1
|
Henkel M, Fillbrunn A, Marchand V, Raghunathan G, Berthold MR, Motorin Y, Marx A. A DNA Polymerase Variant Senses the Epigenetic Marker 5-Methylcytosine by Increased Misincorporation. Angew Chem Int Ed Engl 2024; 63:e202413304. [PMID: 39449390 DOI: 10.1002/anie.202413304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 10/26/2024]
Abstract
Dysregulation of DNA methylation is associated with human disease, particularly cancer, and the assessment of aberrant methylation patterns holds great promise for clinical diagnostics. However, DNA polymerases do not effectively discriminate between processing 5-methylcytosine (5 mC) and unmethylated cytosine, resulting in the silencing of methylation information during amplification or sequencing. As a result, current detection methods require multi-step DNA conversion treatments or careful analysis of sequencing data to decipher individual 5 mC bases. To overcome these challenges, we propose a novel DNA polymerase-mediated 5 mC detection approach. Here, we describe the engineering of a thermostable DNA polymerase variant derived from Thermus aquaticus with altered fidelity towards 5 mC. Using a screening-based evolutionary approach, we have identified a DNA polymerase that exhibits increased misincorporation towards 5 mC during DNA synthesis. This DNA polymerase generates mutation signatures at methylated CpG sites, allowing direct detection of 5 mC by reading an increased error rate after sequencing without prior treatment of the sample DNA.
Collapse
Affiliation(s)
- Melanie Henkel
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Alexander Fillbrunn
- Department of Computer Science, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Virginie Marchand
- Epitranscriptomics and Sequencing (EpiRNA-Seq) Core Facility, UAR2008/US40 Ingénierie Biologie Santé en Lorraine (IBSLor), CNRS-UL-INSERM, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandoeuvre-les-Nancy, France
| | - Govindan Raghunathan
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael R Berthold
- Department of Computer Science, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- KNIME AG, Talacker 50, 8001, Zurich, Switzerland
| | - Yuri Motorin
- Epitranscriptomics and Sequencing (EpiRNA-Seq) Core Facility, UAR2008/US40 Ingénierie Biologie Santé en Lorraine (IBSLor), CNRS-UL-INSERM, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandoeuvre-les-Nancy, France
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS-Université de Lorraine, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505, Vandoeuvre-les-Nancy, France
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Huber LB, Betz K, Marx A. Reverse Transcriptases: From Discovery and Applications to Xenobiology. Chembiochem 2023; 24:e202200521. [PMID: 36354312 DOI: 10.1002/cbic.202200521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.
Collapse
Affiliation(s)
- Luisa B Huber
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
3
|
Feng S, Liang L, Shen C, Lin D, Li J, Lyu L, Liang W, Zhong LL, Cook GM, Doi Y, Chen C, Tian GB. A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:354-367. [PMID: 35950213 PMCID: PMC9358013 DOI: 10.1016/j.omtn.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
A sharp increase in multidrug-resistant tuberculosis (MDR-TB) threatens human health. Spontaneous mutation in essential gene confers an ability of Mycobacterium tuberculosis resistance to anti-TB drugs. However, conventional laboratory strategies for identification and prediction of the mutations in this slowly growing species remain challenging. Here, by combining XCas9 nickase and the error-prone DNA polymerase A from M. tuberculosis, we constructed a CRISPR-guided DNA polymerase system, CAMPER, for effective site-directed mutagenesis of drug-target genes in mycobacteria. CAMPER was able to generate mutagenesis of all nucleotides at user-defined loci, and its bidirectional mutagenesis at nick sites allowed editing windows with lengths up to 80 nucleotides. Mutagenesis of drug-targeted genes in Mycobacterium smegmatis and M. tuberculosis with this system significantly increased the fraction of the antibiotic-resistant bacterial population to a level approximately 60- to 120-fold higher than that in unedited cells. Moreover, this strategy could facilitate the discovery of the mutation conferring antibiotic resistance and enable a rapid verification of the growth phenotype-mutation genotype association. Our data demonstrate that CAMPER facilitates targeted mutagenesis of genomic loci and thus may be useful for broad functions such as resistance prediction and development of novel TB therapies.
Collapse
|
4
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Christensen TA, Lee KY, Gottlieb SZP, Carrier MB, Leconte AM. Mutant polymerases capable of 2′ fluoro-modified nucleic acid synthesis and amplification with improved accuracy. RSC Chem Biol 2022; 3:1044-1051. [PMID: 35975008 PMCID: PMC9347352 DOI: 10.1039/d2cb00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Nonnatural nucleic acids (xeno nucleic acids, XNA) can possess several useful properties such as expanded reactivity and nuclease resistance, which can enhance the utility of DNA as a biotechnological tool. Native DNA polymerases are unable to synthesize XNA, so, in recent years mutant XNA polymerases have been engineered with sufficient activity for use in processes such as PCR. While substantial improvements have been made, accuracy still needs to be increased by orders of magnitude to approach natural error rates and make XNA polymerases useful for applications that require high fidelity. Here, we systematically evaluate leading Taq DNA polymerase mutants for their fidelity during synthesis of 2′F XNA. To further improve their accuracy, we add mutations that have been shown to increase the fidelity of wild-type Taq polymerases, to some of the best current XNA polymerases (SFM4–3, SFM4–6, and SFP1). The resulting polymerases show significant improvements in synthesis accuracy. In addition to generating more accurate XNA polymerases, this study also informs future polymerase engineering efforts by demonstrating that mutations that improve the accuracy of DNA synthesis may also have utility in improving the accuracy of XNA synthesis. Polymerases that have been evolved to synthesize 2′F XNA are often inaccurate. Here, we show that you can improve the accuracy of 2′F XNA polymerase synthesis by adding mutations previously found to improve the accuracy of natural DNA synthesis.![]()
Collapse
Affiliation(s)
- Trevor A. Christensen
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Kristi Y. Lee
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Simone Z. P. Gottlieb
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Mikayla B. Carrier
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Aaron M. Leconte
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| |
Collapse
|
6
|
Identification of Thermus aquaticus DNA polymerase variants with increased mismatch discrimination and reverse transcriptase activity from a smart enzyme mutant library. Sci Rep 2019; 9:590. [PMID: 30679705 PMCID: PMC6345897 DOI: 10.1038/s41598-018-37233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
DNA polymerases the key enzymes for several biotechnological applications. Obviously, nature has not evolved these enzymes to be compatible with applications in biotechnology. Thus, engineering of a natural scaffold of DNA polymerases may lead to enzymes improved for several applications. Here, we investigated a two-step approach for the design and construction of a combinatorial library of mutants of KlenTaq DNA polymerase. First, we selected amino acid sites for saturation mutagenesis that interact with the primer/template strands or are evolutionarily conserved. From this library, we identified mutations that little interfere with DNA polymerase activity. Next, these functionally active mutants were combined randomly to construct a second library with enriched sequence diversity. We reasoned that the combination of mutants that have minuscule effect on enzyme activity and thermostability, will result in entities that have an increased mutation load but still retain activity. Besides activity and thermostability, we screened the library for entities with two distinct properties. Indeed, we identified two different KlenTaq DNA polymerase variants that either exhibit increased mismatch extension discrimination or increased reverse transcription PCR activity, respectively.
Collapse
|
7
|
Deatherage DE, Leon D, Rodriguez ÁE, Omar SK, Barrick JE. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res 2018; 46:9236-9250. [PMID: 30137492 PMCID: PMC6158703 DOI: 10.1093/nar/gky751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
Unwanted evolution of designed DNA sequences limits metabolic and genome engineering efforts. Engineered functions that are burdensome to host cells and slow their replication are rapidly inactivated by mutations, and unplanned mutations with unpredictable effects often accumulate alongside designed changes in large-scale genome editing projects. We developed a directed evolution strategy, Periodic Reselection for Evolutionarily Reliable Variants (PResERV), to discover mutations that prolong the function of a burdensome DNA sequence in an engineered organism. Here, we used PResERV to isolate Escherichia coli cells that replicate ColE1-type plasmids with higher fidelity. We found mutations in DNA polymerase I and in RNase E that reduce plasmid mutation rates by 6- to 30-fold. The PResERV method implicitly selects to maintain the growth rate of host cells, and high plasmid copy numbers and gene expression levels are maintained in some of the evolved E. coli strains, indicating that it is possible to improve the genetic stability of cellular chassis without encountering trade-offs in other desirable performance characteristics. Utilizing these new antimutator E. coli and applying PResERV to other organisms in the future promises to prevent evolutionary failures and unpredictability to provide a more stable genetic foundation for synthetic biology.
Collapse
Affiliation(s)
- Daniel E Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dacia Leon
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Álvaro E Rodriguez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Salma K Omar
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity. PLoS One 2017; 12:e0183623. [PMID: 28832623 PMCID: PMC5568139 DOI: 10.1371/journal.pone.0183623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/08/2017] [Indexed: 12/01/2022] Open
Abstract
Fidelity and selectivity of DNA polymerases are critical determinants for the biology of life, as well as important tools for biotechnological applications. DNA polymerases catalyze the formation of DNA strands by adding deoxynucleotides to a primer, which is complementarily bound to a template. To ensure the integrity of the genome, DNA polymerases select the correct nucleotide and further extend the nascent DNA strand. Thus, DNA polymerase fidelity is pivotal for ensuring that cells can replicate their genome with minimal error. DNA polymerases are, however, further optimized for more specific biotechnological or diagnostic applications. Here we report on the semi-rational design of mutant libraries derived by saturation mutagenesis at single sites of a 3’-5’-exonuclease deficient variant of Thermococcus kodakaraensis DNA polymerase (KOD pol) and the discovery for variants with enhanced mismatch extension selectivity by screening. Sites of potential interest for saturation mutagenesis were selected by their proximity to primer or template strands. The resulting libraries were screened via quantitative real-time PCR. We identified three variants with single amino acid exchanges—R501C, R606Q, and R606W—which exhibited increased mismatch extension selectivity. These variants were further characterized towards their potential in mismatch discrimination. Additionally, the identified enzymes were also able to differentiate between cytosine and 5-methylcytosine. Our results demonstrate the potential in characterizing and developing DNA polymerases for specific PCR based applications in DNA biotechnology and diagnostics.
Collapse
|
9
|
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, Foster PL. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 2017; 17:704-714. [PMID: 27739533 DOI: 10.1038/nrg.2016.104] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As one of the few cellular traits that can be quantified across the tree of life, DNA-replication fidelity provides an excellent platform for understanding fundamental evolutionary processes. Furthermore, because mutation is the ultimate source of all genetic variation, clarifying why mutation rates vary is crucial for understanding all areas of biology. A potentially revealing hypothesis for mutation-rate evolution is that natural selection primarily operates to improve replication fidelity, with the ultimate limits to what can be achieved set by the power of random genetic drift. This drift-barrier hypothesis is consistent with comparative measures of mutation rates, provides a simple explanation for the existence of error-prone polymerases and yields a formal counter-argument to the view that selection fine-tunes gene-specific mutation rates.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Matthew S Ackerman
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Hongan Long
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Way Sung
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| |
Collapse
|
10
|
Rosenblum SL, Weiden AG, Lewis EL, Ogonowsky AL, Chia HE, Barrett SE, Liu MD, Leconte AM. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates. Chembiochem 2017; 18:816-823. [PMID: 28160372 DOI: 10.1002/cbic.201600701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/06/2022]
Abstract
Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Eliza L Lewis
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Susanna E Barrett
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mira D Liu
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| |
Collapse
|
11
|
Schultz HJ, Gochi AM, Chia HE, Ogonowsky AL, Chiang S, Filipovic N, Weiden AG, Hadley EE, Gabriel SE, Leconte AM. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition. Biochemistry 2015; 54:5999-6008. [PMID: 26334839 DOI: 10.1021/acs.biochem.5b00689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution.
Collapse
Affiliation(s)
- Hayley J Schultz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Andrea M Gochi
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Sharon Chiang
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Nedim Filipovic
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Emma E Hadley
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Sara E Gabriel
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| |
Collapse
|
12
|
Connelly CM, Porter LR, TerMaat JR. PCR amplification of a triple-repeat genetic target directly from whole blood in 15 minutes as a proof-of-principle PCR study for direct sample analysis for a clinically relevant target. BMC MEDICAL GENETICS 2014; 15:130. [PMID: 25495904 PMCID: PMC4411754 DOI: 10.1186/s12881-014-0130-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/24/2014] [Indexed: 01/12/2023]
Abstract
Background Most PCR-based diagnostics are still considered time- and labor-intensive due to disparate purification, amplification, and detection steps. Advancements in PCR enzymes and buffer chemistry have increased inhibitor tolerance, facilitating PCR directly from crude samples. Obviating the need for DNA purification, while lacking a concentration step, these direct sample methods are particularly apt for human genetic testing. However, direct PCR protocols have traditionally employed thermal cyclers with slow ramp rates and conservative hold times that significantly increase an assay’s time-to-result. For this proof-of-principle study, our objective was to significantly reduce sample preparation and assay time for a PCR-based genetic test, for myotonic dystrophy type 1 (DM1), by pairing an inhibitor-resistant enzyme mix with a rapid thermal cycler to analyze samples directly in whole blood. Methods DM1 genetic screening was done with an adapted conventional PCR approach that employed the Streck Philisa® Thermal Cycler, the inhibitor-resistant NEBNext® High-Fidelity 2X PCR Master Mix, and agarose gel electrophoresis or an Agilent 2100 Bioanalyzer for detection. The Gene Link™ Myotonic Dystrophy Genemer™ Kit was used as a reference assay kit to evaluate the rapid assay. Results In this work, a rapid and direct PCR assay testing 10% whole blood as template has been developed as an exclusionary screening assay for DM1, a triple-repeat genetic disorder. PCR amplification was completed in 15 minutes using 30 cycles, including in situ hot-start/cell lysis. Out of the 40 donors screened, this assay identified 23 (57.5%) as DM1 negative suggesting no need for further testing. These data are 100% concordant with data collected using the commercially available Gene Link Genemer™ Kit per the kit-specific PCR protocol. Conclusions The PCR assay described in this study amplified DM1 short tandem repeats in 15 minutes. By eliminating sample purification and slower conventional PCR protocols, we demonstrated how adaptation of current PCR technology and chemistries can produce a simple-to-use exclusionary screening assay that is independent of up-front sample prep, improving a clinical lab technician’s time-to-result. We envision this direct and rapid methodology could be applied to other conventional PCR-based genetic tests and sample matrices where genomic DNA is targeted for analysis within a given molecular diagnostic platform.
Collapse
Affiliation(s)
| | - Laura R Porter
- Streck, Inc., 7002 S. 109th Street, LaVista, Omaha, NE, 68128, USA.
| | - Joel R TerMaat
- Streck, Inc., 7002 S. 109th Street, LaVista, Omaha, NE, 68128, USA.
| |
Collapse
|
13
|
Borrego-Terrazas J, Lara-Victoriano F, Flores-Gallegos A, Veana F, Aguilar C, Rodríguez-Herrera R. Nucleotide and amino acid variations of tannase gene from different Aspergillus strains. Can J Microbiol 2014; 60:509-16. [DOI: 10.1139/cjm-2014-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tannase is an enzyme that catalyses the hydrolysis of ester bonds present in tannins. Most of the scientific reports about this biocatalysis focus on aspects related to tannase production and its recovery; on the other hand, reports assessing the molecular aspects of the tannase gene or protein are scarce. In the present study, a tannase gene fragment from several Aspergillus strains isolated from the Mexican semidesert was sequenced and compared with tannase amino acid sequences reported in NCBI database using bioinformatics tools. The genetic relationship among the different tannase sequences was also determined. A conserved region of 7 amino acids was found with the conserved motif GXSXG common to esterases, in which the active-site serine residue is located. In addition, in Aspergillus niger strains GH1 and PSH, we found an extra codon in the tannase sequences encoding glycine. The tannase gene belonging to semidesert fungal strains followed a neutral evolution path with the formation of 10 haplotypes, of which A. niger GH1 and PSH haplotypes are the oldest.
Collapse
Affiliation(s)
- J.A. Borrego-Terrazas
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and José Cárdenas s/n, Republica Oriente, ZIP 25280, Saltillo, Coahuila, México
| | - F. Lara-Victoriano
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and José Cárdenas s/n, Republica Oriente, ZIP 25280, Saltillo, Coahuila, México
| | - A.C. Flores-Gallegos
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and José Cárdenas s/n, Republica Oriente, ZIP 25280, Saltillo, Coahuila, México
| | - F. Veana
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and José Cárdenas s/n, Republica Oriente, ZIP 25280, Saltillo, Coahuila, México
| | - C.N. Aguilar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and José Cárdenas s/n, Republica Oriente, ZIP 25280, Saltillo, Coahuila, México
| | - R. Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and José Cárdenas s/n, Republica Oriente, ZIP 25280, Saltillo, Coahuila, México
| |
Collapse
|
14
|
Jacewicz A, Trzemecka A, Guja KE, Plochocka D, Yakubovskaya E, Bebenek A, Garcia-Diaz M. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site. PLoS One 2013; 8:e76700. [PMID: 24116139 PMCID: PMC3792054 DOI: 10.1371/journal.pone.0076700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022] Open
Abstract
Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the PolD714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced kpol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.
Collapse
Affiliation(s)
- Agata Jacewicz
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Trzemecka
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kip E. Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Danuta Plochocka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Anna Bebenek
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AB); (MGD)
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (AB); (MGD)
| |
Collapse
|
15
|
Gloeckner C, Kranaster R, Marx A. Directed evolution of DNA polymerases: construction and screening of DNA polymerase mutant libraries. ACTA ACUST UNITED AC 2013; 2:89-109. [PMID: 23836552 DOI: 10.1002/9780470559277.ch090183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protocols in this article describe the construction of a mutant DNA polymerase library using error-prone PCR (epPCR) as a method for gene randomization, followed by screening of the library using two different approaches. The examples described use an N-terminally truncated form of the thermostable DNA polymerase I of Thermus aquaticus (Taq DNA polymerase), namely Klentaq (KTQ), and protocols are included for the identification of variants with (1) increased DNA lesion-bypass ability and (2) enhanced selectivity for DNA match/mismatch recognition. The screening assays are based on double-stranded DNA detection (using SYBR Green I) which can be carried out using standard laboratory equipment. The described assays are designed for use in a 384-well plate format to increase screening throughput and reduce material costs. For improved accuracy and ease of liquid handling, the use of an automated liquid handling device is recommended. Curr. Protoc. Chem Biol. 2:89-109. © 2010 by John Wiley & Sons, Inc.
Collapse
|
16
|
Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast. Genetics 2013; 193:751-70. [PMID: 23307893 DOI: 10.1534/genetics.112.146910] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerases (Pols) ε and δ perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol δ proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol ε proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2Δ, mlh1Δ, msh3Δ msh6Δ, or pms1Δ mlh3Δ) but not with partial MMR loss (msh3Δ, msh6Δ, pms1Δ, or mlh3Δ), indicating that high levels of unrepaired Pol ε errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2Δ eex mutants encoded second-site changes in Pol ε that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol ε and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. The prevalence of suppressors extragenic to the Pol ε gene suggests that factors in addition to proofreading and MMR influence leading-strand DNA replication fidelity.
Collapse
|
17
|
Prindle MJ, Schmitt MW, Parmeggiani F, Loeb LA. A substitution in the fingers domain of DNA polymerase δ reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 2013; 288:5572-80. [PMID: 23283971 DOI: 10.1074/jbc.m112.436410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (Pol δ) is one of the major replicative DNA polymerases in eukaryotic cells, catalyzing lagging strand synthesis as well as playing a role in many DNA repair pathways. The catalytic site for polymerization consists of a palm domain and mobile fingers domain that opens and closes each catalytic cycle. We explored the effect of amino acid substitutions in a region of the highly conserved sequence motif B in the fingers domain on replication fidelity. A novel substitution, A699Q, results in a marked increase in mutation rate at the yeast CAN1 locus, and is synthetic lethal with both proofreading deficiency and mismatch repair deficiency. Modeling the A699Q mutation onto the crystal structure of Saccharomyces cerevisiae Pol δ template reveals four potential contacts for A699Q but not for A699. We substituted alanine for each of these residues and determined that an interaction with multiple residues of the N-terminal domain is responsible for the mutator phenotype. The corresponding mutation in purified human Pol δ results in a similar 30-fold increase in mutation frequency when copying gapped DNA templates. Sequence analysis indicates that the most characteristic mutation is a guanine-to-adenine (G to A) transition. The increase in deoxythymidine 5'-triphosphate-G mispairs was confirmed by performing steady state single nucleotide addition studies. Our combined data support a model in which the Ala-to-Gln substitution in the fingers domain of Pol δ results in an interaction with the N-terminal domain that affects the base selectivity of the enzyme.
Collapse
Affiliation(s)
- Marc J Prindle
- Joseph Gottstein Memorial Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
18
|
Graham SE, Syeda F, Cisneros GA. Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I. Biochemistry 2012; 51:2569-78. [PMID: 22397306 DOI: 10.1021/bi201856m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent single-molecule Förster resonance energy transfer studies of DNA polymerase I have led to the proposal of a postinsertion fidelity-checking site. This site is hypothesized to ensure proper base pairing of the newly inserted nucleotide. To help test this hypothesis, we have used energy decomposition, electrostatic free energy response, and noncovalent interaction analysis analyses to identify residues involved in this putative checking site. We have used structures of DNA polymerase I from two different organisms, the Klenow fragment from Escherichia coli and the Bacillus fragment from Bacillus stearothermophilus. Our results point to several residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Furthermore, many of these residues are conserved among A family polymerases. The identified residues provide potential targets for mutagenesis studies for investigation of the fidelity-checking site hypothesis.
Collapse
Affiliation(s)
- Sarah E Graham
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | | |
Collapse
|
19
|
Foury F, Szczepanowska K. Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision. PLoS One 2011; 6:e27847. [PMID: 22114710 PMCID: PMC3218072 DOI: 10.1371/journal.pone.0027847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/26/2011] [Indexed: 11/25/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) are an important cause of disease and perhaps aging in human. DNA polymerase gamma (pol γ ), the unique replicase inside mitochondria, plays a key role in the fidelity of mtDNA replication through selection of the correct nucleotide and 3′-5′ exonuclease proofreading. For the first time, we have isolated and characterized antimutator alleles in the yeast pol γ (Mip1). These mip1 mutations, localised in the 3′-5′ exonuclease and polymerase domains, elicit a 2–15 fold decrease in the frequency of mtDNA point mutations in an msh1-1 strain which is partially deficient in mtDNA mismatch-repair. In vitro experiments show that in all mutants the balance between DNA synthesis and exonucleolysis is shifted towards excision when compared to wild-type, suggesting that in vivo more opportunity is given to the editing function for removing the replicative errors. This results in partial compensation for the mismatch-repair defects and a decrease in mtDNA point mutation rate. However, in all mutants but one the antimutator trait is lost in the wild-type MSH1 background. Accordingly, the polymerases of selected mutants show reduced oligonucleotide primed M13 ssDNA synthesis and to a lesser extent DNA binding affinity, suggesting that in mismatch-repair proficient cells efficient DNA synthesis is required to reach optimal accuracy. In contrast, the Mip1-A256T polymerase, which displays wild-type like DNA synthesis activity, increases mtDNA replication fidelity in both MSH1 and msh1-1 backgrounds. Altogether, our data show that accuracy of wild-type Mip1 is probably not optimal and can be improved by specific (often conservative) amino acid substitutions that define a pol γ area including a loop of the palm subdomain, two residues near the ExoII motif and an exonuclease helix-coil-helix module in close vicinity to the polymerase domain. These elements modulate in a subtle manner the balance between DNA polymerization and excision.
Collapse
Affiliation(s)
- Françoise Foury
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
20
|
Abstract
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.
Collapse
Affiliation(s)
- Alan J Herr
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
21
|
Herr AJ, Ogawa M, Lawrence NA, Williams LN, Eggington JM, Singh M, Smith RA, Preston BD. Mutator suppression and escape from replication error-induced extinction in yeast. PLoS Genet 2011; 7:e1002282. [PMID: 22022273 PMCID: PMC3188538 DOI: 10.1371/journal.pgen.1002282] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/21/2011] [Indexed: 11/23/2022] Open
Abstract
Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer. Organisms strike a balance between genetic continuity and change. Most cells are well adapted to their niches and therefore invest heavily in mechanisms that maintain accurate DNA replication. When cell populations are confronted with changing environmental conditions, “mutator” clones with high mutation rates emerge and readily adapt to the new conditions by rapidly acquiring beneficial mutations. However, deleterious mutations also accumulate, raising the question: what level of mutational burden can cell populations sustain before collapsing? Here we experimentally determine the maximal mutation rate in haploid yeast. We observe that yeast can withstand a 1,000-fold increase in mutation rate without losing colony forming capacity. Yet no strains survive a 10,000-fold increase in mutation rate. Escape mutants with an “anti-mutator” phenotype frequently emerge from cell populations undergoing this error-induced extinction. The diversity of antimutator changes suggests that strong mutator phenotypes in nature may be inherently transient, ensuring that rapid adaptation is followed by genetic attenuation which preserves the beneficial, adaptive mutations. These observations are relevant to microbial populations during infection as well as the somatic evolution of cancer cells.
Collapse
Affiliation(s)
- Alan J. Herr
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Masanori Ogawa
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Nicole A. Lawrence
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Lindsey N. Williams
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Julie M. Eggington
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Mallika Singh
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Robert A. Smith
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Bradley D. Preston
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail: E-mail:
| |
Collapse
|
22
|
Abstract
Despite substantial attention from theoreticians, the evolutionary mechanisms that drive intra- and interspecific variation in the mutation rate remain unclear. It has often been argued that mutation rates associated with the major replicative polymerases have been driven down to their physiological limits, defined as the point at which further enhancement in replication fidelity incurs a cost in terms of reproductive output, but no evidence in support of this argument has emerged for cellular organisms. Here, it is suggested that the lower barrier to mutation rate evolution may ultimately be defined not by molecular limitations but by the power of random genetic drift. As the mutation rate is reduced to a very low level, a point will eventually be reached at which the small advantage of any further reduction is overwhelmed by the power of drift. This hypothesis is consistent with a number of observations, including the inverse relationship between the per-site mutation rate and genome size in microbes, the negative scaling between the per-site mutation rate and effective population size in eukaryotes, and the elevated error rates associated with less frequently deployed polymerases and repair pathways.
Collapse
|
23
|
Abstract
Recent data on DNA sequencing of human tumours have established that cancer cells contain thousands of mutations. These data support the concept that cancer cells express a mutator phenotype. This Perspective considers the evidence supporting the mutator phenotype hypothesis, the origin and consequences of a mutator phenotype, the implications for personalized medicine and the feasibility of ablating tumours by error catastrophe.
Collapse
Affiliation(s)
- Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
24
|
Allen JM, Simcha DM, Ericson NG, Alexander DL, Marquette JT, Van Biber BP, Troll CJ, Karchin R, Bielas JH, Loeb LA, Camps M. Roles of DNA polymerase I in leading and lagging-strand replication defined by a high-resolution mutation footprint of ColE1 plasmid replication. Nucleic Acids Res 2011; 39:7020-33. [PMID: 21622658 PMCID: PMC3167613 DOI: 10.1093/nar/gkr157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA polymerase I (pol I) processes RNA primers during lagging-strand synthesis and fills small gaps during DNA repair reactions. However, it is unclear how pol I and pol III work together during replication and repair or how extensive pol I processing of Okazaki fragments is in vivo. Here, we address these questions by analyzing pol I mutations generated through error-prone replication of ColE1 plasmids. The data were obtained by direct sequencing, allowing an accurate determination of the mutation spectrum and distribution. Pol I’s mutational footprint suggests: (i) during leading-strand replication pol I is gradually replaced by pol III over at least 1.3 kb; (ii) pol I processing of Okazaki fragments is limited to ∼20 nt and (iii) the size of Okazaki fragments is short (∼250 nt). While based on ColE1 plasmid replication, our findings are likely relevant to other pol I replicative processes such as chromosomal replication and DNA repair, which differ from ColE1 replication mostly at the recruitment steps. This mutation footprinting approach should help establish the role of other prokaryotic or eukaryotic polymerases in vivo, and provides a tool to investigate how sequence topology, DNA damage, or interactions with protein partners may affect the function of individual DNA polymerases.
Collapse
Affiliation(s)
- Jennifer M Allen
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street Santa Cruz, CA 95060, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kennedy SR, Chen CY, Schmitt MW, Bower CN, Loeb LA. The biochemistry and fidelity of synthesis by the apicoplast genome replication DNA polymerase Pfprex from the malaria parasite Plasmodium falciparum. J Mol Biol 2011; 410:27-38. [PMID: 21570407 DOI: 10.1016/j.jmb.2011.04.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/15/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum, the major causative agent of human malaria, contains three separate genomes. The apicoplast (an intracellular organelle) contains an ∼35-kb circular DNA genome of unusually high A/T content (>86%) that is replicated by the nuclear-encoded replication complex Pfprex. Herein, we have expressed and purified the DNA polymerase domain of Pfprex [KPom1 (Klenow-like polymerase of malaria 1)] and measured its fidelity using a LacZ-based forward mutation assay. In addition, we analyzed the kinetic parameters for the incorporation of both complementary and noncomplementary nucleotides using Kpom1 lacking 3'→5' exonucleolytic activity. KPom1 exhibits a strongly biased mutational spectrum in which T→C is the most frequent single-base substitution and differs significantly from the closely related Escherichia coli DNA polymerase I. Using E. coli harboring a temperature-sensitive polymerase I allele, we established that KPom1 can complement the growth-defective phenotype at an elevated temperature. We propose that the error bias of KPom1 may be exploited in the complementation assay to identify nucleoside analogs that mimic this base-mispairing and preferentially inhibit apicoplast DNA replication.
Collapse
Affiliation(s)
- Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Ramon Kranaster
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
27
|
Leconte AM, Patel MP, Sass LE, McInerney P, Jarosz M, Kung L, Bowers JL, Buzby PR, Efcavitch JW, Romesberg FE. Directed evolution of DNA polymerases for next-generation sequencing. Angew Chem Int Ed Engl 2010; 49:5921-4. [PMID: 20629059 DOI: 10.1002/anie.201001607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aaron M Leconte
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leconte A, Patel M, Sass L, McInerney P, Jarosz M, Kung L, Bowers J, Buzby P, Efcavitch J, Romesberg F. Directed Evolution of DNA Polymerases for Next-Generation Sequencing. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Schmitt MW, Venkatesan RN, Pillaire MJ, Hoffmann JS, Sidorova JM, Loeb LA. Active site mutations in mammalian DNA polymerase delta alter accuracy and replication fork progression. J Biol Chem 2010; 285:32264-72. [PMID: 20628184 DOI: 10.1074/jbc.m110.147017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same position, L604K, is associated with shortened life span and accelerated carcinogenesis. Here, we report in vitro analysis of the homologous mutations at position Leu-606 in human pol δ. Four-subunit human pol δ variants that harbor or lack 3' → 5'-exonucleolytic proofreading activity were purified from Escherichia coli. The pol δ L606G and L606K holoenzymes retain catalytic activity and processivity similar to that of wild type pol δ. pol δ L606G is highly error prone, incorporating single noncomplementary nucleotides at a high frequency during DNA synthesis, whereas pol δ L606K is extremely accurate, with a higher fidelity of single nucleotide incorporation by the active site than that of wild type pol δ. However, pol δ L606K is impaired in the bypass of DNA adducts, and the homologous variant in mouse embryonic fibroblasts results in a decreased rate of replication fork progression in vivo. These results indicate that different substitutions at a single active site residue in a eukaryotic polymerase can either increase or decrease the accuracy of synthesis relative to wild type and suggest that enhanced fidelity of base selection by a polymerase active site can result in impaired lesion bypass and delayed replication fork progression.
Collapse
Affiliation(s)
- Michael W Schmitt
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
30
|
Reha-Krantz LJ. DNA polymerase proofreading: Multiple roles maintain genome stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1049-63. [DOI: 10.1016/j.bbapap.2009.06.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/16/2022]
|
31
|
Obeid S, Blatter N, Kranaster R, Schnur A, Diederichs K, Welte W, Marx A. Replication through an abasic DNA lesion: structural basis for adenine selectivity. EMBO J 2010; 29:1738-47. [PMID: 20400942 DOI: 10.1038/emboj.2010.64] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/17/2010] [Indexed: 01/15/2023] Open
Abstract
Abasic sites represent the most frequent DNA lesions in the genome that have high mutagenic potential and lead to mutations commonly found in human cancers. Although these lesions are devoid of the genetic information, adenine is most efficiently inserted when abasic sites are bypassed by DNA polymerases, a phenomenon termed A-rule. In this study, we present X-ray structures of a DNA polymerase caught while incorporating a nucleotide opposite an abasic site. We found that a functionally important tyrosine side chain directs for nucleotide incorporation rather than DNA. It fills the vacant space of the absent template nucleobase and thereby mimics a pyrimidine nucleobase directing for preferential purine incorporation opposite abasic residues because of enhanced geometric fit to the active site. This amino acid templating mechanism was corroborated by switching to pyrimidine specificity because of mutation of the templating tyrosine into tryptophan. The tyrosine is located in motif B and highly conserved throughout evolution from bacteria to humans indicating a general amino acid templating mechanism for bypass of non-instructive lesions by DNA polymerases at least from this sequence family.
Collapse
Affiliation(s)
- Samra Obeid
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Optimization of DNA polymerase mutation rates during bacterial evolution. Proc Natl Acad Sci U S A 2009; 107:1154-9. [PMID: 20080608 DOI: 10.1073/pnas.0912451107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation rate is an important determinant of evolvability. The optimal mutation rate for different organisms during evolution has been modeled in silico and tested in vivo, predominantly through pairwise comparisons. To characterize the fitness landscape across a broad range of mutation rates, we generated a panel of 66 DNA polymerase I mutants in Escherichia coli with comparable growth properties, yet with differing DNA replication fidelities, spanning 10(3)-fold higher and lower than that of wild type. These strains were competed for 350 generations in six replicate cultures in two different environments. A narrow range of mutation rates, 10- to 47-fold greater than that of wild type, predominated after serial passage. Mutants exhibiting higher mutation rates were not detected, nor were wild-type or antimutator strains. Winning clones exhibited shorter doubling times, greater maximum culture densities, and a growth advantages in pairwise competition relative to their precompetition ancestors, indicating the acquisition of adaptive phenotypes. To investigate the basis for mutator selection, we undertook a large series of pairwise competitions between mutator and wild-type strains under conditions where, in most cases, one strain completely overtook the culture within 18 days. Mutators were the most frequent winners but wild-type strains were also observed winning, suggesting that the competitive advantage of mutators is due to a greater probability of developing selectably advantageous mutations rather than from an initial growth advantage conferred by the polymerase variant itself. Our results indicate that under conditions where organism fitness is not yet maximized for a particular environment, competitive adaptation may be facilitated by enhanced mutagenesis.
Collapse
|
33
|
In planta mutagenesis determines the functional regions of the wheat puroindoline proteins. Genetics 2009; 183:853-60. [PMID: 19752217 DOI: 10.1534/genetics.109.106013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In planta analysis of protein function in a crop plant could lead to improvements in understanding protein structure/function relationships as well as selective agronomic or end product quality improvements. The requirements for successful in planta analysis are a high mutation rate, an efficient screening method, and a trait with high heritability. Two ideal targets for functional analysis are the Puroindoline a and Puroindoline b (Pina and Pinb, respectively) genes, which together compose the wheat (Triticum aestivum L.) Ha locus that controls grain texture and many wheat end-use properties. Puroindolines (PINs) together impart soft texture, and mutations in either PIN result in hard seed texture. Studies of the PINs' mode of action are limited by low allelic variation. To create new Pin alleles and identify critical function-determining regions, Pin point mutations were created in planta via EMS treatment of a soft wheat. Grain hardness of 46 unique PIN missense alleles was then measured using segregating F(2):F(3) populations. The impact of individual missense alleles upon PIN function, as measured by grain hardness, ranged from neutral (74%) to intermediate to function abolishing. The percentage of function-abolishing mutations among mutations occurring in both PINA and PINB was higher for PINB, indicating that PINB is more critical to overall Ha function. This is contrary to expectations in that PINB is not as well conserved as PINA. All function-abolishing mutations resulted from structure-disrupting mutations or from missense mutations occurring near the Tryptophan-rich region. This study demonstrates the feasibility of in planta functional analysis of wheat proteins and that the Tryptophan-rich region is the most important region of both PINA and PINB.
Collapse
|
34
|
Epistasis among Deleterious Mutations in the HIV-1 Protease. J Mol Biol 2009; 392:243-50. [DOI: 10.1016/j.jmb.2009.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/29/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022]
|
35
|
Loakes D, Holliger P. Polymerase engineering: towards the encoded synthesis of unnatural biopolymers. Chem Commun (Camb) 2009:4619-31. [PMID: 19641798 DOI: 10.1039/b903307f] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA is not only a repository of genetic information for life, it is also a unique polymer with remarkable properties: it associates according to well-defined rules, it can be assembled into diverse nanostructures of defined geometry, it can be evolved to bind ligands and catalyse chemical reactions and it can serve as a supramolecular scaffold to arrange chemical groups in space. However, its chemical makeup is rather uniform and the physicochemical properties of the four canonical bases only span a narrow range. Much wider chemical diversity is accessible through solid-phase synthesis but oligomers are limited to <100 nucleotides and variations in chemistry can usually not be replicated and thus are not amenable to evolution. Recent advances in nucleic acid chemistry and polymerase engineering promise to bring the synthesis, replication and ultimately evolution of nucleic acid polymers with greatly expanded chemical diversity within our reach.
Collapse
Affiliation(s)
- David Loakes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, Cambridgeshire, UKCB2 0QH
| | | |
Collapse
|
36
|
Fingerabdrücke von DNA-Polymerasen: mehrfache simultane Enzym-Charakterisierung auf DNA-Arrays. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Taking Fingerprints of DNA Polymerases: Multiplex Enzyme Profiling on DNA Arrays. Angew Chem Int Ed Engl 2009; 48:4625-8. [DOI: 10.1002/anie.200900953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
The cellular, developmental and population-genetic determinants of mutation-rate evolution. Genetics 2008; 180:933-43. [PMID: 18757919 DOI: 10.1534/genetics.108.090456] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the matter has been subject to considerable theoretical study, there are numerous open questions regarding the mechanisms driving the mutation rate in various phylogenetic lineages. Most notably, empirical evidence indicates that mutation rates are elevated in multicellular species relative to unicellular eukaryotes and prokaryotes, even on a per-cell division basis, despite the need for the avoidance of somatic damage and the accumulation of germline mutations. Here it is suggested that multicellularity discourages selection against weak mutator alleles for reasons associated with both the cellular and the population-genetic environments, thereby magnifying the vulnerability to somatic mutations (cancer) and increasing the risk of extinction from the accumulation of germline mutations. Moreover, contrary to common belief, a cost of fidelity need not be invoked to explain the lower bound to observed mutation rates, which instead may simply be set by the inability of selection to advance very weakly advantageous antimutator alleles in finite populations.
Collapse
|
39
|
Loeb LA, Bielas JH, Beckman RA. Cancers Exhibit a Mutator Phenotype: Clinical Implications. Cancer Res 2008; 68:3551-7; discussion 3557. [DOI: 10.1158/0008-5472.can-07-5835] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Tokuriki N, Stricher F, Serrano L, Tawfik DS. How protein stability and new functions trade off. PLoS Comput Biol 2008; 4:e1000002. [PMID: 18463696 PMCID: PMC2265470 DOI: 10.1371/journal.pcbi.1000002] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 01/22/2008] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have noted that the evolution of new enzymatic specificities is accompanied by loss of the protein's thermodynamic stability (ΔΔG), thus suggesting a tradeoff between the acquisition of new enzymatic functions and stability. However, since most mutations are destabilizing (ΔΔG>0), one should ask how destabilizing mutations that confer new or altered enzymatic functions relative to all other mutations are. We applied ΔΔG computations by FoldX to analyze the effects of 548 mutations that arose from the directed evolution of 22 different enzymes. The stability effects, location, and type of function-altering mutations were compared to ΔΔG changes arising from all possible point mutations in the same enzymes. We found that mutations that modulate enzymatic functions are mostly destabilizing (average ΔΔG = +0.9 kcal/mol), and are almost as destabilizing as the “average” mutation in these enzymes (+1.3 kcal/mol). Although their stability effects are not as dramatic as in key catalytic residues, mutations that modify the substrate binding pockets, and thus mediate new enzymatic specificities, place a larger stability burden than surface mutations that underline neutral, non-adaptive evolutionary changes. How are the destabilizing effects of functional mutations balanced to enable adaptation? Our analysis also indicated that many mutations that appear in directed evolution variants with no obvious role in the new function exert stabilizing effects that may compensate for the destabilizing effects of the crucial function-altering mutations. Thus, the evolution of new enzymatic activities, both in nature and in the laboratory, is dependent on the compensatory, stabilizing effect of apparently “silent” mutations in regions of the protein that are irrelevant to its function. To perform its function, a protein must fold into a complex, three-dimensional structure that is maintained by a network of interactions between its amino acid residues. Evolution of a new protein function will be driven by mutation of amino acids in key positions (new-function mutations). Such mutation can also hamper interactions that ensure the stability of a protein's fold—sometimes to a degree that renders the protein non-functional. Indeed, previous studies have noted that the evolution of new enzymatic functions is accompanied by significant losses in protein stability, suggesting a “tradeoff” between acquisition of new enzymatic functions and stability. But since most mutations are destabilizing, we sought to compare new-function mutations with other types of mutations. We performed a comprehensive analysis of the type, location, and stability effects of mutations that have conferred new enzymatic functions in laboratory evolution experiments. We found that stability changes (ΔΔG) of new-function mutations are similar to those of all other mutations, but are weaker than those of mutations that characterize neutral evolutionary changes (mutations that accumulate with no change of structure and function). Our analysis also revealed the important role of neutral (i.e., “non-functional”) mutations in compensating for the destabilizing effects of the “new-function” mutations.
Collapse
Affiliation(s)
- Nobuhiko Tokuriki
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Francois Stricher
- EMBL-CRG Systems Biology Partnership Unit, CRG-Centro de Regulacion Genomica, Barcelona, Spain
| | - Luis Serrano
- EMBL-CRG Systems Biology Partnership Unit, CRG-Centro de Regulacion Genomica, Barcelona, Spain
| | - Dan S. Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
41
|
Howell CA, Kondratick CM, Washington MT. Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase zeta. Nucleic Acids Res 2008; 36:1731-40. [PMID: 18263611 PMCID: PMC2275142 DOI: 10.1093/nar/gkn023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase zeta (pol zeta), which is required for DNA damage-induced mutagenesis, functions in the error-prone replication of a wide range of DNA lesions. During this process, pol zeta extends from nucleotides incorporated opposite template lesions by other polymerases. Unlike classical polymerases, pol zeta efficiently extends from primer-terminal base pairs containing mismatches or lesions, and it synthesizes DNA with moderate fidelity. Here we describe genetic and biochemical studies of three yeast pol zeta mutant proteins containing substitutions of highly conserved amino acid residues that contact the triphosphate moiety of the incoming nucleotide. The R1057A and K1086A proteins do not complement the rev3Delta mutation, and these proteins have significantly reduced polymerase activity relative to the wild-type protein. In contrast, the K1061A protein partially complements the rev3Delta mutation and has nearly normal polymerase activity. Interestingly, the K1061A protein has increased fidelity relative to wild-type pol zeta and is somewhat less efficient at extending from mismatched primer-terminal base pairs. These findings have important implications both for the evolutionary divergence of pol zeta from classical polymerases and for the mechanism by which this enzyme accommodates distortions in the DNA caused by mismatches and lesions.
Collapse
Affiliation(s)
- Craig A Howell
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
42
|
Camps M, Herman A, Loh E, Loeb LA. Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol 2008; 42:313-26. [PMID: 17917869 DOI: 10.1080/10409230701597642] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Evolution requires the generation and optimization of new traits ("adaptation") and involves the selection of mutations that improve cellular function. These mutations were assumed to arise by selection of neutral mutations present at all times in the population. Here we review recent evidence that indicates that deleterious mutations are more frequent in the population than previously recognized and that these mutations play a significant role in protein evolution through continuous positive selection. Positively selected mutations include adaptive mutations, i.e. mutations that directly affect enzymatic function, and compensatory mutations, which suppress the pleiotropic effects of adaptive mutations. Compensatory mutations are by far the most frequent of the two and would allow potentially adaptive but deleterious mutations to persist long enough in the population to be positively selected during episodes of adaptation. Compensatory mutations are, by definition, context-dependent and thus constrain the paths available for evolution. This provides a mechanistic basis for the examples of highly constrained evolutionary landscapes and parallel evolution reported in natural and experimental populations. The present review article describes these recent advances in the field of protein evolution and discusses their implications for understanding the genetic basis of disease and for protein engineering in vitro.
Collapse
Affiliation(s)
- Manel Camps
- Department of Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | |
Collapse
|