell Comprehensive genome-wide comparisons of 2D and 3D cell-culture formats Gene expression profiles for endothelial cells and pericytes in 3D cell culture Highly proliferative phenotypes on tissue-culture polystyrene surfaces
Collapse
Affiliation(s)
- Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Room 5405, Madison, WI 53706, USA.
| | - Zhonggang Hou
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Yongsheng Bai
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Hamisha Ardalani
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Room 5405, Madison, WI 53706, USA
| | - Scott Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Victor Ruotti
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Angela Elwell
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bao Kim Nguyen
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Room 5405, Madison, WI 53706, USA; Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
25
|
Hegde S, Srivastava O. Different gene knockout/transgenic mouse models manifesting persistent fetal vasculature: Are integrins to blame for this pathological condition? Life Sci 2016; 171:30-38. [PMID: 28039002 DOI: 10.1016/j.lfs.2016.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022]
Abstract
Persistent fetal vasculature (PFV) occurs as a result of a failure of fetal vasculature to undergo normal programmed involution. During development, before the formation of retinal vessels, the lens and the inner retina are nourished by the hyaloid vasculature. Hyaloid vessels extend from the optic nerve and run through the vitreous to encapsulate the lens. As fetal retinal vessels develop, hyaloid vasculature naturally regresses. Failure of regression of the hyaloid artery has been shown to lead to severe congenital pathologies. Studies on childhood blindness and visual impairment in the United States have shown that PFV accounts for 4.8% of total blindness. Although PFV is a serious developmental disease affecting the normal visual development pathway, the exact regulatory mechanism responsible for the regression of the hyaloid artery is still unknown. In this review, we have summarized the cellular defects associated with different knockout models that manifest features of persistent fetal vasculature. Based on similar cellular defects observed in different knockouts (KO)s such as altered migration, increased proliferation and decreased apoptosis and, the known role of integrins in the regulation of these cellular behaviors, we propose here that integrins may play a significant role in the pathophysiology of persistent fetal vasculature disease.
Collapse
Affiliation(s)
- Shylaja Hegde
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Om Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
26
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
27
|
Cehofski LJ, Kruse A, Bøgsted M, Magnusdottir SO, Stensballe A, Honoré B, Vorum H. Retinal proteome changes following experimental branch retinal vein occlusion and intervention with ranibizumab. Exp Eye Res 2016; 152:49-56. [PMID: 27619476 DOI: 10.1016/j.exer.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023]
Abstract
Animal models of experimental branch retinal vein occlusion (BRVO) provide a unique opportunity to study protein changes directly in retinal tissue. Results from these experimental models suggest that experimental BRVO is associated with an upregulation of extracellular matrix remodeling and adhesion signaling processes. To study whether these processes could be blocked by inhibition of VEGF-A, a porcine model of experimental BRVO was combined with proteomic analyses. In six Danish Landrace pigs experimental BRVO was induced with argon laser in both eyes. After 24 h an injection of 0.05 mL ranibizumab was given in the right eyes of the animals while left eyes received an injection of 0.05 mL 9 mg/mL sodium chloride water. Retinas were dissected three days after BRVO and the retinal samples were analyzed with label-free quantification as well as tandem mass tag based proteomics. In retinas treated with ranibizumab five proteins exhibited statistically significant changes in content with both proteomic techniques. These five proteins, which were all decreased in content, included integrin β-1, peroxisomal 3-ketoacyl-CoA thiolase, OCIA domain-containing protein 1, calnexin and 40S ribosomal protein S5. As anti-integrin therapies are under development for inhibition of angiogenesis in retinal diseases it is interesting that inhibition of VEGF-A in itself resulted in a small decrease in the content of integrin β-1. The decreased content of integrin β-1 indicates that extracellular matrix remodeling and adhesion processes associated with BRVO are at least partly reversed through inhibition of VEGF-A.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
28
|
Abdelfattah NS, Amgad M, Zayed AA, Hussein H, Abd El-Baky N. Molecular underpinnings of corneal angiogenesis: advances over the past decade. Int J Ophthalmol 2016; 9:768-79. [PMID: 27275438 PMCID: PMC4886880 DOI: 10.18240/ijo.2016.05.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/19/2016] [Indexed: 01/29/2023] Open
Abstract
The cornea is maintained in an avascular state by maintaining an environment whereby anti-angiogenic factors take the upper hand over factors promoting angiogenesis. Many of the common pathologies affecting the cornea involve the disruption of such equilibrium and the shift towards new vessel formation, leading to corneal opacity and eventually-vision loss. Therefore it is of paramount importance that the molecular underpinnings of corneal neovascularization (CNV) be clearly understood, in order to develop better targeted treatments. This article is a review of the literature on the recent discoveries regarding pro-angiogenic factors of the cornea (such as vascular endothelial growth factors, fibroblast growth factor and matrix metalloproteinases) and anti-angiogenic factors of the cornea (such as endostatins and neostatins). Further, we review the molecular underpinnings of lymphangiogenesis, a process now known to be almost separate from (yet related to) hemangiogenesis.
Collapse
Affiliation(s)
| | - Mohamed Amgad
- Faculty of Medicine, Cairo University, Cairo 11111, Egypt
| | - Amira A. Zayed
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55904, USA
| | - Heba Hussein
- Faculty of Oral and Dental Medicine, Cairo University, Cairo 11111, Egypt
| | - Nawal Abd El-Baky
- Antibody Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria 22033, Egypt
| |
Collapse
|
29
|
Sack KD, Teran M, Nugent MA. Extracellular Matrix Stiffness Controls VEGF Signaling and Processing in Endothelial Cells. J Cell Physiol 2016; 231:2026-39. [PMID: 26773314 DOI: 10.1002/jcp.25312] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor A (VEGF) drives endothelial cell maintenance and angiogenesis. Endothelial cell behavior is altered by the stiffness of the substrate the cells are attached to suggesting that VEGF activity might be influenced by the mechanical cellular environment. We hypothesized that extracellular matrix (ECM) stiffness modifies VEGF-cell-matrix tethering leading to altered VEGF processing and signaling. We analyzed VEGF binding, internalization, and signaling as a function of substrate stiffness in endothelial cells cultured on fibronectin (Fn) linked polyacrylamide gels. Cell produced extracellular matrices on the softest substrates were least capable of binding VEGF, but the cells exhibited enhanced VEGF internalization and signaling compared to cells on all other substrates. Inhibiting VEGF-matrix binding with sucrose octasulfate decreased cell-internalization of VEGF and, inversely, heparin pre-treatment to enhance Fn-matrix binding of VEGF increased cell-internalization of VEGF regardless of matrix stiffness. β1 integrins, which connect cells to Fn, modulated VEGF uptake in a stiffness dependent fashion. Cells on hard surfaces showed decreased levels of activated β1 and inhibition of β1 integrin resulted in a greater proportional decrease in VEGF internalization than in cells on softer matrices. Extracellular matrix binding is necessary for VEGF internalization. Stiffness modifies the coordinated actions of VEGF-matrix binding and β1 integrin binding/activation, which together are critical for VEGF internalization. This study provides insight into how the microenvironment may influence tissue regeneration and response to injury and disease. J. Cell. Physiol. 231: 2026-2039, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kelsey D Sack
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Madelane Teran
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew A Nugent
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
30
|
Egervari K, Potter G, Guzman-Hernandez ML, Salmon P, Soto-Ribeiro M, Kastberger B, Balla T, Wehrle-Haller B, Kiss JZ. Astrocytes spatially restrict VEGF signaling by polarized secretion and incorporation of VEGF into the actively assembling extracellular matrix. Glia 2015; 64:440-56. [PMID: 26539695 DOI: 10.1002/glia.22939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/13/2023]
Abstract
The spatial organization of vascular endothelial growth factor (VEGF) signaling is a key determinant of vascular patterning during development and tissue repair. How VEGF signaling becomes spatially restricted and the role of VEGF secreting astrocytes in this process remains poorly understood. Using a VEGF-GFP fusion protein and confocal time-lapse microscopy, we observed the intracellular routing, secretion and immobilization of VEGF in scratch-activated living astrocytes. We found VEGF to be directly transported to cell-extracellular matrix attachments where it is incorporated into fibronectin fibrils. VEGF accumulated at β1 integrin containing fibrillar adhesions and was translocated along the cell surface prior to internalization and degradation. We also found that only the astrocyte-derived, matrix-bound, and not soluble VEGF decreases β1 integrin turnover in fibrillar adhesions. We suggest that polarized VEGF release and ECM remodeling by VEGF secreting cells is key to control the local concentration and signaling of VEGF. Our findings highlight the importance of astrocytes in directing VEGF functions and identify these mechanisms as promising target for angiogenic approaches.
Collapse
Affiliation(s)
| | - Gael Potter
- Department of Neurosciences, University of Geneva, Switzerland
| | - Maria Luisa Guzman-Hernandez
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Patrick Salmon
- Department of Neurosciences, University of Geneva, Switzerland
| | | | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
31
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
32
|
Franzini A, Baty F, Macovei II, Dürr O, Droege C, Betticher D, Grigoriu BD, Klingbiel D, Zappa F, Brutsche MH. Gene Expression Signatures Predictive of Bevacizumab/Erlotinib Therapeutic Benefit in Advanced Nonsquamous Non-Small Cell Lung Cancer Patients (SAKK 19/05 trial). Clin Cancer Res 2015; 21:5253-63. [PMID: 25922429 DOI: 10.1158/1078-0432.ccr-14-3135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/13/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to identify gene expression signatures associated with angiogenesis and hypoxia pathways with predictive value for treatment response to bevacizumab/erlotinib (BE) of nonsquamous advanced non-small cell lung cancer (NSCLC) patients. EXPERIMENTAL DESIGN Whole-genome gene expression profiling was performed on 42 biopsy samples (from SAKK 19/05 trial) using Affymetrix exon arrays, and associations with the following endpoints: time-to-progression (TTP) under therapy, tumor-shrinkage (TS), and overall survival (OS) were investigated. Next, we performed gene set enrichment analyses using genes associated with the angiogenic process and hypoxia response to evaluate their predictive value for patients' outcome. RESULTS Our analysis revealed that both the angiogenic and hypoxia response signatures were enriched within the genes predictive of BE response, TS, and OS. Higher gene expression levels (GEL) of the 10-gene angiogenesis-associated signature and lower levels of the 10-gene hypoxia response signature predicted improved TTP under BE, 7.1 months versus 2.1 months for low versus high-risk patients (P = 0.005), and median TTP 6.9 months versus 2.9 months (P = 0.016), respectively. The hypoxia response signature associated with higher TS at 12 weeks and improved OS (17.8 months vs. 9.9 months for low vs. high-risk patients, P = 0.001). CONCLUSIONS We were able to identify gene expression signatures derived from the angiogenesis and hypoxia response pathways with predictive value for clinical outcome in advanced nonsquamous NSCLC patients. This could lead to the identification of clinically relevant biomarkers, which will allow for selecting the subset of patients who benefit from the treatment and predict drug response.
Collapse
Affiliation(s)
- Anca Franzini
- Department of Pulmonary Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Florent Baty
- Department of Pulmonary Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ina I Macovei
- Department of Pulmonary Diseases, University of Medicine and Pharmacy, Iasi, Romania
| | - Oliver Dürr
- Institute of Data Analysis and Process Design, Zürich University of Applied Sciences, Winterthur, Switzerland
| | | | | | - Bogdan D Grigoriu
- Department of Pulmonary Diseases, University of Medicine and Pharmacy, Iasi, Romania
| | - Dirk Klingbiel
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, Bern, Switzerland
| | - Francesco Zappa
- Department of Medical Oncology, Clinica Luganese, Lugano, Switzerland
| | - Martin H Brutsche
- Department of Pulmonary Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
33
|
Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:314178. [PMID: 25883953 PMCID: PMC4389985 DOI: 10.1155/2015/314178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 12/21/2022]
Abstract
Vasculature is present in all tissues and therefore is indispensable for development, biology, and pathology of multicellular organisms. Endothelial cells guarantee proper function of the vessels and are the original component in angiogenesis. Morphogenesis of the vascular system utilizes processes like cell adhesion, motility, proliferation, and survival that are closely related to the dynamics of actin filaments and actin-tethered adhesion complexes. Here we review involvement of actin cytoskeleton-associated junctional molecules of endothelial cells in angiogenesis and lymphangiogenesis. Particularly, we focus on F-actin binding protein afadin, an adaptor protein involved in broad range of signaling mechanisms. Afadin mediates the pathways of vascular endothelial growth factor- (VEGF-) and sphingosine 1-phosphate-triggered angiogenesis and is essential for embryonic development of lymph vessels in mice. We propose that targeting actin-tethered junctional molecules, including afadin, may present a new approach to angiogenic therapy that in combination with today used medications like VEGF inhibitors will benefit against development of pathological angiogenesis.
Collapse
|
34
|
Ventresca EM, Lecht S, Jakubowski P, Chiaverelli RA, Weaver M, Del Valle L, Ettinger K, Gincberg G, Priel A, Braiman A, Lazarovici P, Lelkes PI, Marcinkiewicz C. Association of p75(NTR) and α9β1 integrin modulates NGF-dependent cellular responses. Cell Signal 2015; 27:1225-36. [PMID: 25748048 DOI: 10.1016/j.cellsig.2015.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 01/10/2023]
Abstract
Direct interaction of α9β1 integrin with nerve growth factor (NGF) has been previously reported to induce pro-proliferative and pro-survival activities of non-neuronal cells. We investigated participation of p75(NTR) in α9β1 integrin-dependent cellular response to NGF stimulation. Using selective transfection of glioma cell lines with these receptors, we showed a strong, cation-independent association of α9 integrin subunit with p75(NTR) on the cellular membrane by selective immunoprecipitation experiments. The presence of the α9/p75(NTR) complex increases NGF-dependent cell adhesion, proliferation and migration. Other integrin subunits including β1 were not found in complex with p75(NTR). FRET analysis indicated that p75(NTR) and α9 integrin subunit are not closely associated through their cytoplasmic domains, most probably because of the molecular interference with other cytoplasmic proteins such as paxillin. Interaction of α9β1 integrin with another ligand, VCAM-1 was not modulated by the p75(NTR). α9/p75(NTR) complex elevated NGF-dependent activation of MAPK Erk1/2 arty for integrin that may create active complexes with other types of receptors belonging to the TNF superfamily.
Collapse
Affiliation(s)
- Erin M Ventresca
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Shimon Lecht
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Piotr Jakubowski
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | - Michael Weaver
- Department of Neurosurgery, Temple University Hospital, Philadelphia, PA, USA
| | - Luis Del Valle
- Department of Medicine and Pathology, Stanley Scott Cancer Center, Louisiana State University, New Orleans, LA, USA
| | - Keren Ettinger
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Priel
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Philip Lazarovici
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA; School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
35
|
Duval C, Zaniolo K, Leclerc S, Salesse C, Guérin SL. Characterization of the human α9 integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Exp Eye Res 2015; 135:146-63. [PMID: 25746835 DOI: 10.1016/j.exer.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
α9β1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9β1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Collapse
Affiliation(s)
- Céline Duval
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Karine Zaniolo
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Steeve Leclerc
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Christian Salesse
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
36
|
Dan P, Velot É, Decot V, Menu P. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 2015; 128:2415-22. [DOI: 10.1242/jcs.167783] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most promising and suitable stem cell types for vascular tissue engineering. Substantial effort has been made to differentiate MSCs towards vascular cell phenotypes, including endothelial cells and smooth muscle cells (SMCs). The microenvironment of vascular cells not only contains biochemical factors that influence differentiation, but also exerts hemodynamic forces, such as shear stress and cyclic strain. Recent evidence has shown that these forces can influence the differentiation of MSCs into endothelial cells or SMCs. In this Commentary, we present the main findings in the area with the aim of summarizing the mechanisms by which shear stress and cyclic strain induce MSC differentiation. We will also discuss the interactions between these mechanical cues and other components of the microenvironment, and highlight how these insights could be used to maintain differentiation.
Collapse
Affiliation(s)
- Pan Dan
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- Department of Thoracic and Cardiovascular surgery, Zhongnan hospital of Wuhan University, Wuhan, 430071, China
| | - Émilie Velot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| | - Véronique Decot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- CHU de Nancy, Unité de Thérapie Cellulaire et Tissus, allée du Morvan, Vandœuvre-lès-Nancy F-54500, France
| | - Patrick Menu
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| |
Collapse
|
37
|
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16:532-48. [PMID: 26031306 PMCID: PMC4997955 DOI: 10.2174/1389203716666150515125002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogenesis, migration, and invasion. A number of snake venom proteins have the ability to interact with integrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disintegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research. Furthermore, we also outline several new approaches being created to address problems commonly associated with the clinical application of peptide-based drugs such as instability, immunogenicity, and availability.
Collapse
Affiliation(s)
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, USA.
| | | |
Collapse
|
38
|
Cao B, Hutt OE, Zhang Z, Li S, Heazlewood SY, Williams B, Smith JA, Haylock DN, Savage GP, Nilsson SK. Design, synthesis and binding properties of a fluorescent α₉β₁/α₄β₁ integrin antagonist and its application as an in vivo probe for bone marrow haemopoietic stem cells. Org Biomol Chem 2014; 12:965-78. [PMID: 24363056 DOI: 10.1039/c3ob42332h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The α9β1 and α4β1 integrin subtypes are expressed on bone marrow haemopoietic stem cells and have important roles in stem cell regulation and trafficking. Although the roles of α4β1 integrin have been thoroughly investigated with respect to HSC function, the role of α9β1 integrin remains poorly characterised. Small molecule fluorescent probes are useful tools for monitoring biological processes in vivo, to determine cell-associated protein localisation and activation, and to elucidate the mechanism of small molecule mediated protein interactions. Herein, we report the design, synthesis and integrin-dependent cell binding properties of a new fluorescent α9β1 integrin antagonist (R-BC154), which was based on a series of N-phenylsulfonyl proline dipeptides and assembled using the Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction. Using transfected human glioblastoma LN18 cells, we show that R-BC154 exhibits high nanomolar binding affinities to α9β1 integrin with potent cross-reactivity against α4β1 integrin under physiological mimicking conditions. On-rate and off-rate measurements revealed distinct differences in the binding kinetics between α9β1 and α4β1 integrins, which showed faster binding to α4β1 integrin relative to α9β1, but more prolonged binding to the latter. Finally, we show that R-BC154 was capable of binding rare populations of bone marrow haemopoietic stem and progenitor cells when administered to mice. Thus, R-BC154 represents a useful multi-purpose fluorescent integrin probe that can be used for (1) screening small molecule inhibitors of α9β1 and α4β1 integrins; (2) investigating the biochemical properties of α9β1 and α4β1 integrin binding and (3) investigating integrin expression and activation on defined cell phenotypes in vivo.
Collapse
Affiliation(s)
- Benjamin Cao
- CSIRO Materials Science and Engineering, Bag 10, Clayton Sth MDC, VIC 3169, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev 2014; 6:203-213. [PMID: 28510180 PMCID: PMC5418412 DOI: 10.1007/s12551-013-0124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
40
|
Shah N, Morsi Y, Manasseh R. From mechanical stimulation to biological pathways in the regulation of stem cell fate. Cell Biochem Funct 2014; 32:309-25. [PMID: 24574137 DOI: 10.1002/cbf.3027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Mechanical stimuli are important in directing the fate of stem cells; the effects of mechanical stimuli reported in recent research are reviewed here. Stem cells normally undergo two fundamental processes: proliferation, in which their numbers multiply, and differentiation, in which they transform into the specialized cells needed by the adult organism. Mechanical stimuli are well known to affect both processes of proliferation and differentiation, although the complete pathways relating specific mechanical stimuli to stem cell fate remain to be elucidated. We identified two broad classes of research findings and organized them according to the type of mechanical stress (compressive, tensile or shear) of the stimulus. Firstly, mechanical stress of any type activates stretch-activated channels (SACs) on the cell membrane. Activation of SACs leads to cytoskeletal remodelling and to the expression of genes that regulate the basic growth, survival or apoptosis of the cells and thus regulates proliferation. Secondly, mechanical stress on cells that are physically attached to an extracellular matrix (ECM) initiates remodelling of cell membrane structures called integrins. This second process is highly dependent on the type of mechanical stress applied and result into various biological responses. A further process, the Wnt pathway, is also implicated: crosstalk between the integrin and Wnt pathways regulates the switch from proliferation to differentiation and finally regulates the type of differentiation. Therefore, the stem cell differentiation process involves different signalling molecules and their pathways and most likely depends upon the applied mechanical stimulation.
Collapse
Affiliation(s)
- Nirali Shah
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, VIC, Melbourne, Australia
| | | | | |
Collapse
|
41
|
Suppression of tumour growth by orally administered osteopontin is accompanied by alterations in tumour blood vessels. Br J Cancer 2014; 110:1269-77. [PMID: 24473400 PMCID: PMC3950862 DOI: 10.1038/bjc.2014.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022] Open
Abstract
Background: The integrin-binding protein osteopontin is strongly associated with tumour development, yet is an abundant dietary component as a constituent of human and bovine milk. Therefore, we tested the effect of orally administered osteopontin (o-OPN) on the development of subcutaneous tumours in mice. Methods: Bovine milk osteopontin was administered in drinking water to tumour-bearing immune-competent mice. Tumour growth, proliferation, necrosis, apoptosis and blood vessel size and number were measured. Expression of the α9 integrin was determined. Results: o-OPN suppressed tumour growth, increased the extent of necrosis, and induced formation of abnormally large blood vessels. Anti-OPN reactivity detected in the plasma of OPN-null mice fed OPN suggested that tumour-blocking peptides were absorbed during digestion, but the o-OPN effect was likely distinct from that of an RGD peptide. Expression of the α9 integrin was detected on both tumour cells and blood vessels. Potential active peptides from the α9 binding site of OPN were identified by mass spectrometry following in vitro digestion, and injection of these peptides suppressed tumour growth. Conclusions: These results suggest that peptides derived from o-OPN are absorbed and interfere with tumour growth and normal vessel development. o-OPN-derived peptides that target the α9 integrin are likely involved.
Collapse
|
42
|
Leikauf GD, Concel VJ, Bein K, Liu P, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Cario C, Di YPP, Vuga LJ, Kostem E, Eskin E, You M, Kaminski N, Prows DR, Knoell DL, Fabisiak JP. Functional genomic assessment of phosgene-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2013; 49:368-83. [PMID: 23590305 DOI: 10.1165/rcmb.2012-0337oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor β1 signaling, which previously has been associated with the susceptibility to ALI in mice.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Crosstalk between Fibroblast Growth Factor (FGF) Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation. Med Sci (Basel) 2013. [DOI: 10.3390/medsci1010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
44
|
Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2013; 2:a006502. [PMID: 22762016 DOI: 10.1101/cshperspect.a006502] [Citation(s) in RCA: 619] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology.
Collapse
Affiliation(s)
- Sina Koch
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | |
Collapse
|
45
|
Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int J Biochem Cell Biol 2013; 45:1974-86. [PMID: 23811033 DOI: 10.1016/j.biocel.2013.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023]
Abstract
Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology.
Collapse
|
46
|
Secolin R, Banzato CEM, Mella LFB, Santos ML, Dalgalarrondo P, Lopes-Cendes I. Refinement of chromosome 3p22.3 region and identification of a susceptibility gene for bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:163-8. [PMID: 23280964 DOI: 10.1002/ajmg.b.32127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/07/2012] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies and meta-analysis, as well as our own previous family-based association results, have pointed to chromosome (ch) 3p22.3 and 3p21.1 as candidate regions to contain a susceptibility gene for bipolar affective disorder (BPAD). In the present study, we further refined the region of interest on ch 3p22.3. We genotyped 94 SNPs within the candidate region in 74 families and performed family-based association analysis using a transmission disequilibrium test. One single SNP (rs166508) was associated with the BPAD phenotype (P = 0.0187). This SNP is located within intron 15 of the integrin alpha 9 (ITGA9) gene. ITGA9 encodes the α9 subunit of the α9β1 integrin, a membrane glycoprotein receptor for neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Quantification of ITGA9 transcripts in the peripheral blood of patients with BPAD and controls showed an upregulation of ITGA9 (Kruskal-Wallis P = 0.0339) in patients with the disease-associated genotype (rs166508*A/A), compared to those with rs166508*G/G and rs166508*G/A genotypes. Sequencing of the ITGA9 cDNA revealed a sequence variant (r.1689_1839del) in rs166508*A carriers, which leads to loss of the entire exon 16. In silico analysis revealed that the deleted region contains three putative microRNA binding sites, which may be involved in the negative regulation of ITGA9. In conclusion, our results confirm previous evidence pointing to a candidate region for BPAD on ch 3p.22.3. In addition, we suggest a molecular substrate that could explain the increase of ITGA9 mRNA levels in probands with BPAD, proposing a new mechanism that could be involved in the genetic susceptibility to the disease.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Medical Genetics, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Tissue mechanics and fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:884-90. [PMID: 23434892 DOI: 10.1016/j.bbadis.2013.02.007] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
Mechanical forces are essential to the development and progression of fibrosis, and are likely to be as important as soluble factors. These forces regulate the phenotype and proliferation of myofibroblasts and other cells in damaged tissues, the activation of growth factors, the structure and mechanics of the matrix, and, potentially, tissue patterning. Better understanding of the variety and magnitude of forces, the characteristics of those forces in biological tissues, and their impact on fibrosis in multiple tissues is needed and may lead to identification of important new therapeutic targets. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
48
|
Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TXT, Saraf S, Patra CR, Vlahakis NE, Sayle DC, Self WT, Seal S. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 2012; 33:7746-55. [PMID: 22858004 PMCID: PMC4590782 DOI: 10.1016/j.biomaterials.2012.07.019] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/06/2012] [Indexed: 01/14/2023]
Abstract
Angiogenesis is the formation of new blood vessels from existing blood vessels and is critical for many physiological and pathophysiological processes. In this study we have shown the unique property of cerium oxide nanoparticles (CNPs) to induce angiogenesis, observed using both in vitro and in vivo model systems. In particular, CNPs trigger angiogenesis by modulating the intracellular oxygen environment and stabilizing hypoxia inducing factor 1α endogenously. Furthermore, correlations between angiogenesis induction and CNPs physicochemical properties including: surface Ce(3+)/Ce(4+) ratio, surface charge, size, and shape were also explored. High surface area and increased Ce(3+)/Ce(4+) ratio make CNPs more catalytically active towards regulating intracellular oxygen, which in turn led to more robust induction of angiogenesis. Atomistic simulation was also used, in partnership with in vitro and in vivo experimentation, to reveal that the surface reactivity of CNPs and facile oxygen transport promotes pro-angiogenesis.
Collapse
Affiliation(s)
- Soumen Das
- Department of Mechanical, Materials and Aerospace Engineering, Advanced Materials Processing Analysis Center, University of Central Florida, Orlando, Florida
| | - Sanjay Singh
- Burnett School of Biomedical Science, University of Central Florida, Orlando, Florida
| | - Janet M. Dowding
- Burnett School of Biomedical Science, University of Central Florida, Orlando, Florida
| | - Saji Oommen
- Div. Pulmonary & Critical Care, Mayo Clinic, Rochester, Minnesota, USA
| | - Amit Kumar
- Department of Mechanical, Materials and Aerospace Engineering, Advanced Materials Processing Analysis Center, University of Central Florida, Orlando, Florida
| | - Thi X. T. Sayle
- Department of Engineering and Applied Science, Cranfield University, Defence Academy of the United Kingdom, Shrivenham SN6 8LA, United Kingdom
| | - Shashank Saraf
- Department of Mechanical, Materials and Aerospace Engineering, Advanced Materials Processing Analysis Center, University of Central Florida, Orlando, Florida
| | - Chitta Ranjan Patra
- Department of Biochemistry and Molecular Biology Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | - Dean C. Sayle
- Department of Engineering and Applied Science, Cranfield University, Defence Academy of the United Kingdom, Shrivenham SN6 8LA, United Kingdom
| | - William T. Self
- Burnett School of Biomedical Science, University of Central Florida, Orlando, Florida
| | - Sudipta Seal
- Department of Mechanical, Materials and Aerospace Engineering, Advanced Materials Processing Analysis Center, University of Central Florida, Orlando, Florida
| |
Collapse
|
49
|
Abstract
Integrin-dependent and -independent MMP-9 and uPAR signaling plays a key role in glioma cell migration and invasion. In this article, we comment on all the possible pathways and molecules associated with MMP-9- and uPAR-mediated glioma cell migration with a special emphasis on integrins, a family of cell adhesion molecules. Our recent research investigations highlighted the substantial benefit of silencing both MMP-9 and uPAR together compared with their individual treatments in glioma. Simultaneous knockdown of both MMP-9 and uPAR regulated a majority of the molecules associated with glioma cell migration and significantly reduced the migration potential of glioma cells. Our results point out that the bicistronic construct, which can simultaneously silence both MMP-9 and uPAR offers a great therapeutic potential and is worth developing as a new drug for treating GBM patients.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | |
Collapse
|
50
|
Chen C, Kudo M, Rutaganira F, Takano H, Lee C, Atakilit A, Robinett KS, Uede T, Wolters PJ, Shokat KM, Huang X, Sheppard D. Integrin α9β1 in airway smooth muscle suppresses exaggerated airway narrowing. J Clin Invest 2012; 122:2916-27. [PMID: 22772469 DOI: 10.1172/jci60387] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 05/30/2012] [Indexed: 12/12/2022] Open
Abstract
Exaggerated contraction of airway smooth muscle is the major cause of symptoms in asthma, but the mechanisms that prevent exaggerated contraction are incompletely understood. Here, we showed that integrin α9β1 on airway smooth muscle localizes the polyamine catabolizing enzyme spermidine/spermine N1-acetyltransferase (SSAT) in close proximity to the lipid kinase PIP5K1γ. As PIP5K1γ is the major source of PIP2 in airway smooth muscle and its activity is regulated by higher-order polyamines, this interaction inhibited IP3-dependent airway smooth muscle contraction. Mice lacking integrin α9β1 in smooth muscle had increased airway responsiveness in vivo, and loss or inhibition of integrin α9β1 increased in vitro airway narrowing and airway smooth muscle contraction in murine and human airways. Contraction was enhanced in control airways by the higher-order polyamine spermine or by cell-permeable PIP2, but these interventions had no effect on airways lacking integrin α9β1 or treated with integrin α9β1-blocking antibodies. Enhancement of SSAT activity or knockdown of PIP5K1γ inhibited airway contraction, but only in the presence of functional integrin α9β1. Therefore, integrin α9β1 appears to serve as a brake on airway smooth muscle contraction by recruiting SSAT, which facilitates local catabolism of polyamines and thereby inhibits PIP5K1γ. Targeting key components of this pathway could thus lead to new treatment strategies for asthma.
Collapse
Affiliation(s)
- Chun Chen
- Lung Biology Center, Department of Medicine, UCSF, San Francisco, CA 94143-2922, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|