1
|
Moutoussamy E, Khan HM, Roberts MF, Gershenson A, Chipot C, Reuter N. Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C. J Chem Inf Model 2022; 62:6602-6613. [PMID: 35343689 PMCID: PMC9795555 DOI: 10.1021/acs.jcim.1c01543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-μs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.
Collapse
Affiliation(s)
- Emmanuel
E. Moutoussamy
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Hanif M. Khan
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Mary F. Roberts
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Christophe Chipot
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n 7019, Université
de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France,Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
| | - Nathalie Reuter
- Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway,Department
of Chemistry, University of Bergen, N-5020 Bergen, Norway,
| |
Collapse
|
2
|
Khan HM, Souza PCT, Thallmair S, Barnoud J, de Vries AH, Marrink SJ, Reuter N. Capturing Choline-Aromatics Cation-π Interactions in the MARTINI Force Field. J Chem Theory Comput 2020; 16:2550-2560. [PMID: 32096995 PMCID: PMC7175457 DOI: 10.1021/acs.jctc.9b01194] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Cation−π
interactions play an important
role in biomolecular recognition, including interactions between membrane
phosphatidylcholine lipids and aromatic amino acids of peripheral
proteins. While molecular mechanics coarse grain (CG) force fields
are particularly well suited to simulate membrane proteins in general,
they are not parameterized to explicitly reproduce cation−π
interactions. We here propose a modification of the polarizable MARTINI
coarse grain (CG) model enabling it to model membrane binding events
of peripheral proteins whose aromatic amino acid interactions with
choline headgroups are crucial for their membrane binding. For this
purpose, we first collected and curated a dataset of eight peripheral
proteins from different families. We find that the MARTINI CG model
expectedly underestimates aromatics–choline interactions and
is unable to reproduce membrane binding of the peripheral proteins
in our dataset. Adjustments of the relevant interactions in the polarizable
MARTINI force field yield significant improvements in the observed
binding events. The orientation of each membrane-bound protein is
comparable to reference data from all-atom simulations and experimental
binding data. We also use negative controls to ensure that choline–aromatics
interactions are not overestimated. We finally check that membrane
properties, transmembrane proteins, and membrane translocation potential
of mean force (PMF) of aromatic amino acid side-chain analogues are
not affected by the new parameter set. This new version “MARTINI
2.3P” is a significant improvement over its predecessors and
is suitable for modeling membrane proteins including peripheral membrane
binding of peptides and proteins.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.,Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
3
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Toxins (Basel) 2017; 9:toxins9040135. [PMID: 28417942 PMCID: PMC5408209 DOI: 10.3390/toxins9040135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components.
Collapse
|
5
|
Khan HM, He T, Fuglebakk E, Grauffel C, Yang B, Roberts MF, Gershenson A, Reuter N. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophys J 2016; 110:1367-78. [PMID: 27028646 PMCID: PMC4816757 DOI: 10.1016/j.bpj.2016.02.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/01/2022] Open
Abstract
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Boqian Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Parui S, Manna RN, Jana B. Destabilization of Hydrophobic Core of Chicken Villin Headpiece in Guanidinium Chloride Induced Denaturation: Hint of π-Cation Interaction. J Phys Chem B 2016; 120:9599-607. [DOI: 10.1021/acs.jpcb.6b06325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sridip Parui
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Rabindra Nath Manna
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
7
|
Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 2013; 96:144-57. [PMID: 23856562 DOI: 10.1016/j.biochi.2013.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) cleaves, in a Ca(2+)-dependent manner, phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) into diacylglycerol (DAG) and inositol triphosphate (IP3). PI-PLCs are multidomain proteins that are structurally related to the PI-PLCζs, the simplest animal PI-PLCs. Like these animal counterparts, they are only composed of EF-hand, X/Y and C2 domains. However, plant PI-PLCs do not have a conventional EF-hand domain since they are often truncated, while some PI-PLCs have no EF-hand domain at all. Despite this simple structure, plant PI-PLCs are involved in many essential plant processes, either associated with development or in response to environmental stresses. The action of PI-PLCs relies on the mediators they produce. In plants, IP3 does not seem to be the sole active soluble molecule. Inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) also transmit signals, thus highlighting the importance of coupling PI-PLC action with inositol-phosphate kinases and phosphatases. PI-PLCs also produce a lipid molecule, but plant PI-PLC pathways show a peculiarity in that the active lipid does not appear to be DAG but its phosphorylated form, phosphatidic acid (PA). Besides, PI-PLCs can also act by altering their substrate levels. Taken together, plant PI-PLCs show functional differences when compared to their animal counterparts. However, they act on similar general signalling pathways including calcium homeostasis and cell phosphoproteome. Several important questions remain unanswered. The cross-talk between the soluble and lipid mediators generated by plant PI-PLCs is not understood and how the coupling between PI-PLCs and inositol-kinases or DAG-kinases is carried out remains to be established.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
8
|
Grauffel C, Yang B, He T, Roberts MF, Gershenson A, Reuter N. Cation-π interactions as lipid-specific anchors for phosphatidylinositol-specific phospholipase C. J Am Chem Soc 2013; 135:5740-50. [PMID: 23506313 PMCID: PMC3797534 DOI: 10.1021/ja312656v] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amphitropic proteins, such as the virulence factor phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis , often depend on lipid-specific recognition of target membranes. However, the recognition mechanisms for zwitterionic lipids, such as phosphatidylcholine, which is enriched in the outer leaflet of eukaryotic cells, are not well understood. A 500 ns long molecular dynamics simulation of PI-PLC at the surface of a lipid bilayer revealed a strikingly high number of interactions between tyrosines at the interfacial binding site and lipid choline groups with structures characteristic of cation-π interactions. Membrane affinities of PI-PLC tyrosine variants mostly tracked the simulation results, falling into two classes: (i) those with minor losses in affinity, Kd(mutant)/Kd(wild-type) ≤ 5 and (ii) those where the apparent Kd was 50-200 times higher than wild-type. Estimating ΔΔG for these Tyr/PC interactions from the apparent Kd values reveals that the free energy associated with class I is ~1 kcal/mol, comparable to the value predicted by the Wimley-White hydrophobicity scale. In contrast, removal of class II tyrosines has a higher energy cost: ~2.5 kcal/mol toward pure PC vesicles. These higher energies correlate well with the occupancy of the cation-π adducts throughout the MD simulation. Together, these results strongly indicate that PI-PLC interacts with PC headgroups via cation-π interactions with tyrosine residues and suggest that cation-π interactions at the interface may be a mechanism for specific lipid recognition by amphitropic and membrane proteins.
Collapse
Affiliation(s)
- Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Norway
- Computational Biology Unit, Uni Research, Bergen, Norway
| | - Boqian Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, U.S.A
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, U.S.A
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Norway
- Computational Biology Unit, Uni Research, Bergen, Norway
| |
Collapse
|
9
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
10
|
Awasthi M, Batra J, Kateriya S. Disulphide bridges of phospholipase C of Chlamydomonas reinhardtii modulates lipid interaction and dimer stability. PLoS One 2012; 7:e39258. [PMID: 22737232 PMCID: PMC3380823 DOI: 10.1371/journal.pone.0039258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC) specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC) can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s) in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE This study helps in establishing the role of CrPLC (or similar proteins) in the quaternary structure of the molecule its affinities during lipid interactions.
Collapse
Affiliation(s)
- Mayanka Awasthi
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Jyoti Batra
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
11
|
Pu M, Orr A, Redfield AG, Roberts MF. Defining specific lipid binding sites for a peripheral membrane protein in situ using subtesla field-cycling NMR. J Biol Chem 2010; 285:26916-26922. [PMID: 20576615 DOI: 10.1074/jbc.m110.123083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the profound physiological consequences associated with peripheral membrane protein localization, only a rudimentary understanding of the interactions of proteins with membrane surfaces exists because these questions are inaccessible by commonly used structural techniques. Here, we combine high resolution field-cycling (31)P NMR relaxation methods with spin-labeled proteins to delineate specific interactions of a bacterial phospholipase C with phospholipid vesicles. Unexpectedly, discrete binding sites for both a substrate analogue and a different phospholipid (phosphatidylcholine) known to activate the enzyme are observed. The lifetimes for the occupation of these sites (when the protein is anchored transiently to the membrane) are >1-2 micros (but <1 ms), which represents the first estimate of an off-rate for a lipid dissociating from a specific site on the protein and returning to the bilayer. Furthermore, analyses of the spin-label induced NMR relaxation corroborates the presence of a discrete tyrosine-rich phosphatidylcholine binding site whose location is consistent with that suggested by modeling studies. The methodology illustrated here may be extended to a wide range of peripheral membrane proteins.
Collapse
Affiliation(s)
- Mingming Pu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465
| | - Andrew Orr
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465
| | - Alfred G Redfield
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 024547
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02465.
| |
Collapse
|
12
|
O'Connor Butler ES, Mazerik JN, Cruff JP, Sherwani SI, Weis BK, Marsh CB, Raghavamenon AC, Uppu RM, Schmid HHO, Parinandi NL. Lipoxygenase-catalyzed phospholipid peroxidation: preparation, purification, and characterization of phosphatidylinositol peroxides. Methods Mol Biol 2010; 610:387-401. [PMID: 20013191 DOI: 10.1007/978-1-60327-029-8_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The importance of understanding the mechanisms of modulation of cellular signaling cascades by the peroxidized membrane phospholipids (PLs) is well recognized. The enzyme-catalyzed peroxidation of PLs, as opposed to their oxidation by air and metal catalysis, is well controlled and rapid and yields well-defined PL peroxides which are highly desirable for biological studies. Therefore, here, we chose bovine liver phosphatidylinositol (PI), a crucial membrane PL which acts as the substrate for phospholipase C in cellular signal transduction, as a model membrane PL. We successfully generated the PI peroxides with soybean type-I lipoxygenase (LOX) in the presence of deoxycholate, which facilitates the LOX-mediated peroxidation of the polyunsaturated fatty acids esterified to the PL. The LOX-peroxidized PI, after enzymatic catalysis, was separated from the unoxidized PI in the reaction mixture by normal-phase, high-performance liquid chromatography (HPLC). The extent of LOX-mediated peroxidation of PI following HPLC purification was established by the analysis of lipid phosphorus, conjugated dienes by UV spectrophotometry, peroxides, and loss of fatty acids by gas chromatography. This study established the optimal conditions yielding approximately 46% of peroxidized PI from 300 microg of neat bovine liver PI that was peroxidized by soybean type-I LOX (50 microg) for 30 min in borate buffer (0.2 M, pH 9.0) containing 10 mM deoxycholate.
Collapse
Affiliation(s)
- E Susan O'Connor Butler
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pu M, Roberts MF, Gershenson A. Fluorescence correlation spectroscopy of phosphatidylinositol-specific phospholipase C monitors the interplay of substrate and activator lipid binding. Biochemistry 2009; 48:6835-45. [PMID: 19548649 DOI: 10.1021/bi900633p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes simultaneously interact with the substrate, PI, and with nonsubstrate lipids such as phosphatidylcholine (PC). For Bacillus thuringiensis PI-PLC these interactions are synergistic with maximal catalytic activity observed at low to moderate mole fractions of PC (X(PC)) and maximal binding occurring at low mole fractions of anionic lipids. It has been proposed that residues in alpha-helix B help to modulate membrane binding and that dimerization on the membrane surface both increases affinity for PC and activates PI-PLC, yielding the observed PI/PC synergy. Vesicle binding and activity measurements using a variety of PI-PLC mutants support many aspects of this model and reveal that while single mutations can disrupt anionic lipid binding and the anionic lipid/PC synergy, the residues important for PC binding are less localized. Interestingly, at high X(PC) mutations can both decrease membrane affinity and increase activity, supporting a model where reductions in wild-type activity at X(PC) > 0.6 result from both dilution of the substrate and tight membrane binding of PI-PLC, limiting enzyme hopping or scooting to the next substrate molecule. These results provide a direct analysis of vesicle binding and catalytic activity and shed light on how occupation of the activator site enhances enzymatic activity.
Collapse
Affiliation(s)
- Mingming Pu
- Department of Chemistry, Boston College, Boston, Massachusetts 02467, USA
| | | | | |
Collapse
|
14
|
Ahn KH, Bertalovitz AC, Mierke DF, Kendall DA. Dual role of the second extracellular loop of the cannabinoid receptor 1: ligand binding and receptor localization. Mol Pharmacol 2009; 76:833-42. [PMID: 19643997 DOI: 10.1124/mol.109.057356] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The seven transmembrane alpha-helices of G protein-coupled receptors (GPCRs) are the hallmark of this superfamily. Intrahelical interactions are critical to receptor assembly and, for the GPCR subclass that binds small molecules, ligand binding. Most research has focused on identifying the ligand binding pocket within the helical bundle, whereas the role of the extracellular loops remains undefined. Molecular modeling of the cannabinoid receptor 1 (CB1) extracellular loop 2 (EC2), however, suggests that EC2 is poised for key interactions. To test this possibility, we employed alanine scanning mutagenesis of CB1 EC2 and identified two distinct regions critical for ligand binding, G protein coupling activity, and receptor trafficking. Receptors with mutations in the N terminus of EC2 (W255A, N256A) were retained in the endoplasmic reticulum and did not bind the agonist (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)-phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP55940) or the inverse agonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). In contrast, the C terminus of EC2 differentiates agonist and inverse agonist; the P269A, H270A, and I271A receptors exhibited diminished binding for several agonists but bound inverse agonists SR141716A, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and 4-[6-methoxy-2-(4-methoxyphenyl)benzofuran-3-carbonyl]benzonitrile (LY320135) with wild-type receptor affinity. The F268A receptor involving substitution in the Cys-X-X-X-Ar motif, displayed both impaired localization and ligand binding. Other amino acid substitutions at position 268 revealed that highly hydrophobic residues are required to accomplish both functions. It is noteworthy that a F268W receptor was trafficked to the cell surface yet displayed differential binding preference for inverse agonists comparable with the P269A, H270A, and I271A receptors. The findings are consistent with a dual role for EC2 in stabilizing receptor assembly and in ligand binding.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | |
Collapse
|
15
|
Shi X, Shao C, Zhang X, Zambonelli C, Redfield AG, Head JF, Seaton BA, Roberts MF. Modulation of Bacillus thuringiensis phosphatidylinositol-specific phospholipase C activity by mutations in the putative dimerization interface. J Biol Chem 2009; 284:15607-18. [PMID: 19369255 DOI: 10.1074/jbc.m901601200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pu M, Fang X, Redfield AG, Gershenson A, Roberts MF. Correlation of vesicle binding and phospholipid dynamics with phospholipase C activity: insights into phosphatidylcholine activation and surface dilution inhibition. J Biol Chem 2009; 284:16099-16107. [PMID: 19336401 DOI: 10.1074/jbc.m809600200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic activity of the peripheral membrane protein, phosphatidylinositol-specific phospholipase C (PI-PLC), is increased by nonsubstrate phospholipids with the extent of enhancement tuned by the membrane lipid composition. For Bacillus thuringiensis PI-PLC, a small amount of phosphatidylcholine (PC) activates the enzyme toward its substrate PI; above 0.5 mol fraction PC (XPC), enzyme activity decreases substantially. To provide a molecular basis for this PC-dependent behavior, we used fluorescence correlation spectroscopy to explore enzyme binding to multicomponent lipid vesicles composed of PC and anionic phospholipids (that bind to the active site as substrate analogues) and high resolution field cycling 31P NMR methods to estimate internal correlation times (tauc) of phospholipid headgroup motions. PI-PLC binds poorly to pure anionic phospholipid vesicles, but 0.1 XPC significantly enhances binding, increases PI-PLC activity, and slows nanosecond rotational/wobbling motions of both phospholipid headgroups, as indicated by increased tauc. PI-PLC activity and phospholipid tauc are constant between 0.1 and 0.5 XPC. Above this PC content, PI-PLC has little additional effect on the substrate analogue but further slows the PC tauc, a motional change that correlates with the onset of reduced enzyme activity. For PC-rich bilayers, these changes, together with the reduced order parameter and enhanced lateral diffusion of the substrate analogue in the presence of PI-PLC, imply that at high XPC, kinetic inhibition of PI-PLC results from intravesicle sequestration of the enzyme from the bulk of the substrate. Both methodologies provide a detailed view of protein-lipid interactions and can be readily adapted for other peripheral membrane proteins.
Collapse
Affiliation(s)
- Mingming Pu
- From Boston College, Chestnut Hill, Massachusetts 02467
| | - Xiaomin Fang
- Brandeis University, Waltham, Massachusetts 02454
| | | | | | - Mary F Roberts
- From Boston College, Chestnut Hill, Massachusetts 02467.
| |
Collapse
|
17
|
Jerga A, Miller DJ, White SW, Rock CO. Molecular determinants for interfacial binding and conformational change in a soluble diacylglycerol kinase. J Biol Chem 2008; 284:7246-54. [PMID: 19112175 DOI: 10.1074/jbc.m805962200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DgkB is a soluble diacylglycerol (DAG) kinase that is essential for membrane lipid homeostasis in many Gram-positive pathogens. Anionic phospholipids, like phosphatidylglycerol (PtdGro), were required for DgkB to recognize diacylglycerol embedded in a phospholipid bilayer. An activity-independent vesicle binding assay was used to determine the role of specific residues in DgkB-PtdGro interactions. Lys15 and Lys165 were required for DgkB to dock with PtdGro vesicles and flank the entrance to the DgkB active site. Mg2+ was required for vesicle binding. The compromised vesicle binding by mutants in the key asparate residues forming the structural Mg2+-aspartate-water network within the substrate binding domain revealed that interfacial binding of DgkB required a Mg2+-dependent conformational change. DgkB interaction with phospholipid vesicles was not influenced by the presence of ATP, but anionic vesicles decreased the Km of the enzyme for ATP. Arg100 and Lys15 are two surface residues in the ATP binding domain that were necessary for high affinity ATP binding. The key residues responsible for the structural Mg2+ binding site, the conformational changes that increase ATP affinity, and interfacial recognition of anionic phospholipids were identical in DgkB and the mammalian diacylglycerol kinase catalytic cores. This sequence conservation suggests that the mammalian enzymes also require a structural divalent cation and surface positively charged residues to bind phospholipid bilayers and trigger conformational changes that accelerate catalysis.
Collapse
Affiliation(s)
- Agoston Jerga
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
18
|
Guo S, Zhang X, Seaton BA, Roberts MF. Role of helix B residues in interfacial activation of a bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 2008; 47:4201-10. [PMID: 18345643 DOI: 10.1021/bi702269u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), an interfacial enzyme associated with prokaryotic infectivity, is activated by binding to zwitterionic surfaces, particularly phosphatidycholine (PC). Two tryptophan residues (Trp47 in the two-turn helix B and Trp242 in a disordered loop) at the rim of the barrel structure are critical for this interaction. The helix B region (Ile43 to Gly48) in wild-type PI-PLC orients the side chains of Ile43 and Trp47 so that they pack together and form a hydrophobic protrusion from the protein surface that likely facilitates initial membrane binding. In previous studies we reported that in the crystal structure of the dimeric W47A/W242A mutant, which is unable to bind to PC, the helix B region has been reorganized by the mutation into an extended loop. Here we report the construction and characterization (catalytic activity, fluorescence, and NMR studies) of a series of PI-PLC mutants targeting helix B residues and surrounding regions to explore what is needed to stabilize the "membrane-active" conformation of the helix B region. Results strongly suggest that, while hydrophobic groups and presumably an intact helix B are critical for the initial binding of PI-PLC to membranes, disruption of helix B to allow enzyme dimerization is what leads to the activated PI-PLC conformation.
Collapse
Affiliation(s)
- Su Guo
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | |
Collapse
|