1
|
Calsa B, Menezes LDS, Neves JG, Gontijo JAR, Santamaria-Jr M, Boer PA. Mandible development under gestational protein restriction: cellular and molecular mechanisms. J Mol Histol 2024; 55:937-953. [PMID: 39105943 DOI: 10.1007/s10735-024-10242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Insufficient evidence regarding how maternal undernutrition affects craniofacial bone development persists. With its unique focus on the impact of gestational protein restriction on calvaria and mandible osteogenesis, this study aims to fill, at least in part, this gap. Female mice were mated and randomized into NP (normal protein) or LP (low protein) groups. On the 18th gestational day (GD), male embryos were collected and submitted to microtomography (µCT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), PCR, and autophagy dynamic analyses. The study shows that the LP offspring exhibited lower body mass than the NP group, with µCT analysis revealing no volumetric differences in fetus's head. EDS analysis showed lower calcium and higher phosphorus percentages in mandibles and calvaria. SEM assessment evidenced higher hydroxyapatite crystal-like (HC) deposition on the calvaria surface in LP fetus. Conversely, lower HC deposition was observed on the mandible surface, suggesting delayed matrix mineralization in LP fetuses with a higher percentage of collagen fibers in the mandible bone. The autophagy process was reduced in the mesenchyme of LP fetuses. PCR array analysis of 84 genes revealed 27 genes with differential expression in the LP progeny-moreover, increased mRNA levels of Akt1, Mtor, Nfkb, and Smad1 in the LP offspring. In conclusion, the results suggest that gestational protein restriction anticipated bone differentiation in utero, before 18GD, where this process is reduced compared to the control, leading to the reduction in bone area at 15 postnatal day previously observed. These findings provide insights into the molecular and cellular mechanisms of mandible development and suggest potential implications for the Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- Bruno Calsa
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Luan Dos Santos Menezes
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, UNICAMP, Piracicaba, SP, Brazil
| | - José Guilherme Neves
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, UNICAMP, Piracicaba, SP, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Milton Santamaria-Jr
- Department of Social and Pediatric Dentistry, Institute of Science and Technology, College of Dentistry, São Paulo State University, São Jose dos Campos, Sao Paulo, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
2
|
Shim GJ, Lee CO, Lee JT, Jung HM, Kwon TG. Potentiating effect of AMD3100 on bone morphogenetic protein-2 induced bone regeneration. Maxillofac Plast Reconstr Surg 2024; 46:22. [PMID: 38884872 PMCID: PMC11183024 DOI: 10.1186/s40902-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AMD3100, a CXCR4 antagonist, is currently prescribed for activating the mobilization of hematopoietic stem cells. Recently, AMD3100 was shown to potentiate bone morphogenetic protein-2 (BMP-2)-induced bone formation by stimulating the trafficking of mesenchymal cells. However, optimization of the strategic combination of AMD3100 and BMP-2 has not yet been clearly established. The purpose of this study was to evaluate the effect of AMD3100 on BMP-2-induced bone regeneration in vitro and in a mouse calvarial defect healing model. METHODS In vitro osteoblastic differentiation and cell migration after sequential treatments with AMD3100 and BMP-2 were analyzed by alkaline phosphatase (ALP) activity, ALP staining, and calcium accumulation. Migration capacity was evaluated after treating mesenchymal cells with AMD3100 and/or BMP-2. A critical-size calvarial defect model was used to evaluate bone formation after sequential or continuous treatment with AMD3100 and BMP-2. The degree of bone formation in the defect was analyzed using micro-computed tomography (micro-CT) and histological staining. RESULTS Compared with single treatment using either AMD3100 or BMP-2 alone, sequential treatment with AMD3100 followed by BMP-2 on mesenchymal cells increased osteogenic differentiation. Application of AMD3100 and subsequent BMP-2 significantly activated cell migration on mesenchymal cell than BMP-2 alone or AMD3100 alone. Micro-CT and histomorphometric analysis showed that continuous intraperitoneal (IP) injection of AMD3100 resulted significantly increased new bone formation in BMP-2 loaded scaffold in calvarial defect than control groups without AMD3100 IP injection. Additionally, both single IP injection of AMD3100 and subsequent BMP-2 injection to the scaffold in calvarial defect showed pronounced new bone formation compared to continuous BMP-2 treatment without AMD3100 treatment. CONCLUSION Our data suggest that single or continuous injection of AMD3100 can potentiate BMP-2-induced osteoblastic differentiation and bone regeneration. This strategic combination of AMD3100 and BMP-2 may be a promising therapy for bone regeneration.
Collapse
Affiliation(s)
- Gyu-Jo Shim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Chung O Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Tae Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-Moon Jung
- Department of Radiologic Technology, Daegu Health College, Daegu, Republic of Korea
| | - Tae-Geon Kwon
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Kyungpook National University Institute for Translational Research in Dentistry, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
3
|
The Antagonism of Neuropeptide Y Type I Receptor (Y1R) Reserves the Viability of Bone Marrow Stromal Cells in the Milieu of Osteonecrosis of Femoral Head (ONFH). Biomedicines 2022; 10:biomedicines10112942. [PMID: 36428510 PMCID: PMC9687204 DOI: 10.3390/biomedicines10112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropeptide Y (NPY)-Y1 receptor (Y1R) signaling is known to negatively affect bone anabolism. Our study aimed at investigating the impact of NPY-Y1R signaling in the pathogenesis of glucocorticoid-related osteonecrosis of the femoral head (ONFH). Femoral heads were retrieved from 20 patients with and without ONFH, respectively. The bone marrow stromal cells (BMSCs) from ONFH femoral heads were treated with Y1R agonists and antagonists for subsequent analysis. We showed that the local NPY expression level was lower in ONFH heads. The Y1R agonists and antagonists disturb and facilitate the survival of BMSCs. The transcription of stromal derived factor-1 (SDF-1) was enhanced by Y1R antagonists. Our study showed that the local NPY expression level was lower in ONFH heads. Y1R antagonists facilitate the survival of BMSCs and stimulate the transcription of SDF-1 by BMSCs. These findings shed light on the role of NPY-Y1R signaling in the pathogenesis of ONFH.
Collapse
|
4
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
5
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
6
|
Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022; 49:3307-3320. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
Abstract
Chemokines are chemoattractants that can regulate cell movement and adhesion. SDF-1 [stromal cell-derived factor-1 (SDF-1)] is a homeostatic CXC chemokine. SDF-1 and its receptors [CXC chemokine receptor 4 (CXCR4)] form a signaling pathway that plays critical roles in different pathological and physiological mechanisms, including embryogenesis, wound healing, angiogenesis, tumor growth, and proliferation. Therefore, the current review aimed to summarize the related studies that addressed the molecular signature of the SDF-1/CXCR4 pathway and to explain how this axis is involved in normal events.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran. .,Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Eisa NH, Sudharsan PT, Herrero SM, Herberg SA, Volkman BF, Aguilar-Pérez A, Kondrikov D, Elmansi AM, Reitman C, Shi X, Fulzele S, McGee-Lawrence ME, Isales CM, Hamrick MW, Johnson MH, Chen J, Hill WD. Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone 2021; 153:116154. [PMID: 34403754 PMCID: PMC8935397 DOI: 10.1016/j.bone.2021.116154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Periyasamy T Sudharsan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sergio Mas Herrero
- Universitat de Barcelona, Unitat Farmacologia, Dpt. Fonaments Clínics, 08036 Barcelona, Spain
| | - Samuel A Herberg
- Departments of Ophthalmology and Visual Sciences, and Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexandra Aguilar-Pérez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America
| | - Xingming Shi
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Carlos M Isales
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Maribeth H Johnson
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Jie Chen
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
8
|
Mohammed SA, Abd Elsattar M, Abd-Allah SH, Habashy OY, Abdelghany EMA, Hussein S, Abdullah O. Effect of Bone-Marrow-Derived Mesenchymal Stem Cells on the Healing of Bone Fractures. J Interferon Cytokine Res 2021; 41:336-346. [PMID: 34543130 DOI: 10.1089/jir.2021.0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study was performed to evaluate the effectiveness of mesenchymal stem cells (MSCs) on bone healing and to assess the role of various chemical stimulants and mediators in healing. Forty female mice were randomly assigned to 4 groups (10 mice each) after the induction of fixed fractures: group I: received fixation only; group II: received phosphate-buffered saline (PBS); group III: received intralesion MSCs (IL-MSCs); and group IV: received intraperitoneal MSCs (IP-MSCs). Serum alkaline phosphatase (ALP) levels and the expression of the osteocalcin (OCN), bone morphogenetic protein-2 (BMP-2), and stromal-derived factor-1 (SDF-1) genes were measured. ALP reached baseline level only in IL-MSCs, whereas OCN reached baseline level in MSCs recipients (IL-MSCs and IP-MSCs). BMP-2 significantly increased in MSCs recipients 3 weeks postfracture and increased in all groups 8 weeks postfracture with significant increases in MSC recipients than the fixation and PBS groups. The highest BMP-2 expression was reached in IL-MSC group. MSCs either locally or systemically improves or accelerates the healing of bone fractures with better results obtained after local injection, as shown by biochemical, radiological, and histological findings. MSCs are effective candidates for bone regeneration.
Collapse
Affiliation(s)
- Shuzan Ali Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mahasen Abd Elsattar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Somia Hassan Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Omnia Youssif Habashy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Omnia Abdullah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
9
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
10
|
Barker AJ, Arthur A, DeNichilo MO, Panagopoulos R, Gronthos S, Anderson PJ, Zannettino AC, Evdokiou A, Panagopoulos V. Plant-derived soybean peroxidase stimulates osteoblast collagen biosynthesis, matrix mineralization, and accelerates bone regeneration in a sheep model. Bone Rep 2021; 14:101096. [PMID: 34136591 PMCID: PMC8178086 DOI: 10.1016/j.bonr.2021.101096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bone defects arising from fractures or disease represent a significant problem for surgeons to manage and are a substantial economic burden on the healthcare economy. Recent advances in the development of biomaterial substitutes provides an attractive alternative to the current "gold standard" autologous bone grafting. Despite on-going research, we are yet to identify cost effective biocompatible, osteo-inductive factors that stimulate controlled, accelerated bone regeneration.We have recently reported that enzymes with peroxidase activity possess previously unrecognised roles in extracellular matrix biosynthesis, angiogenesis and osteoclastogenesis, which are essential processes in bone remodelling and repair. Here, we report for the first time, that plant-derived soybean peroxidase (SBP) possesses pro-osteogenic ability by promoting collagen I biosynthesis and matrix mineralization of human osteoblasts in vitro. Mechanistically, SBP regulates osteogenic genes responsible for inflammation, extracellular matrix remodelling and ossification, which are necessary for normal bone healing. Furthermore, SBP was shown to have osteo-inductive properties, that when combined with commercially available biphasic calcium phosphate (BCP) granules can accelerate bone repair in a critical size long bone defect ovine model. Micro-CT analysis showed that SBP when combined with commercially available biphasic calcium phosphate (BCP) granules significantly increased bone formation within the defects as early as 4 weeks compared to BCP alone. Histomorphometric assessment demonstrated accelerated bone formation prominent at the defect margins and surrounding individual BCP granules, with evidence of intramembranous ossification. These results highlight the capacity of SBP to be an effective regulator of osteoblastic function and may be beneficial as a new and cost effective osteo-inductive agent to accelerate repair of large bone defects.
Collapse
Affiliation(s)
- Alexandra J. Barker
- Musculoskeletal Biology Research Laboratory, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Agnes Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark O. DeNichilo
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Romana Panagopoulos
- Breast Cancer Research Unit, School of Medicine, Discipline of Surgery and Orthopaedics, Basil Hetzel Institute, University of Adelaide, Adelaide, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter J. Anderson
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
- Australian Craniofacial Unit, Women's and Children's Hospital, Department of Paediatrics and Dentistry, University of Adelaide, Adelaide, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Andreas Evdokiou
- Breast Cancer Research Unit, School of Medicine, Discipline of Surgery and Orthopaedics, Basil Hetzel Institute, University of Adelaide, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Breast Cancer Research Unit, School of Medicine, Discipline of Surgery and Orthopaedics, Basil Hetzel Institute, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Corresponding author at: Myeloma Research Laboratory, Level 5 South, South Australian Health and Medical Research Institute, Adelaide SA 500, Australia.
| |
Collapse
|
11
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
12
|
Comparison of skeletal and soft tissue pericytes identifies CXCR4 + bone forming mural cells in human tissues. Bone Res 2020; 8:22. [PMID: 32509378 PMCID: PMC7244476 DOI: 10.1038/s41413-020-0097-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.
Collapse
|
13
|
Cai C, Wang J, Huo N, Wen L, Xue P, Huang Y. Msx2 plays an important role in BMP6-induced osteogenic differentiation of two mesenchymal cell lines: C3H10T1/2 and C2C12. Regen Ther 2020; 14:245-251. [PMID: 32455154 PMCID: PMC7232041 DOI: 10.1016/j.reth.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), have been shown to enhance the osteogenic differentiation of mesenchymal cells (MCs) and to promote bone formation. BMP6 is known to play an important role in the process of MCs towards osteogenic differentiation by virtue of their osteoinductive and cell type specific proliferative activity. However, the molecular mechanism relate to BMP6 osteoinductive activity is still unclear and continues to warrant further investigation. Msx2 is a member of the homeobox gene family of transcription factors and promotes calcification. Hence, we wondered if it might also play a role in BMP6-induced osteogenesis. In this study, two mouse mesenchymal cell lines were treated with BMP6, adenovirus-Msx2 (Ad-Msx2) or adenovirus-siMsx2 (Ad-siMsx2). Based on the results of mRNA and protein expression, it was indicated that BMP6 could enhance the expression of Msx2 and activate the phosphorylation of Smad 1/5/8, p38 and ERK1/2. Being transfected by Ad-Msx2, the BMP6-induced activation of phosphorylation was significantly promoted. On the contrary, two cell lines transfected by Ad-siMsx2 presented an inhibited expression of three phosphorylated proteins even after being induced by BMP6. The evaluation of ALP, OPN, OC and calcium deposits revealed the osteogenic results those were corresponding to the results of mRNA and protein. Taken together, these findings can be a novel viewpoint for the understanding of the mechanisms of BMP6-induced osteogenesis and provide therapeutic targets of bone defect.
Collapse
Affiliation(s)
- Chuan Cai
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Wen
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Xue
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ye Huang
- Department of Dermatology, Air Force General Hospital of Chinese PLA, Beijing, 100412, China
| |
Collapse
|
14
|
Abstract
Chemokines are a family of small proteins, subdivided by their conserved cysteine residues and common structural features. Chemokines interact with their cognate G-protein-coupled receptors to elicit downstream signals that result in cell migration, proliferation, and survival. This review presents evidence for how the various CXC and CC subfamily chemokines influence bone hemostasis by acting on osteoclasts, osteoblasts, and progenitor cells. Also discussed are the ways in which chemokines contribute to bone loss as a result of inflammatory diseases such as rheumatoid arthritis, HIV infection, and periodontal infection. Both positive and negative effects of chemokines on bone formation and bone loss are presented. In addition, the role of chemokines in altering the bone microenvironment through effects on angiogenesis and tumor invasion is discussed. Very few therapeutic agents that influence bone formation by targeting chemokines or chemokine receptors are available, although a few are currently being evaluated.
Collapse
Affiliation(s)
- Annette Gilchrist
- Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
15
|
Xiao M, Yao B, Zhang BD, Bai Y, Sui W, Wang W, Yu Q. Stromal-derived Factor-1α signaling is involved in bone morphogenetic protein-2-induced odontogenic differentiation of stem cells from apical papilla via the Smad and Erk signaling pathways. Exp Cell Res 2019; 381:39-49. [DOI: 10.1016/j.yexcr.2019.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
|
16
|
Xiao M, Qiu J, Kuang R, Zhang B, Wang W, Yu Q. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system. Cell Tissue Res 2019; 378:207-220. [DOI: 10.1007/s00441-019-03045-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/27/2019] [Indexed: 12/11/2022]
|
17
|
Sabbieti MG, Lacava G, Amaroli A, Marchetti L, Censi R, Di Martino P, Agas D. Molecular Adjuvants Based on Plasmids Encoding Protein Aggregation Domains Affect Bone Marrow Niche Homeostasis. Curr Gene Ther 2019; 17:391-397. [PMID: 29303078 PMCID: PMC6751345 DOI: 10.2174/1566523218666180105122626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Abstract
Background: During last years, DNA vaccine immunogenicity has been optimized by the employment of co-stimulatory molecules and molecular adjuvants. It has been reported that plasmid (pATRex), encompassing the DNA sequence for the von Willebrand A (vWA/A) domain of the An-thrax Toxin Receptor-1 (ANTXR-1, alias TEM8, Tumor Endothelial Marker 8), acts as strong immune adjuvant by inducing formation of insoluble intracellular aggregates. Markedly, we faced with upsetting findings regarding the safety of pATRex as adjuvant since the aggregosome formation prompted to os-teopenia in mice. Objective: The present study provides additional evidences about the proteinaceous adjuvants action within bone marrow and questioned regarding the self-aggregation protein adjuvants immunotoxicity on marrow niches. Methods & Results: Using histological, biochemical and proteomic assays we shed light on pATRex effects within bone marrow niche and specifically we evidenced an aplastic-like bone marrow with dis-rupted cytokine/chemokine production. Conclusion: The above findings provide compelling support to the thesis that adjuvants based on plas-mids encoding protein aggregation domains disrupt the physiological features of the bone marrow ele-ments.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Luigi Marchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
18
|
Ying JW, Wen TY, Pei SS, Su LH, Ruan DK. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells. World J Stem Cells 2019; 11:196-211. [PMID: 30949297 PMCID: PMC6441939 DOI: 10.4252/wjsc.v11.i3.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/19/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus (NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.
AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells (NPSCs).
METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups. Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.
RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Real-time RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1α not only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement. Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.
CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration.
Collapse
Affiliation(s)
- Jin-Wei Ying
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Tian-Yong Wen
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Shi-Shen Pei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Ling-Hao Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Di-Ke Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| |
Collapse
|
19
|
Hyaluronan negatively regulates vascular calcification involving BMP2 signaling. J Transl Med 2018; 98:1320-1332. [PMID: 29785051 DOI: 10.1038/s41374-018-0076-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Vascular calcification is a highly regulated biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Hyaluronan (HA), a major structural component of the extracellular matrix in cartilage, has been shown to inhibit osteoblast differentiation. However, whether HA affects osteogenic differentiation and calcification of VSMCs remains unclear. In the present study, we used in vitro and ex vivo models of vascular calcification to investigate the role of HA in vascular calcification. Both high and low molecular weight HA treatment significantly reduced calcification of rat VSMCs in a dose-dependent manner, as detected by alizarin red staining and calcium content assay. Ex vivo study further confirmed the inhibitory effect of HA on vascular calcification. Similarly, HA treatment decreased ALP activity and expression of bone-related molecules including Runx2, BMP2 and Msx2. By contrast, inhibition of HA synthesis by 4-methylumbelliferone (4MU) promoted calcification of rat VSMCs. In addition, adenovirus-mediated overexpression of HA synthase 2 (HAS2), a major HA synthase in VSMCs, also inhibited calcification of VSMCs, whereas CRISPR/Cas9-mediated HAS2 knockout promoted calcification of rat A10 cells. Furthermore, we found that BMP2 signaling was inhibited in VSMCs after HA treatment. Recombinant BMP2 enhanced high calcium and phosphate-induced VSMC calcification, which can be blocked by HA treatment. Taken together, these findings suggest that HA inhibits vascular calcification involving BMP2 signaling.
Collapse
|
20
|
Lim RZL, Li L, Yong EL, Chew N. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation. Biochim Biophys Acta Gen Subj 2018; 1862:1680-1692. [PMID: 29679717 DOI: 10.1016/j.bbagen.2018.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem cell (MSC) dysfunction has been implicated in the pathogenesis of osteoporosis. MSCs derived from osteoporotic subjects demonstrate significant impairment in proliferation, adhesion and chemotaxis, and osteogenic differentiation, leading to reduced functional bone-forming osteoblasts and ultimately nett bone loss and osteoporosis. Epimedium herbs and its active compound Icaritin (ICT) have been used in Chinese ethnopharmacology for the treatment of metabolic bone diseases. Using an in-vitro cell culture model, we investigated the benefits of ICT treatment in enhancing MSC proliferation, migration and osteogenic differentiation, and provide novel data to describe its mechanism of action. ICT enhances MSC proliferation, chemotaxis to stromal cell-derived factor-1 (SDF-1) and osteogenic differentiation through the activation of signal transduction activator transcription factor 3 (STAT-3), with a consequential up-regulation in the expression and activity of cysteine (C)-X-C motif chemokine receptor 4 (CXCR4). These findings provide a strong basis for future clinical studies to confirm the therapeutic potential of ICT for the prevention and treatment of osteoporosis and fragility fractures.
Collapse
Affiliation(s)
- R Z L Lim
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - L Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E L Yong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - N Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, National University Hospital, Singapore.
| |
Collapse
|
21
|
Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, Tang C, Chen Y, Huang J, Le H, Yan R, Zhu T, Wang J, Lin J, Xu K, Zhou Y, Zhang W, Cai Y, Dominique P, Heng BC, Chen W, Shen W, Ouyang HW. Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater 2018. [PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration. STATEMENT OF SIGNIFICANCE In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.
Collapse
|
22
|
Zhao W, Jin K, Li J, Qiu X, Li S. Delivery of stromal cell-derived factor 1α for in situ tissue regeneration. J Biol Eng 2017; 11:22. [PMID: 28670340 PMCID: PMC5492719 DOI: 10.1186/s13036-017-0058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
In situ tissue regeneration approach aims to exploit the body's own biological resources and reparative capability and recruit host cells by utilizing cell-instructive biomaterials. In order to immobilize and release bioactive factors in biomaterials, it is important to engineer the load effectiveness, release kinetics and cell recruiting capabilities of bioactive molecules by using suitable bonding strategies. Stromal cell-derived factor 1α (SDF-1α) is one of the most potent chemokines for stem cell recruitment, and SDF-1α-loaded scaffolds have been used for the regeneration of many types of tissues. This review summarizes the strategies to incorporate SDF-1α into scaffolds, including direct loading or adsorption, polyion complexes, specific heparin-mediated interaction and particulate system, which may be applied to the immobilization of other chemokines or growth factors. In addition, we discuss the application of these strategies in the regeneration of tissues such as blood vessel, myocardium, cartilage and bone.
Collapse
Affiliation(s)
- Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072 China
| | - Kaixiang Jin
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072 China
| | - Jiaojiao Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072 China
| | - Xuefeng Qiu
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Song Li
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
23
|
Li Z, Wang W, Xu H, Ning Y, Fang W, Liao W, Zou J, Yang Y, Shao N. Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs. Am J Transl Res 2017; 9:1680-1693. [PMID: 28469774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/21/2017] [Indexed: 09/28/2022]
Abstract
This study investigated the effects of altered CXCL12/CXCR4 axis on the bone morphogenetic protein 2 (BMP-2)/Smad/runt-related transcription factor 2 (Runx2)/Osterix (Osx) signal axis and osteogenic gene expression during osteogenic differentiation of mesenchymal stem cells (MSCs), to gain understanding of the link between migration and osteogenic differentiation signal axis and MSCs osteogenic differentiation mechanisms. The pHBAd-MCMV- CXCL12-GFP vector (Ad-CXCL12) was constructed and quantitative polymerase chain reaction (qPCR)/western blotting used to determine CXCL12 expression in Ad-CXCL12-transfected MSCs. MSCs were treated with Ad-CXCL12 and AMD3100 (CXCL12 inhibitor) to detect BMP-2/Smad/Runx2/Osterix expression, bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN) mRNA expression, and alkaline phosphatase (ALP) activity. PCR and sequencing confirmed successful construction of Ad-CXCL12. qPCR and enzyme-linked immunosorbent assay indicated that Ad-CXCL12 transfection promoted CXCL12 expression in MSCs. At 72 hours, Runx2 and Osterix, and Smad1/5/8 mRNA and protein expressions were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01). At 1 and 2 weeks, ALP activity and BSP mRNA expression were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01), respectively. No significant difference in OCN and OPN mRNA expression was determined between Ad-CXCL12 and control groups (P > 0.05). At 3 weeks, no significant difference in mineralized nodule staining was observed between groups (P > 0.05). Changes in the CXCL12/CXCR4 migration axis affected the BMP-2/Smad/Runx2/Osterix axis and BSP, OCN and OPN mRNA expression in early-stage, but not mid-/latestage, MSCs osteogenic differentiation, therefore affecting the ability of MSCs to undergo osteogenic differentiation.
Collapse
Affiliation(s)
- Zhanghua Li
- Tongren Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Wei Wang
- Hubei University of Chinese MedicineWuhan 430065, Hubei, China
| | - Haijia Xu
- Tongren Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Yu Ning
- Hubei University of Chinese MedicineWuhan 430065, Hubei, China
| | - Weijun Fang
- Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Wen Liao
- Tongren Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Ji Zou
- Hubei University of Chinese MedicineWuhan 430065, Hubei, China
| | - Yi Yang
- Health Science College, Wuhan Sports UniversityWuhan 430079, China
| | - Ningsheng Shao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Academy of Military Medical SciencesBeijing 100000, China
| |
Collapse
|
24
|
Yun C, Weiner JA, Chun DS, Yun J, Cook RW, Schallmo MS, Kannan AS, Mitchell SM, Freshman RD, Park C, Hsu WK, Hsu EL. Mechanistic insight into the effects of Aryl Hydrocarbon Receptor activation on osteogenic differentiation. Bone Rep 2017; 6:51-59. [PMID: 28377982 PMCID: PMC5365310 DOI: 10.1016/j.bonr.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
While inhibition of bone healing and increased rates of pseudarthrosis are known adverse outcomes associated with cigarette smoking, the underlying mechanisms by which this occurs are not well understood. Recent work has implicated the Aryl Hydrocarbon Receptor (Ahr) as one mediator of the anti-osteogenic effects of cigarette smoke (CS), which contains numerous toxic ligands for the Ahr. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a high-affinity Ahr ligand frequently used to evaluate Ahr pathway activation. The purpose of this study was to elucidate the downstream mechanisms of dioxin action on bone regeneration and investigate Ahr antagonism as a potential therapeutic approach to mitigate the effects of dioxin on bone. Markers of osteogenic activity and differentiation were assessed in primary rat bone marrow stromal cells (BMSC) after exposure to dioxin, Ahr antagonists, or antagonist + dioxin. Four Ahr antagonists were evaluated: α-Naphthoflavone (ANF), resveratrol (Res), 3,3′-Diindolylmethane (DIM), and luteolin (Lut). Our results demonstrate that dioxin inhibited ALP activity, migratory capacity, and matrix mineralization, whereas co-treatment with each of the antagonists mitigated these effects. Dioxin also inhibited BMSC chemotaxis, while co-treatment with several antagonists partially rescued this effect. RNA and protein expression studies found that dioxin down-regulated numerous pro-osteogenic targets, whereas co-treatment with Ahr antagonists prevented these dioxin-induced expression changes to varying degrees. Our results suggest that dioxin adversely affects bone regeneration in a myriad of ways, many of which appear to be mediated by the Ahr. Our work suggests that the Ahr should be investigated as a therapeutic target to combat the adverse effects of CS on bone healing. Dioxin, a potent Ahr ligand, inhibits osteogenic differentiation of BMSC. “Nutraceutical” Ahr antagonists found in red wine and broccoli protected against dioxin action. Targets of dioxin action included Collagens, MMPs, Phex, CXCR4/CXCL12 axis. The Ahr may in part mediate the adverse effects of cigarette smoke on osteogenic differentiation and bone healing.
Collapse
Affiliation(s)
- Chawon Yun
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Joseph A Weiner
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Danielle S Chun
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Jonghwa Yun
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Ralph W Cook
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Michael S Schallmo
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Abhishek S Kannan
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Sean M Mitchell
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Ryan D Freshman
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Christian Park
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Wellington K Hsu
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Erin L Hsu
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| |
Collapse
|
25
|
Cho H, Sengupta S, Jeon SSH, Hur W, Choi HG, Seo HS, Lee BJ, Kim JH, Chung M, Jeon NL, Kim ND, Sim T. Identification of the First Selective Activin Receptor-Like Kinase 1 Inhibitor, a Reversible Version of L-783277. J Med Chem 2017; 60:1495-1508. [PMID: 28103025 DOI: 10.1021/acs.jmedchem.6b01679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We synthesized 1 (San78-130), a reversible version of L-783277, as a selective and potent ALK1 inhibitor. Our study showed that 1 possesses great kinase selectivity against a panel of 342 kinases and more potent activity against ALK1 than L-783277. Among the six ALK isotypes (ALK1-6), ALK1 is most significantly inhibited by compound 1. Compound 1 suppresses the BMP9-induced Smad1/5 pathway by mainly inhibiting ALK1 in C2C12 cells. Our molecular dynamics simulations suggest that H-bonding interaction between the C-4' hydroxyl group of 1 and Arg334 of ALK1 substantially contributes to the ALK1 inhibition. To the best of our knowledge, 1 is the first selective ALK1 inhibitor. Furthermore, compound 1 promoted angiogenesis in both endothelial tube formation and microfluidic chip based 3D angiogenesis assays, suggesting that 1 could be a lead compound for therapeutic angiogenesis agents. Our study may provide an insight into designing selective and potent inhibitors against ALK1.
Collapse
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sandip Sengupta
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sean S H Jeon
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong-Seog Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Cardiovascular Center, Korea University Guro Hospital , 80 Guro-dong, Guro-gu, Seoul 152-703, Republic of Korea
| | - Byung Joo Lee
- Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital , 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University , 103, Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital , 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University , 103, Daehakro, Jongro-gu, Seoul 03080, Republic of Korea.,Department of Ophthalmology, College of Medicine, Seoul National University , 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Minhwan Chung
- Mechanical Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Noo Li Jeon
- Mechanical Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu, Daegu 42019, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
26
|
Takayama T, Dai J, Tachi K, Shohara R, Kasai H, Imamura K, Yamano S. The potential of stromal cell-derived factor-1 delivery using a collagen membrane for bone regeneration. J Biomater Appl 2017; 31:1049-1061. [PMID: 28056602 DOI: 10.1177/0885328216686727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo. For in vitro studies, cell proliferation, alkaline phosphatase activity, and osteoblastic differentiation marker genes were assessed after MC3T3-E1 mouse preosteoblasts were cultured with CMs containing factors. In vivo effects were investigated by placement of CMs containing SDF-1 or PDGF using a rat mandibular bone defect model. At 4 weeks after the surgery, the new bone formation was measured using micro-computed tomography (µCT) and histological analysis. The results of in vitro studies revealed that CM delivery of SDF-1 significantly induced cell proliferation, ALP activity, and gene expression of all osteogenic markers compared to the CM alone or control, similar to PDGF. Quantitative and qualitative µCT analysis for volume of new bone formation and the percentage of new bone area showed that SDF-1-treated groups significantly increased and accelerated bone regeneration compared to control and CM alone. The enhancement of bone formation in SDF-1-treated animals was dose-dependent and with levels similar to those measured with PDGF. These results suggest that a CM with SDF-1 may be a great candidate for growth factor delivery that could be a substitute for PDGF in clinical procedures where bone regeneration is necessary.
Collapse
Affiliation(s)
- Tadahiro Takayama
- 1 Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,2 Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Jisen Dai
- 3 Mouse Genotyping Core, New York University Langone Medical Center, New York, NY, USA
| | - Keita Tachi
- 4 Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| | - Ryutaro Shohara
- 4 Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| | - Hironori Kasai
- 4 Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| | - Kentaro Imamura
- 4 Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| | - Seiichi Yamano
- 4 Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
27
|
Smith JT, Schneider AD, Katchko KM, Yun C, Hsu EL. Environmental Factors Impacting Bone-Relevant Chemokines. Front Endocrinol (Lausanne) 2017; 8:22. [PMID: 28261155 PMCID: PMC5306137 DOI: 10.3389/fendo.2017.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/25/2017] [Indexed: 01/07/2023] Open
Abstract
Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies-CC and CXC-support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing.
Collapse
Affiliation(s)
- Justin T. Smith
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Andrew D. Schneider
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Karina M. Katchko
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Chawon Yun
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- *Correspondence: Erin L. Hsu,
| |
Collapse
|
28
|
Chen J, Zhang X, Huang C, Cai H, Hu S, Wan Q, Pei X, Wang J. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res A 2016; 105:834-846. [PMID: 27885785 DOI: 10.1002/jbm.a.35960] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Junyu Chen
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- College of Chemistry; Sichuan University; Chengdu, Sichuan 610041 China
| | - Chao Huang
- College of Chemistry; Sichuan University; Chengdu, Sichuan 610041 China
| | - He Cai
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Shanshan Hu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| | - Jian Wang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
- Department of Prosthodontics; West China Hospital of Stomatology, Sichuan University; Chengdu Sichuan 610041 China
| |
Collapse
|
29
|
Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials 2016; 106:205-16. [PMID: 27566869 DOI: 10.1016/j.biomaterials.2016.08.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
In this study, a cell-free bone tissue engineering system based on a silk fibroin (SF)/nano-hydroxyapatite (nHAp) scaffold was developed, in which two bioactive molecules, stromal cell derived factor-1 (SDF-1) and bone morphogenetic protein-2 (BMP-2), were embedded and released in a sequential and controlled manner to facilitate cell recruitment and bone formation, respectively. BMP-2 was initially loaded into SF microspheres, and these BMP-2 containing microspheres were subsequently encapsulated into the SF/nHAp scaffolds, which were successively functionalized with SDF-1 via physical adsorption. The results indicated rapid initial release of SDF-1 during the first few days, followed by slow and sustained release of BMP-2 for as long as three weeks. The composite scaffold significantly promoted the recruitment of bone marrow mesenchymal stem cells (BMSCs) and osteogenic differentiation of them in vitro. Further, the in vivo studies using D-Luciferin-labeled BMSCs indicated that implantation of this composite scaffold markedly promoted the recruitment of BMSCs to the implanted sites. Enhanced bone regeneration was identified at 12 weeks' post-implantation. Taken together, our findings suggested that the sequential and sustained release of SDF-1 and BMP-2 from the SF/nHAp scaffolds resulted in a synergistic effect on bone regeneration. Such a composite system, therefore, shows promising potential for cell-free bone tissue engineering applications.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215007, PR China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yun Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yong Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China; Orthopedic Institute, Soochow University, Suzhou, Jiangsu, 215007, PR China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
30
|
Du L, Feng R, Ge S. PTH/SDF-1α cotherapy promotes proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif 2016; 49:599-608. [PMID: 27523567 DOI: 10.1111/cpr.12286] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Stromal cell-derived factor-1α (SDF-1α) plays an important role in tissue regeneration in various tissues including the periodontium. A potential limitation for its use derives from its sensitivity to cleavage by dipeptidyl peptidase-IV (DPP-IV). Parathyroid hormone (PTH) reduces enzymatic activity of DPP-IV and is suggested to be a promising agent for periodontal tissue repair. The purpose of this study was to provide insight into how SDF-1α and intermittent PTH treatment might affect proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro. MATERIALS AND METHODS PDLSCs were isolated by the limiting dilution method. Surface markers were quantified by flow cytometry. Cell-counting kit-8 (CCK8), cell migration assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and RT-PCR were used to determine viability, migration and osteogenic differentiation of PDLSCs. RESULTS PDLSCs were positive for CD44, CD73, CD90, CD105, CD166 and STRO-1 and negative for CD14, CD34 and CD45. PTH/SDF-1α cotherapy significantly promoted cell proliferation, chemotactic capability, ALP activity and mineral deposition (P<.05). Gene expression level of bone sialoprotein (BSP), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were all up-regulated (P<.05). CONCLUSIONS PTH/SDF-1α cotherapy promoted proliferation, migration and osteogenic differentiation of PDLSCs in vitro. Cotherapy seemed to have potential to promote periodontal tissue regeneration by facilitating chemotaxis of PDLSCs to the injured site, followed by promoting proliferation and osteogenic differentiation of these cells.
Collapse
Affiliation(s)
- Lingqian Du
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Ruijuan Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China. .,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China.
| |
Collapse
|
31
|
Kusuyama J, Komorizono A, Bandow K, Ohnishi T, Matsuguchi T. CXCL3 positively regulates adipogenic differentiation. J Lipid Res 2016; 57:1806-1820. [PMID: 27512010 DOI: 10.1194/jlr.m067207] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/19/2022] Open
Abstract
Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)β and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Anna Komorizono
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
32
|
Li P, Deng J, Wei X, Jayasuriya CT, Zhou J, Chen Q, Zhang J, Wei L, Wei F. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13. Mol Med Rep 2016; 14:1475-82. [PMID: 27356492 PMCID: PMC4940083 DOI: 10.3892/mmr.2016.5419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Binding of the chemokine stromal cell-derived factor-1 (SDF-1) to its receptor C-X-C chemokine receptor type 4 (CXCR4) results in receptor activation and the subsequent release of matrix metalloproteinases (MMPs) that contribute to osteoarthritis (OA) cartilage degradation. As hypoxia is a defining feature of the chondrocyte microenvironment, the present study investigated the possible mechanism through which SDF‑1 induces cartilage degradation under hypoxic conditions. To do this, OA chondrocyte cultures and patient tissue explants pretreated with the CXCR4 inhibitor, AMD3100 were incubated with SDF‑1. It was identified that hypoxic conditions significantly elevated the expression of CXCR4 in osteoarthritic chondrocytes relative to normoxic conditions. Furthermore, SDF‑1 elevated MMP‑13 mRNA levels and proteinase activity. It also elevated the mRNA and protein levels of runt‑related transcription factor 2, and induced the release of glycosaminoglycans and the inflammatory cytokine, interleukin‑1β. By contrast, such changes did not occur to an appreciable degree in cells that were pretreated with AMD3100. The results of the present study demonstrate that even under hypoxic conditions, where CXCR4 expression is significantly elevated in chondrocytes, AMD3100 effectively blocks this receptor and protects chondrocytes from OA‑induced catabolism, suggesting that the successful inhibition of CXCR4 may be an effective approach for OA treatment.
Collapse
Affiliation(s)
- Pengcui Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001
| | - Jin Deng
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001
| | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jingming Zhou
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Qian Chen
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jianzhong Zhang
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Lei Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi 030001
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Fangyuan Wei
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
33
|
Castro NJ, Tan WN, Shen C, Zhang LG. Simulated Body Fluid Nucleation of Three-Dimensional Printed Elastomeric Scaffolds for Enhanced Osteogenesis. Tissue Eng Part A 2016; 22:940-8. [PMID: 27298115 DOI: 10.1089/ten.tea.2016.0161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Osseous tissue defects caused by trauma present a common clinical problem. Although traditional clinical procedures have been successfully employed, several limitations persist with regards to insufficient donor tissue, disease transmission, and inadequate host-implant integration. Therefore, this work aims to address current limitations regarding inadequate host tissue integration through the use of a novel elastomeric material for three-dimensional (3D) printing biomimetic and bioactive scaffolds. A novel thermoplastic polyurethane-based elastomeric composite filament (Gel-Lay) was used to manufacture porous scaffolds. In an effort to render the scaffolds more bioactive, the flexible scaffolds were subsequently incubated in simulated body fluid at various time points and evaluated for enhanced mechanical properties along with the effects on cell adhesion, proliferation, and 3-week osteogenesis. This work is the first reported use of a novel class of flexible elastomeric materials for the manufacture of 3D printed bioactive scaffold fabrication allowing efficient and effective nucleation of hydroxyapatite (HA) leading to increased nanoscale surface roughness while retaining the bulk geometry of the predesigned structure. Scaffolds with interconnected microfibrous filaments of ∼260 μm were created and nucleated in simulated body fluid that facilitated cell adhesion and spreading after only 24 h in culture. The porous structure further allowed efficient nucleation, exchange of nutrients, and metabolic waste removal during new tissue formation. Through the incorporation of osteoconductive HA, human fetal osteoblast adhesion and differentiation were greatly enhanced thus setting the tone for further exploration of this novel material for biomedical and tissue regenerative applications.
Collapse
Affiliation(s)
- Nathan J Castro
- 1 Department of Mechanical and Aerospace Engineering, The George Washington University , Washington, District of Columbia
| | - Wilhelmina Nanrui Tan
- 2 Department of Pharmacology and Physiology, Georgetown University , Washington, District of Columbia
| | - Charlie Shen
- 3 Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey
| | - Lijie Grace Zhang
- 1 Department of Mechanical and Aerospace Engineering, The George Washington University , Washington, District of Columbia.,4 Department of Biomedical Engineering, The George Washington University , Washington, District of Columbia.,5 Department of Medicine, The George Washington University , Washington, District of Columbia
| |
Collapse
|
34
|
Sun H, Wang J, Deng F, Liu Y, Zhuang X, Xu J, Li L. Co‑delivery and controlled release of stromal cell‑derived factor‑1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein‑2‑driven osteogenesis in rats. Mol Med Rep 2016; 14:737-45. [PMID: 27220358 PMCID: PMC4918613 DOI: 10.3892/mmr.2016.5339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/12/2016] [Indexed: 01/03/2023] Open
Abstract
There has been considerable focus in investigations on the delivery systems and clinical applications of bone morphogenetic protein-2 (BMP-2) for novel bone formation. However, current delivery systems require high levels of BMP-2 to exert a biological function. There are several concerns in using of high levels of BMP-2, including safety and the high cost of treatment. Therefore, the development of strategies to decrease the levels of BMP-2 required in these delivery systems is required. In our previous studies, a controlled-release system was developed, which used Traut's reagent and the cross-linker, 4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC), to chemically conjugate BMP-2 directly on collagen discs. In the current study, retention efficiency and release kinetics of stromal cell-derived factor-1α (SDF-1α) cross-linked on collagen scaffolds were detected. In addition, the osteogenic activity of SDF-1α and suboptimal doses of BMP-2 cross-linked on collagen discs following subcutaneous implantation in rats were evaluated. Independent two-tailed t-tests and one-way analysis of variance were used for analysis. In the present study, the controlled release of SDF-1α chemically conjugated on collagen scaffolds was demonstrated. By optimizing the concentrations of Traut's reagent and the Sulfo-SMCC cross-linker, a significantly higher level of SDF-1α was covalently retained on the collagen scaffold, compared with that retained using a physical adsorption method. Mesenchymal stem cell homing indicated that the biological function of the SDF-1α cross-linked on the collagen scaffolds remained intact. In rats, co-treatment with SDF-1α and a suboptimal dose of BMP-2 cross-linked on collagen scaffolds using this chemically conjugated method induced higher levels of ectopic bone formation, compared with the physical adsorption method. No ectopic bone formation was observed following treatment with a suboptimal dose of BMP-2 alone. Therefore, the co-delivery of SDF-1α and a suboptimal dose of BMP-2 chemically conjugated on collagen scaffolds for the treatment of bone injuries reduced the level of BMP-2 required, reducing the risks of side effects.
Collapse
Affiliation(s)
- Haipeng Sun
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinming Wang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yun Liu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiumei Zhuang
- Department of Oral Implantology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiayun Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Long Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
35
|
Ritz U, Kögler P, Höfer I, Frank P, Klees S, Gebhard S, Brendel C, Kaufmann K, Hofmann A, Rommens PM, Jonas U. Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan–amylose blends with cytokines for a human co-culture model of human osteoblasts and endothelial cells. J Mater Chem B 2016; 4:6552-6564. [DOI: 10.1039/c6tb00654j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polysaccharide hyrogel composites demonstrate fundamental potential as biomaterials for bone regeneration in vitro.
Collapse
Affiliation(s)
- Ulrike Ritz
- University Medical Center of the Johannes Gutenberg University Mainz
- Department of Orthopaedics and Traumatology
- Biomatics Group Mainz
- Germany
| | - Peter Kögler
- Macromolecular Chemistry
- University of Siegen
- Germany
| | - Isabel Höfer
- Macromolecular Chemistry
- University of Siegen
- Germany
- TU Hamburg-Harburg
- Umwelttechnik und Energiewirtschaft
| | - Petra Frank
- Macromolecular Chemistry
- University of Siegen
- Germany
| | - Sven Klees
- Macromolecular Chemistry
- University of Siegen
- Germany
| | | | | | | | - Alexander Hofmann
- University Medical Center of the Johannes Gutenberg University Mainz
- Department of Orthopaedics and Traumatology
- Biomatics Group Mainz
- Germany
| | - Pol Maria Rommens
- University Medical Center of the Johannes Gutenberg University Mainz
- Department of Orthopaedics and Traumatology
- Biomatics Group Mainz
- Germany
| | - Ulrich Jonas
- Macromolecular Chemistry
- University of Siegen
- Germany
| |
Collapse
|
36
|
Wei H, Zhao X, Yuan R, Dai X, Li Y, Liu L. Effects of PB-EPCs on Homing Ability of Rabbit BMSCs via Endogenous SDF-1 and MCP-1. PLoS One 2015; 10:e0145044. [PMID: 26660527 PMCID: PMC4682485 DOI: 10.1371/journal.pone.0145044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023] Open
Abstract
Traumas, infections, tumors, and some congenital malformations can lead to bone defects or even bone loss. The goal of the present study was to investigate whether inclusion of endothelial progenitor cells derived from peripheral blood (PB–EPCs) in cell-seeded partially deproteinized bone (PDPB) implants would stimulate recruitment of systemically injected bone marrow stromal cells (BMSCs) to the implant. Methods: BMSCs were injected intravenously with lentiviral expression vector expressing enhanced green fluorescent protein (eGFP) for tracing. Recruitment of eGFP-positive BMSCs was tested for the following implant configurations: 1) seeded with both BMSC and PB-EPC, 2) BMSC alone, 3) PB-EPC alone, and 4) unseeded PDPB. Protein and mRNA levels of endogenous stromal-derived factor-1 (SDF-1) and its receptor CXCR4, as well as monocyte chemotactic protein-1 (MCP-1) and its receptor CCR2, were evaluated on the 8th week. Immunohistochemical staining was performed to determine eGFP-positive areas at the defective sites. Masson’s trichrome staining was conducted to observe the distribution of collagen deposition and evaluate the extent of osteogenesis. Results: The mRNA and protein levels of SDF-1 and CXCR4 in the co-culture group were higher than those in other groups (p < 0.05) 8 weeks after the surgery. MCP-1 mRNA level in the co-culture group was also higher than that in the other groups (p < 0.05). Immunohistochemical assays revealed that the area covered by eGFP-positive cells was larger in the co-culture group than in the other groups (p < 0.05) after 4 weeks. Masson’s trichrome staining revealed better osteogenic potential of the co-culture group compared to the other groups (p < 0.05). Conclusion: These experiments demonstrate an association between PB-EPC and BMSC recruitment mediated by the SDF-1/CXCR4 axis that can enhance repair of bone defects.
Collapse
Affiliation(s)
- Hanxiao Wei
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Xian Zhao
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Ruihong Yuan
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Xiaoming Dai
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Yisong Li
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
| | - Liu Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR of China
- * E-mail:
| |
Collapse
|
37
|
Myers TJ, Longobardi L, Willcockson H, Temple JD, Tagliafierro L, Ye P, Li T, Esposito A, Moats-Staats BM, Spagnoli A. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair. J Bone Miner Res 2015; 30:2014-27. [PMID: 25967044 PMCID: PMC4970512 DOI: 10.1002/jbmr.2548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far-reaching implications for understanding mechanisms regulating the selective recruitment of distinct cells into the repairing niches and the development of novel pharmacological (by targeting BMP2/CXCL12) and cellular (MSCs, endosteal cells) interventions to promote fracture healing.
Collapse
Affiliation(s)
- Timothy J Myers
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lara Longobardi
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helen Willcockson
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Temple
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Lidia Tagliafierro
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ping Ye
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tieshi Li
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Alessandra Esposito
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Billie M Moats-Staats
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna Spagnoli
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
38
|
Herberg S, Aguilar-Perez A, Howie RN, Kondrikova G, Periyasamy-Thandavan S, Elsalanty ME, Shi X, Hill WD, Cray JJ. Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects. J Tissue Eng Regen Med 2015; 11:1806-1819. [PMID: 26227988 DOI: 10.1002/term.2078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/28/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023]
Abstract
Bone has the potential for spontaneous healing. This process, however, often fails in patients with comorbidities. Tissue engineering combining functional cells, biomaterials and osteoinductive cues may provide alternative treatment strategies. We have recently demonstrated that stromal cell-derived factor-1β (SDF-1β) works in concert with bone morphogenetic protein-2 (BMP-2) to potentiate osteogenic differentiation of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). Here, we test the hypothesis that SDF-1β overexpressed in Tet-Off-SDF-1β BMSCs, delivered on acellular dermal matrix (ADM), synergistically augments BMP-2-induced healing of critical-sized mouse calvarial defects. BMSC therapies alone showed limited bone healing, which was increased with co-delivery of BMP-2. This was further enhanced in Tet-Off-SDF-1β BMSCs + BMP-2. Only limited BMSC retention on ADM constructs was observed after 4 weeks in vivo, which was increased with BMP-2 co-delivery. In vitro cell proliferation studies showed that supplementing BMP-2 to Tet-Off BMSCs significantly increased the cell number during the first 24 h. Consequently, the increased cell numbers decreased the detectable BMP-2 levels in the medium, but increased cell-associated BMP-2. The data suggest that SDF-1β provides synergistic effects supporting BMP-2-induced, BMSC-mediated bone formation and appears suitable for optimization of bone augmentation in combination therapy protocols. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Aguilar-Perez
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Cellular and Molecular Biology, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - R Nicole Howie
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | | | - Mohammed E Elsalanty
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Xingming Shi
- Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA.,Charlie Norwood VA Medical Centre, Augusta, GA, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
39
|
|
40
|
Hwang HD, Lee JT, Koh JT, Jung HM, Lee HJ, Kwon TG. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects. Tissue Eng Part A 2015; 21:2125-35. [PMID: 25919507 DOI: 10.1089/ten.tea.2014.0571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways and enhanced cell migration. These results suggest that sequential treatment with the cytokines, SDF-1 and BMP-2, may be a promising strategy for accelerating bone regeneration in critical size defects.
Collapse
Affiliation(s)
- Hee-Don Hwang
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Jung-Tae Lee
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Jeong-Tae Koh
- 2 Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University , Gwangju, Republic of Korea
| | - Hong-Moon Jung
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Heon-Jin Lee
- 3 Department of Oral Microbiology, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Tae-Geon Kwon
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
41
|
Herberg S, Kondrikova G, Hussein KA, Johnson MH, Elsalanty ME, Shi X, Hamrick MW, Isales CM, Hill WD. Mesenchymal stem cell expression of stromal cell-derived factor-1β augments bone formation in a model of local regenerative therapy. J Orthop Res 2015; 33:174-84. [PMID: 25351363 PMCID: PMC4706461 DOI: 10.1002/jor.22749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone has the potential for spontaneous healing. However, this process often fails in patients with co-morbidities requiring clinical intervention. Numerous studies have revealed that bone marrow-derived mesenchymal stem/stromal cells (BMSCs) hold great potential for regenerative therapies. Common problems include poor cell engraftment, which can be addressed by irradiation prior to transplantation. Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1) is involved in bone formation. However, osteogenic contributions of the beta splice variant of SDF-1 (SDF-1β), which is highly expressed in bone, remain unclear. Using the tetracycline (Tet)-regulatory system we have shown that SDF-1β enhances BMSC osteogenic differentiation in vitro. Here we test the hypothesis that SDF-1β augments bone formation in vivo in a model of local BMSC transplantation following irradiation. We found that SDF-1β, expressed at high levels in Tet-Off-SDF-1β BMSCs, augments the cell-mediated therapeutic effects resulting in enhanced bone formation, as evidenced by ex vivo μCT and bone histomorphometry. The data demonstrate the specific contribution of SDF-1β to BMSC-mediated bone formation, and validate the feasibility of the Tet-Off technology to regulate SDF-1β expression in vivo. In conclusion, SDF-1β provides potent synergistic effects supporting BMSC-mediated bone formation and appears a suitable candidate for optimization of bone augmentation in translational protocols.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., CB-1119, Augusta, Georgia 30912,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Khaled A. Hussein
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia
| | - Maribeth H. Johnson
- Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, Georgia,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia
| | - Mohammed E. Elsalanty
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia
| | - Xingming Shi
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., CB-1119, Augusta, Georgia 30912,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia
| | - Carlos M. Isales
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - William D. Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., CB-1119, Augusta, Georgia 30912,Charlie Norwood VA Medical Center, Augusta, Georgia,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia,Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
42
|
Kawakami Y, Ii M, Matsumoto T, Kuroda R, Kuroda T, Kwon SM, Kawamoto A, Akimaru H, Mifune Y, Shoji T, Fukui T, Kurosaka M, Asahara T. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing. J Bone Miner Res 2015; 30:95-105. [PMID: 25130304 DOI: 10.1002/jbmr.2318] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal-derived-factor 1 (SDF-1). SDF-1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF-1/CXCR4 pathway in Tie2-lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2-Cre(ER) CXCR4 knockout mice (CXCR4(-/-) ) and wild-type mice (WT). We report here that in vitro, EPCs derived from of CXCR4(-/-) mouse bone marrow demonstrated severe reduction of migration activity and EPC colony-forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4(-/-) group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4(-/-) group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4(-/-) group. Especially, CXCR4(-/-) group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real-time RT-PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE-cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4(-/-) group. In the gain-of-function study, the fracture in the SDF-1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF-1 injected CXCR4(-/-) group. We demonstrated that an EPC SDF-1/CXCR4 axis plays an important role in bone fracture healing using Tie2-Cre(ER) CXCR4 conditional knockout mice.
Collapse
Affiliation(s)
- Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Japan; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Herberg S, Kondrikova G, Periyasamy-Thandavan S, Howie RN, Elsalanty ME, Weiss L, Campbell P, Hill WD, Cray JJ. Inkjet-based biopatterning of SDF-1β augments BMP-2-induced repair of critical size calvarial bone defects in mice. Bone 2014; 67:95-103. [PMID: 25016095 PMCID: PMC4149833 DOI: 10.1016/j.bone.2014.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND A major problem in craniofacial surgery is non-healing bone defects. Autologous reconstruction remains the standard of care for these cases. Bone morphogenetic protein-2 (BMP-2) therapy has proven its clinical utility, although non-targeted adverse events occur due to the high milligram-level doses used. Ongoing efforts explore the use of different growth factors, cytokines, or chemokines, as well as co-therapy to augment healing. METHODS Here we utilize inkjet-based biopatterning to load acellular DermaMatrix delivery matrices with nanogram-level doses of BMP-2, stromal cell-derived factor-1β (SDF-1β), transforming growth factor-β1 (TGF-β1), or co-therapies thereof. We tested the hypothesis that bioprinted SDF-1β co-delivery enhances BMP-2 and TGF-β1-driven osteogenesis both in-vitro and in-vivo using a mouse calvarial critical size defect (CSD) model. RESULTS Our data showed that BMP-2 bioprinted in low-doses induced significant new bone formation by four weeks post-operation. TGF-β1 was less effective compared to BMP-2, and SDF-1β therapy did not enhance osteogenesis above control levels. However, co-delivery of BMP-2+SDF-1β was shown to augment BMP-2-induced bone formation compared to BMP-2 alone. In contrast, co-delivery of TGF-β1+SDF-1β decreased bone healing compared to TGF-β1 alone. This was further confirmed in vitro by osteogenic differentiation studies using MC3T3-E1 pre-osteoblasts. CONCLUSIONS Our data indicates that sustained release delivery of a low-dose growth factor therapy using biopatterning technology can aid in healing CSD injuries. SDF-1β augments the ability for BMP-2 to drive healing, a result confirmed in vivo and in vitro; however, because SDF-1β is detrimental to TGF-β1-driven osteogenesis, its effect on osteogenesis is not universal.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | | | - R Nicole Howie
- Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Lee Weiss
- The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Pittsburgh, PA, USA
| | - Phil Campbell
- The Institute for Complex Engineered Systems, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Pittsburgh, PA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - James J Cray
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; Department of Orthodontics and Surgery, Division of Plastic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA.
| |
Collapse
|
44
|
Das A, Barker DA, Wang T, Lau CM, Lin Y, Botchwey EA. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair. PLoS One 2014; 9:e101276. [PMID: 25077607 PMCID: PMC4117484 DOI: 10.1371/journal.pone.0101276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/04/2014] [Indexed: 01/07/2023] Open
Abstract
In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.
Collapse
Affiliation(s)
- Anusuya Das
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel A. Barker
- Department of Otolaryngology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tiffany Wang
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Cheryl M. Lau
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yong Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edward A. Botchwey
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
45
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
46
|
Herberg S, Susin C, Pelaez M, Howie RN, Moreno de Freitas R, Lee J, Cray JJ, Johnson MH, Elsalanty ME, Hamrick MW, Isales CM, Wikesjö UME, Hill WD. Low-dose bone morphogenetic protein-2/stromal cell-derived factor-1β cotherapy induces bone regeneration in critical-size rat calvarial defects. Tissue Eng Part A 2014; 20:1444-53. [PMID: 24341891 DOI: 10.1089/ten.tea.2013.0442] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1/CXCL12) is involved in bone formation, though underlying molecular mechanisms remain to be fully elucidated. Also, contributions of SDF-1β, the second most abundant splice variant, as an osteogenic mediator remain obscure. We have shown that SDF-1β enhances osteogenesis by regulating bone morphogenetic protein-2 (BMP-2) signaling in vitro. Here we investigate the dose-dependent contribution of SDF-1β to suboptimal BMP-2-induced local bone formation; that is, a dose that alone would be too low to significantly induce bone formation. We utilized a critical-size rat calvarial defect model and tested the hypotheses that SDF-1β potentiates BMP-2 osteoinduction and that blocking SDF-1 signaling reduces the osteogenic potential of BMP-2 in vivo. In preliminary studies, radiographic analysis at 4 weeks postsurgery revealed a dose-dependent relationship in BMP-2-induced new bone formation. We then found that codelivery of SDF-1β potentiates suboptimal BMP-2 (0.5 μg) osteoinduction in a dose-dependent order, reaching comparable levels to the optimal BMP-2 dose (5.0 μg) without apparent adverse effects. Blocking the CXC chemokine receptor 4 (CXCR4)/SDF-1 signaling axis using AMD3100 attenuated the osteoinductive potential of the optimal BMP-2 dose, confirmed by qualitative histologic analysis. In conclusion, SDF-1β provides potent synergistic effects that support BMP-induced local bone formation and thus appears a suitable candidate for optimization of bone augmentation using significantly lower amounts of BMP-2 in spine, orthopedic, and craniofacial settings.
Collapse
|
47
|
Jung YK, Kim GW, Park HR, Lee EJ, Choi JY, Beier F, Han SW. Role of interleukin-10 in endochondral bone formation in mice: anabolic effect via the bone morphogenetic protein/Smad pathway. ACTA ACUST UNITED AC 2014; 65:3153-64. [PMID: 24022823 DOI: 10.1002/art.38181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Interleukin-10 (IL-10) is a pleiotropic immunoregulatory cytokine with a chondroprotective effect that is elevated in cartilage and synovium in patients with osteoarthritis. However, the role of IL-10 during endochondral bone formation and its mechanism of action have not been elucidated. METHODS IL-10(-/-) mice and IL-10-treated tibial organ cultures were used to study loss and gain of IL-10 functions, respectively, during endochondral bone formation. Primary chondrocytes from the long bones of mouse embryos were cultured with and without IL-10. To assess the role of IL-10 in chondrogenic differentiation, we conducted mesenchymal cell micromass cultures. RESULTS The lengths of whole skeletons from IL-10(-/-) mice were similar to those of their wild-type littermates, although their skull diameters were smaller. The tibial growth plates of IL-10(-/-) mice showed shortening of the proliferating zone. Treatment with IL-10 significantly increased tibial lengths in organ culture. IL-10 also induced chondrocyte proliferation and hypertrophic differentiation in primary chondrocytes in vitro. Mechanistically, IL-10 activated STAT-3 and the Smad1/5/8 and ERK-1/2 MAP kinase pathways and induced the expression of bone morphogenetic protein 2 (BMP-2) and BMP-6 in primary chondrocytes. Furthermore, the blocking of BMP signaling attenuated the IL-10-mediated induction of cyclin D1 and RUNX-2 in primary chondrocytes and suppressed Alcian blue and alkaline phosphatase staining in mesenchymal cell micromass cultures. CONCLUSION These results indicate that IL-10 acts as a stimulator of chondrocyte proliferation and chondrogenic or hypertrophic differentiation via activation of the BMP signaling pathway.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Fatima Research Institute and Daegu Fatima Hospital, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim DS, Kim YS, Bae WJ, Lee HJ, Chang SW, Kim WS, Kim EC. The role of SDF-1 and CXCR4 on odontoblastic differentiation in human dental pulp cells. Int Endod J 2013; 47:534-41. [DOI: 10.1111/iej.12182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/12/2013] [Indexed: 01/02/2023]
Affiliation(s)
- D. S. Kim
- Department of Conservative Dentistry; School of Dentistry; Kyung Hee University; Seoul Korea
| | - Y. S. Kim
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| | - W. J. Bae
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| | - H. J. Lee
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| | - S. W. Chang
- Department of Conservative Dentistry; School of Dentistry; Kyung Hee University; Seoul Korea
| | - W. S. Kim
- Department of Periodontology; School of Dentistry; Wonkwang University; Iksan Korea
| | - E. C. Kim
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| |
Collapse
|
49
|
Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Int J Biochem Cell Biol 2013; 45:1813-20. [DOI: 10.1016/j.biocel.2013.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/16/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022]
|
50
|
Liu C, Weng Y, Yuan T, Zhang H, Bai H, Li B, Yang D, Zhang R, He F, Yan S, Zhan X, Shi Q. CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells. Int J Med Sci 2013; 10:1181-92. [PMID: 23935395 PMCID: PMC3739017 DOI: 10.7150/ijms.6657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal progenitor stem cells (MPCs) are a group of bone marrow stromal progenitor cells processing osteogenic, chondrogenic, adipogenic and myogenic lineages differentiations. Previous studies have demonstrated that bone morphogeneic protein 9(BMP9) is one of the most osteogenic BMPs both in vitro and in vivo, however, the underlying molecular mechanism of osteogenesis induced by BMP9 is needed to be deep explored. Here, we used the recombinant adenoviruses assay to introduce BMP9 into C3H10T1/2 mesenchymal stem cells to elucidate the role of CXCL12/CXCR4 signal axis during BMP9-incuced osteogenic differentiation. The results showed that CXCL12 and CXCR4 expressions were down-regulated at the stage of BMP9-induced osteogenic differentiation, in a dose- and time-dependent. Pretreatment of C3H10T1/2 cells with CXCL12/CXCR4 could significantly affect the early and mid osteogenic markers alkaline phosphatase (ALP), osteocalcin (OCN), the transcription factors of Runx2, Osx, Plzf and Dlx5 expression, through activating the Smad, MAPK signaling pathway. Addition of exogenous CXCL12 did not affect the changes of the late osteogenic marker calcium deposition. Thus, our findings suggest a co-requirement of the CXCL12/CXCR4 signal axis in BMP9-induced the early- and mid-process of osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Chen Liu
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yaguang Weng
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taixian Yuan
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Zhang
- 2. Department of Laboratory Medicine, Jinan Sixth Hospital, Zhangqiu250200, China
| | - Huili Bai
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Baolin Li
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dandan Yang
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruyi Zhang
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fang He
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shujuan Yan
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqin Zhan
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiong Shi
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|