1
|
Xiang Q, Wu Z, Zhao Y, Tian S, Lin J, Wang L, Jiang S, Sun Z, Li W. Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases. Bone Res 2024; 12:71. [PMID: 39658574 PMCID: PMC11632072 DOI: 10.1038/s41413-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
2
|
Zhang C, Chang Y, Shu L, Chen Z. Pathogenesis of thoracic ossification of the ligamentum flavum. Front Pharmacol 2024; 15:1496297. [PMID: 39545059 PMCID: PMC11560781 DOI: 10.3389/fphar.2024.1496297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic ossification of the ligamentum flavum in the thoracic spine and is considered the main cause of thoracic spinal stenosis and spinal cord disease. Osteoblast specific transcription factor Osterix (Osx) is required for bone formation, and there is no bone formation or ossification without Osx. Surgical intervention is recognized as the only effective method for TOLF treatment with set of complications. However, underlying mechanisms of TOLF are not well understood. This paper summarizes the pathogenesis of TOLF. Some relevant factors have been discussed, such as mechanical stress, genetic susceptibility genes, endocrine and trace element metabolism abnormalities, which may associate with TOLF. More recent studies using proteomics technology and RNA sequencing approach have discovered that some new factors participate in TOLF by upregulation of Osx gene expression including inflammatory factors. TOLF is a unique disease involving multiple factors. On the other hand, studies on TOLF pathogenic mechanism may provide new ideas for finding possible upstream regulatory factors of Osx and further developing novel drugs to stimulate new bone formation to treat osteoporosis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Xiang Q, Jiang S, Lin J, Li W. Revealing the novel metabolism-related genes in the ossification of the ligamentum flavum based on whole transcriptomic data. JOR Spine 2024; 7:e1357. [PMID: 39011365 PMCID: PMC11247397 DOI: 10.1002/jsp2.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Backgrounds The ossification of the ligamentum flavum (OLF) is one of the major causes of thoracic myelopathy. Previous studies indicated there might be a potential link between metabolic disorder and pathogenesis of OLF. The aim of this study was to determine the potential role of metabolic disorder in the pathogenesis of OLF using the strict bioinformatic workflow for metabolism-related genes and experimental validation. Methods A series of bioinformatic approaches based on metabolism-related genes were conducted to compare the metabolism score between OLF tissues and normal ligamentum flavum (LF) tissues using the single sample gene set enrichment analysis. The OLF-related and metabolism-related differentially expressed genes (OMDEGs) were screened out, and the biological functions of OMDEGs were explored, including the Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and protein-protein interaction. The competing endogenous RNA (ceRNA) network based on pairs of miRNA-hub OMDEGs was constructed. The correlation analysis was conducted to explore the potential relationship between metabolic disorder and immunity abnormality in OLF. In the end, the cell experiments were performed to validate the roles of GBE1 and TNF-α in the osteogenic differentiation of LF cells. Results There was a significant difference of metabolism score between OLF tissues and normal LF tissues. Forty-nine OMDEGs were screened out and their biological functions were determined. The ceRNA network containing three hub OMDEGs and five differentially expressed miRNAs (DEmiRNAs) was built. The correlation analysis between hub OMDEGs and OLF-related infiltrating immune cells indicated that metabolic disorder might contribute to the OLF via altering the local immune status of LF tissues. The cell experiments determined the important roles of GBE1 expression and TNF-α in the osteogenic differentiation of LF cells. Conclusions This research, for the first time, preliminarily illustrated the vital role of metabolic disorder in the pathogenesis of OLF using strict bioinformatic algorithms and experimental validation for metabolism-related genes, which could provide new insights for investigating disease mechanism and screening effective therapeutic targets of OLF in the future.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineMinistry of EducationBeijingChina
| | - Qian Xiang
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineMinistry of EducationBeijingChina
| | - Shuai Jiang
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineMinistry of EducationBeijingChina
| | - Jialiang Lin
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineMinistry of EducationBeijingChina
| | - Weishi Li
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineMinistry of EducationBeijingChina
| |
Collapse
|
4
|
Wang C, Wang Y, Zhu W, Tang Q, Wang X, Zhang L. The involvement of epidural fat in ossification of the ligamentum flavum: From the perspective of exosomal proteome. Heliyon 2024; 10:e34755. [PMID: 39144971 PMCID: PMC11320449 DOI: 10.1016/j.heliyon.2024.e34755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Ossification of the ligamentum flavum (OLF) is the primary etiology of thoracic spinal stenosis. The functional properties of epidural fat (EF), an adipose tissue located in close proximity to ligamentum flavum (LF), have been scarcely investigated. The metabolic state of adipocytes significantly influences their functionality, and exosomes play a pivotal role in intercellular communication. This study aimed to investigate the role of EF-derived exosomes in OLF and characterize their protein profile by proteomics analysis. Our findings demonstrate that exosomes obtained from EF adjacent to OLF possess the ability to enhance osteogenesis of fibroblasts in vitro. Furthermore, proteomics analysis revealed metabolic dysfunction in EF adipocytes and identified lactate dehydrogenase A (LDHA) as a potential mediator involved in the development of OLF. This study provides new insights into the pathogenic mechanism underlying OLF and offers a theoretical basis for preventing and treating ligament ossification.
Collapse
Affiliation(s)
- Chao Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yida Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihang Zhu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Tang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuekang Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Liu Z, Wang Y, Ma X, Zhang L, Wang C. Role of epidural fat in the local milieu: what we know and what we don't. Connect Tissue Res 2024; 65:102-116. [PMID: 38493368 DOI: 10.1080/03008207.2024.2329871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Traditionally, the epidural fat (EF) is known as a physical buffer for the dural sac against the force and a lubricant facilitating the relative motion of the latter on the osseous spine. Along with the development of the studies on EF, controversies still exist on vital questions, such as the underlying mechanism of the spinal epidural lipomatosis. Meanwhile, the scattered and fragmented researches hinder the global insight into the seemingly dispensable tissue. METHODS Herein, we reviewed literature on the EF and its derivatives to elucidate the dynamic change and complex function of EF in the local milieu, especially at the pathophysiological conditions. We start with an introduction to EF and the current pathogenic landscape, emphasizing the interlink between the EF and adjacent structures. We generally categorize the major pathological changes of the EF into hypertrophy, atrophy, and inflammation. RESULTS AND CONCLUSIONS It is acknowledged that not only the EF (or its cellular components) may be influenced by various endogenic/exogenic and focal/systematic stimuli, but the adjacent structures can also in turn be affected by the EF, which may be a hidden pathogenic clue for specific spinal disease. Meanwhile, the unrevealed sections, which are also the directions the future research, are proposed according to the objective result and rational inference. Further effort should be taken to reveal the underlying mechanism and develop novel therapeutic pathways for the relevant diseases.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yida Wang
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
7
|
Lin J, Jiang S, Xiang Q, Zhao Y, Wang L, Fan D, Zhong W, Sun C, Chen Z, Li W. Interleukin-17A Promotes Proliferation and Osteogenic Differentiation of Human Ligamentum Flavum Cells Through Regulation of β-Catenin Signaling. Spine (Phila Pa 1976) 2023; 48:E362-E371. [PMID: 37539780 DOI: 10.1097/brs.0000000000004789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
STUDY DESIGN A basic experimental study. OBJECTIVE To elucidate the role and mechanism of interleukin (IL)-17A in thoracic ossification of the ligamentum flavum (TOLF). SUMMARY OF BACKGROUND DATA TOLF is characterized by the replacement of the thoracic ligamentum flavum with ossified tissue and is one of the leading causes of thoracic spinal stenosis. IL-17A is an important member of the IL-17 family that has received widespread attention for its key contributions to the regulation of bone metabolism and heterotopic ossification. However, it is unclear whether IL-17A is involved in TOLF. MATERIALS AND METHODS Cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were performed to assess the proliferation of ligamentum flavum cells (LFCs). Alkaline phosphatase activity assay, Alizarin red staining, and protein level expression of osteogenic-related genes were used to evaluate the osteogenic differentiation potential of LFCs. The effect of IL-17A on the proliferation and osteogenic differentiation of LFCs was further assessed after silencing β-catenin by transfection with small interfering RNA. In addition, the possible source of IL-17A was further demonstrated by coculture assays of T helper 17 (Th17) cells with LFCs. Student t test was used for comparisons between groups, and the one-way analysis of variance, followed by the Tukey post hoc test, was used for comparison of more than two groups. RESULTS IL-17A was elevated in TOLF tissue compared with normal ligamentum flavum. IL-17A stimulation promoted the proliferation and osteogenic differentiation of LFCs derived from patients with TOLF. We found that IL-17A promoted the proliferation and osteogenic differentiation of LFCs by regulating the β-catenin signaling. Coculture of Th17 cells with LFCs enhanced β-catenin signaling-mediated proliferation and osteogenic differentiation of LFCs. However, these effects were markedly attenuated after the neutralization of IL-17A. CONCLUSIONS This is the first work we are aware of to highlight the importance of IL-17A in TOLF. IL-17A secreted by Th17 cells in the ligamentum flavum may be involved in the ossification of the microenvironment by regulating β-catenin signaling to promote the proliferation and osteogenic differentiation of LFCs.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuai Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Longjie Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Woquan Zhong
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Liu K, Shu L, Huang AY, Chang Y, Chen Z, Zhang C. PTGR1 is involved in cell proliferation in thoracic ossification of the ligamentum flavum. PLoS One 2023; 18:e0292821. [PMID: 37910537 PMCID: PMC10619815 DOI: 10.1371/journal.pone.0292821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a heterotopic ossification of spinal ligaments, leading to serious myelopathy. TOLF underlying mechanisms are not well understood. Our iTRAQ analysis have identified ten inflammatory factors related to TOLF, including l. We found that PTGR1 expressions increased in TOLF by RT-PCR and western blot in this study. Both cell proliferation and differentiation are important for the process of bone formation. In our previous study, we demonstrated that TOLF primary cells grew faster than control cells. It was reported that knockdown of PTGR1 inhibited cell proliferation. We hypothesize that PTGR1 may participate in cell proliferation in TOLF. To test this hypothesis, TOLF primary cells were treated for 24h with PTGR1. We observed that PTGR1 increased cell proliferation. The effect of PTGR1 on cell proliferation related genes was examined in TOLF primary cells. Our results showed that PTGR1 was able to activate expressions of c-Myc and CyclinD1. Moreover, blocking JNK pathway by selective JNK inhibitor SP600125 eliminated the positive effect of PTGR1 on c-Myc expression, indicating that PTGR1 activated the expression of c-Myc via JNK pathway. Our new findings suggest that PTGR1 is involved in cell proliferation of TOLF.
Collapse
Affiliation(s)
- Kuankuan Liu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Ann Yehong Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Peking University, Beijing, China
| |
Collapse
|
9
|
Review of Basic Research about Ossification of the Spinal Ligaments Focusing on Animal Models. J Clin Med 2023; 12:jcm12051958. [PMID: 36902744 PMCID: PMC10003841 DOI: 10.3390/jcm12051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a heterotopic ossification that may cause spinal cord compression. With the recent development of computed tomography (CT) imaging, it is known that patients with OPLL often have complications related to ossification of other spinal ligaments, and OPLL is now considered part of ossification of the spinal ligaments (OSL). OSL is known to be a multifactorial disease with associated genetic and environmental factors, but its pathophysiology has not been clearly elucidated. To elucidate the pathophysiology of OSL and develop novel therapeutic strategies, clinically relevant and validated animal models are needed. In this review, we focus on animal models that have been reported to date and discuss their pathophysiology and clinical relevance. The purpose of this review is to summarize the usefulness and problems of existing animal models and to help further the development of basic research on OSL.
Collapse
|
10
|
Clinical progression of ossification of the ligamentum flavum in thoracic spine: a 10- to 11-year follow-up study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:495-504. [PMID: 36422717 DOI: 10.1007/s00586-022-07468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thoracic ossification of ligamentum flavum (TOLF) can be asymptomatic and progress insidiously. But, long-term follow-up results of clinical progression of TOLF are still unknown. METHODS The clinical progression of 81 patients with TOLF at our center, followed for 10 to 11 (mean, 10.3) years from May 2010 to November 2021, were analyzed. Among them, 51 patients with thoracic myelopathy were caused by single- or multi-segment TOLF, and received partial TOLF resection (30 patients) or total TOLF resection (21 patients). The remaining 30 patients showed TOLF on imaging examinations, but TOLF was not the responsible compressing factor causing myelopathy and with no TOLF resection. The mJOA score (total 11 scores) and spinal operation were used to evaluate the clinical progression at follow-up. RESULTS During the 10- to 11-year follow-up of 81 TOLF patients, 71 (87.7%) had no deterioration of neurological function, and 10 (12.3%) patients had deterioration of neurological function and had another spinal operation, including only 4 (4.9%) suffered thoracic myelopathy caused by the progression of TOLF; 6 (7.4%) for other spinal diseases: 2 (2.5%) had fall damage and acute spinal cord injury at the TOLF level; 2 (2.5%) had thoracic myelopathy caused by ossification of posterior longitudinal ligament (OPLL); 2 (2.5%) had cervical spondylosis and received cervical operation. CONCLUSIONS Most TOLF (87.7%) patients had no clinical progression and received no reoperations for TOLF in the ten-year dimension (mean, 10.3 years). Narrow spinal canal for TOLF increases the risk of traumatic paraplegia.
Collapse
|
11
|
Ito K, Nagai S, Hachiya K, Takeda H, Kawabata S, Ikeda D, Kaneko S, Fujita N. Repeated Recurrence of Ligamentum Flavum Ossification After Posterior Spinal Surgery: A Case Report and Literature Review. JBJS Case Connect 2023; 13:01709767-202303000-00008. [PMID: 36821391 DOI: 10.2106/jbjs.cc.22.00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
CASE Patients with myelopathy due to narrowing of the spinal canal with ossification of the ligamentum flavum (OLF) generally require surgical intervention, but surgical methods for OLF remain controversial. We discuss our experience regarding posterior fusion surgery with instrumentation for a patient with recurrent OLF at the same level after decompression surgery as well as describe the preoperative and postoperative course of this rare case. CONCLUSION Posterior decompression and fusion surgery is recommended as revision surgery for recurrent OLF at the same level after decompression surgery. A detailed surgical planning should be developed before surgery.
Collapse
Affiliation(s)
- Kei Ito
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Sota Nagai
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Kurenai Hachiya
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiroki Takeda
- Department of Spine and Spinal Cord Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Daiki Ikeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Shinjiro Kaneko
- Department of Spine and Spinal Cord Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| |
Collapse
|
12
|
Significance of body mass index on thoracic ossification of the ligamentum flavum in Chinese population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3308-3315. [PMID: 36018436 DOI: 10.1007/s00586-022-07362-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the risk factors for thoracic ossification of the ligamentum flavum (TOLF), especially the relationship between BMI and TOLF. METHODS A total of 856 individuals consisting of 326 controls without ossification of spinal ligaments and 530 TOLF inpatients who underwent thoracic spine decompression surgery at our hospital between January 2013 and September 2020 were included. All subjects were classified into 4 grades: Grade 0) control; Grade 1) single-segment TOLF; Grade 2) multi-segment TOLF; and Grade 3) TOLF combined thoracic ossification of the posterior longitudinal ligament (T-OPLL). Logistic regression analysis was performed to identify the risk factors for TOLF. The TOLF index was calculated to assess the severity of TOLF, and its relationship with BMI was investigated by correlation analysis. RESULTS Overall, TOLF patients are most numerous in the 50-59 age group. Age and gender were considered as independent risk factors for Grades 1 and 2. BMI was identified as an independent risk factor for TOLF. Furthermore, BMI was significantly higher in Grade 1 (26.1 VS 24.5 kg/m2, P = 0.0001), Grade 2 (28.2 VS 24.5 kg/m2, P < 0.0001), and Grade 3 (29.1 VS 24.5 kg/m2, P < 0.0001) than Grade 0. Notably, in TOLF patients without combined T-OPLL, BMI was positively correlated with TOLF index, while BMI was negatively correlated with age in younger individuals. CONCLUSION BMI is a crucial risk factor for TOLF. It highlights the necessity of close follow-up of asymptomatic TOLF patients with high BMI to detect and treat their TOLF progression promptly.
Collapse
|
13
|
Dou X, Mao T, Ma Y, Jia F, Liu Y, Liu X. Fibrotic and inflammatory characteristics of epidural fat adjacent to the ossification area in patients with ossification of the ligament flavum. JOR Spine 2022; 5:e1229. [PMID: 36601380 PMCID: PMC9799088 DOI: 10.1002/jsp2.1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives To observe histological and inflammatory characteristics of epidural fat (EF) adjacent to the ossification area in patients with ossification of the thoracic ligament flavum (TOLF) and provide a preliminary research basis for investigating the impact of the EF on OLF. Methods Samples of EF and autologous subcutaneous adipose tissue (SCAT) from TOLF patients (n = 26) and non-TOLF patients (n = 23) were harvested during posterior thoracic spine surgery. Adipocyte size and fibrosis were measured by histology. Vascularization and inflammatory cell infiltration were evaluated by immunohistochemical staining. Adipogenesis-related genes were assessed by real-time quantitative PCR. Conditioned media from cultured EF were evaluated via enzyme-linked immunosorbent assay to detect the secretion of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and leptin. The phosphorylated STAT3 protein level in ligament flavum (LF) was examined using Western blot. Results Adipocytes size in EF was similar between in the TOLF and non-TOLF groups, but significantly smaller than that from autologous SCAT. Adipogenesis-related mRNA expression in EF was lower than that in SCAT. More fibrosis and vascularization were found in TOLF than in non-TOLF. EF in the TOLF group exhibited more macrophages and B lymphocytes infiltrated. The levels of cytokines such as IL-6, TNF-α, and leptin secreted by EF were significantly higher in the TOLF group than non-TOLF. The level of phosphorylated STAT3 in LF was significantly upregulated in the TOLF group. Conclusions Morphologically, EF adjacent to the ossification area is smaller and more uniform than autologous SCAT, exhibiting a characteristic similarity to visceral fat. EF in the TOLF group shows a more fibrotic, vascularized, and inflammatory phenotype, which secretes multiple cytokines. The phosphorylated STAT3 protein was significantly upregulated in the TOLF group. Whether these properties of EF directly affect the process of OLF needs to be further explored.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Tianli Mao
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Yunlong Ma
- Pain Medicine CenterPeking University Third HospitalBeijingChina
| | - Fei Jia
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Yu Liu
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Xiaoguang Liu
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| |
Collapse
|
14
|
Liu J, Chen Y, Shan X, Wang H. Investigation of the biomarkers involved in ectopic ossification: The shared mechanism in ossification of the spinal ligament. Front Genet 2022; 13:991834. [PMID: 36276940 PMCID: PMC9585156 DOI: 10.3389/fgene.2022.991834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ossification of the posterior longitudinal ligament (OPLL) and ossification of the ligamentum flavum (OLF) are multifactor diseases characterized by progressively ectopic ossification in the spinal ligament. However, the shared ossification mechanism of OPLL and OLF remains to be elucidated. The study aims to investigate the common biomarkers related to ectopic ossification and the potential molecular regulatory mechanism.Methods: Microarray and RNA-seq datasets were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) from OPLL and OLF were identified to construct the protein-protein interaction (PPI) network. Furthermore, the hub intersection genes were screened and the diagnostic performance was assessed in the external OLF and OPLL cohorts. We also depicted the landscape of immune cell infiltration and m6A modification meanwhile further estimating the relationship with BMP4.Results: A total of nine up-regulated DEGs and 11 down-regulated DEGs were identified to construct the PPI networks. The integrative bioinformatic analysis defined five hub genes (BMP4, ADAMTS4, HBEGF, IL11, and HAS2) as the common risk biomarkers. Among them, BMP4 was the core target. ROC analysis demonstrated a high diagnostic value of the hub genes. Moreover, activated B cells were recognized as shared differential immune infiltrating cells and significantly associated with BMP4 in OPLL and OLF. Meanwhile, a strong correlation was detected between the expression pattern of the m6A regulator METTL3 and BMP4.Conclusion: This study first identified BMP4 as the shared core biomarker in the development of OPLL and OLF. Activated B cells and m6A writer METTL3 might be involved in the osteogenesis process mediated by BMP4. Our findings provide insights into the pathogenesis in the ossification of the spinal ligament and unveil the potential therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxia Chen
- Department of Endocrinology, Cangzhou People’s Hospital, Cangzhou, China
| | - Xiuqi Shan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Huan Wang,
| |
Collapse
|
15
|
Zhao Y, Xiang Q, Lin J, Jiang S, Li W. High Systemic Immune-Inflammation Index and Body Mass Index Are Independent Risk Factors of the Thoracic Ossification of the Ligamentum Flavum. Mediators Inflamm 2022; 2022:4300894. [PMID: 35996410 PMCID: PMC9392597 DOI: 10.1155/2022/4300894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammation has been considered to play an important role in the pathogenesis of the thoracic ossification of the ligamentum flavum (OLF). However, the inflammation-related risk factors of thoracic OLF have not been fully investigated to date. Methods A total of 95 patients (48 in the OLF group and 47 in the control group) were included in this retrospective study to explore the independent risk factors of thoracic OLF. The following demographic and clinical variables were compared between the two groups: gender, age, body mass index (BMI), coexistence of hypertension or diabetes, and inflammation-related variables. Multivariate logistic regression analysis was utilized to determine the independent risk factors. Results High systemic immune-inflammation index (SII) (≥621) (odds ratio [OR] = 12.16, 95% confidence interval [CI] = 2.95-50.17, p < 0.01) and BMI (≥25 kg/m2) (OR = 9.17, 95%CI = 3.22-26.08, p < 0.01) were independent risk factors of thoracic OLF. SII (R = 0.38, p < 0.01) and BMI (R = 0.46, p < 0.01) were positively associated with OLF score. Conclusion High SII and BMI were the independent risk factors of thoracic OLF. Multicenter prospective studies with a large population should be conducted in the future to verify our findings.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Qu X, Xu G, Hou X, Chen G, Fan T, Yang X, Chen Z. M1 Macrophage-Derived Interleukin-6 Promotes the Osteogenic Differentiation of Ligamentum Flavum Cells. Spine (Phila Pa 1976) 2022; 47:E527-E535. [PMID: 35044344 DOI: 10.1097/brs.0000000000004319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic experimental study. OBJECTIVE The aim of this study was to clarify the role of macrophages (Mφs) in the osteogenic differentiation of ligamentum flavum (LF) cells. SUMMARY OF BACKGROUND DATA Mφs and secreted factors are involved in the regulation of cell osteogenic differentiation, and play an important role in the process of heterotopic ossification. Whether Mφs are involved in the development of ossification of the ligamentum flavum (OLF) have not been reported. METHODS The expression of CD68+ Mφs in ossified LF tissue was identified by immunohistochemical staining. THP-1 cells were polarized to M1 and M2, and identified by flow cytometry and immunofluorescence. The alkaline phosphatase activity and osteogenic differentiation-related gene expression in LF cells were evaluated following incubation with each Mφs conditioned medium (CM). Enzyme-linked immunosorbent assay was used to detect the pro-inflammatory cytokines in the supernatants, and qPCR was used to detect the expression of the corresponding receptors in the LF cells after incubation with the CM. LF cells were induced with CM-M1 in the presence of neutralizing antibodies to further test whether cytokines secreted by M1 Mφs impacted their osteogenic differentiation. RESULTS CD68+ Mφs were found on the OLF samples. THP-1 cells were polarized into M1 and M2, and both M1 and M2 Mφs promoted the osteogenic differentiation of LF cells. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1 β, and IL-6 in M1 Mφ supernatants were greater than those in M2, and greater levels of these cytokine receptors were observed in LF cells induced with CM-M1 than those with CM-M2. Osteogenic differentiation of LF cells induced by CM-M1 decreased after IL-6 was neutralized; however, not after IL-1β and TNF-α were neutralized. CONCLUSION M1 Mφ-derived IL-6 promotes the osteogenic differentiation of LF cells, which may be a pathway in which Mφs regulate the osteogenic differentiation of LF cells.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopadic Diseases, Liaoning Province, Dalian, PR China
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Gang Xu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopadic Diseases, Liaoning Province, Dalian, PR China
| | - Xiaofei Hou
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Guanghui Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
17
|
Zhao Y, Xiang Q, Lin J, Jiang S, Li W. High Body Mass Index Is Associated with an Increased Risk of the Onset and Severity of Ossification of Spinal Ligaments. Front Surg 2022; 9:941672. [PMID: 35937605 PMCID: PMC9354543 DOI: 10.3389/fsurg.2022.941672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background Ossification of the posterior longitudinal ligament (OPLL) and that of ligamentum flavum (OLF) are the main types of the ossification of spinal ligaments (OSL) that cause the thoracic myelopathy. Although several studies have investigated the relationship of body mass index (BMI) with the onset or severity of OSL, it remains unverified due to the contradictory results of existing evidence. A systematic review and meta-analysis were performed in this work to determine the relationship of BMI with the onset and severity of OSL. Methods PubMed, EMBASE, Web of Science, and Cochrane Library were comprehensively searched online for relevant studies focusing on the relationship of BMI with the onset or severity of the OSL. The difference in BMI of OSL (or severe OSL group) and non-OSL (or nonsevere OSL group) groups was evaluated using the mean difference (MD) with a corresponding 95% confidence interval (CI). Results Fifteen studies were included in this systematic review and meta-analysis. The BMI of the OSL group was significantly higher than that of the non-OSL group (MD = 1.70 kg/m2, 95% CI = 1.02–2.39 kg/m2, and P < 0.01). Similar results were observed in the subgroup analysis of female (P < 0.01), OPLL (P < 0.01), and OLF (P < 0.01) populations. Three studies reported a significant association of BMI with the ossification index of OSL and the standardized regression coefficient ranging from 0.11 to 0.43 (P < 0.05). Moreover, a significantly higher BMI was observed in the severe OSL group compared with that in the nonsevere OSL group (MD = 3.09, 95% CI, 0.22–5.97 kg/m2, and P = 0.04). Conclusion The significant association of high BMI with the onset and severity of OSL may provide new evidence and insights into the mechanism research and management of OSL.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Correspondence: Weishi Li
| |
Collapse
|
18
|
Connexin 43 affects thoracic ossification of ligamentum flavum by regulating the p38 MAPK-RUNX2 signaling pathway. Tissue Cell 2022; 76:101760. [PMID: 35220127 DOI: 10.1016/j.tice.2022.101760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the role of connexin 43 (CX43) in thoracic ossification of ligamentum flavum (TOLF) based on the p38 mitogen-activated protein kinase (p38MAPK)-runt-related transcription factor 2 (RUNX2) pathway. Immunohistochemistry was used to detect CX43 expression in TOLF and non-TOLF patients, fibroblasts of TOLF were isolated and induced osteogenic differentiation, and CX43 expression was detected by western blot analysis (WB). In addition, si-CX43 was used to intervene CX43, and SB203580 was used to inhibit the p38MAPK. The expressions of bone differentiation marker protein were detected by WB, and the ossification ability was analyzed by alizarin red staining. The interaction between RUNX2 and CX43 was identified by dual-luciferase reporter assay. Results found that CX43 was highly expressed during TOLF, and si-CX43 could inhibit the expression of alkaline phosphatase (ALP) and osteopontin (OPN), as well as inhibit TOLF and the p38MAPK-RUNX2 pathway. In addition, SB203580 showed a synergistic effect with si-CX43 to further inhibit TOLF and the expression of RUNX2. The dual-luciferase reporter assay confirmed that RUNX2 could bind to the CX43 promoter. In conclusion, CX43 promotes TOLF, which may be mediated by p38MAPK-RUNX2, and RUNX2 binds to the CX43 promoter to form a positive feedback regulatory loop during TOLF.
Collapse
|
19
|
Zhang H, Deng N, Zhang L, Zhang L, Wang C. Clinical Risk Factors for Thoracic Ossification of the Ligamentum Flavum: A Cross-Sectional Study Based on Spinal Thoracic Three-Dimensional Computerized Tomography. Healthc Policy 2022; 15:1065-1072. [PMID: 35592444 PMCID: PMC9113497 DOI: 10.2147/rmhp.s361730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Background Inconsistent results of the clinical risk factors associated with thoracic ossification of the ligamentum flavum (TOLF) have been reported in limited previous studies. Purpose This retrospective study aimed to investigate the potential risk factors for TOLF by a retrospective cross-sectional study, which may provide valuable experience for further clinical and pathophysiological research. Methods A total of 2247 asymptomatic participants, who underwent spinal thoracic three-dimensional computerized tomography (3D-CT) scans at our institution from January 2016 to December 2019, were enrolled in this study according to the screening criteria. Demographic information such as age, sex, height, weight, body mass index (BMI), smoking and drinking history, diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) were recorded. Laboratory results included serum low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), triglyceride (TG), uric acid (UA), creatinine (Cr), calcium, and phosphorus. Participants were divided into TOLF group and non-TOLF group in accordance with the thoracic 3D-CT manifestation. Results TOLF was observed in 153 (6.81%) asymptomatic participants. Comparison of demographic data and laboratory examinations between the two groups showed that participants in the TOLF group were older, had a higher BMI, as well as higher levels of DBP. In addition, there was no significant difference in sex, drinking, tobacco use, SBP, TC, TG, PP, and levels of LDL-C, HDL-C, sUA, sCr, calcium, and phosphorus between the two groups. Furthermore, dichotomous logistic regression analyses revealed that age (OR = 1.018, p = 0.041) and BMI (OR = 1.090, p < 0.001) were risk factors for TOLF. Conclusion Our study reveals that age and BMI are clinical risk factors for the development of TOLF, while age cannot be identified as an independent risk factor for female in subgroup analysis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Nian Deng
- Department of Orthopaedics, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, People’s Republic of China
| | - Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
- Lei Zhang, Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 266000, People’s Republic of China, Email
| | - Chao Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Chao Wang, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, People’s Republic of China, Email
| |
Collapse
|
20
|
Zhang B, Yuan L, Chen G, Chen X, Yang X, Fan T, Sun C, Fan D, Chen Z. Deciphering Obesity-Related Gene Clusters Unearths SOCS3 Immune Infiltrates and 5mC/m6A Modifiers in Ossification of Ligamentum Flavum Pathogenesis. Front Endocrinol (Lausanne) 2022; 13:861567. [PMID: 35712246 PMCID: PMC9196192 DOI: 10.3389/fendo.2022.861567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ossification of ligamentum flavum (OLF) is an insidious and debilitating heterotopic ossifying disease with etiological heterogeneity and undefined pathogenesis. Obese individuals predispose to OLF, whereas the underlying connections between obesity phenotype and OLF pathomechanism are not fully understood. Therefore, this study aims to explore distinct obesity-related genes and their functional signatures in OLF. METHODS The transcriptome sequencing data related to OLF were downloaded from the GSE106253 in the Gene Expression Omnibus (GEO) database. The obesity-related differentially expressed genes (ORDEGs) in OLF were screened, and functional and pathway enrichment analysis were applied for these genes. Furthermore, protein-protein interactions (PPI), module analysis, transcription factor enrichment analysis (TFEA), and experiment validation were used to identify hub ORDEGs. The immune infiltration landscape in OLF was depicted, and correlation analysis between core gene SOCS3 and OLF-related infiltrating immune cells (OIICs) as well as 5mC/m6A modifiers in OLF was constructed. RESULTS Ninety-nine ORDEGs were preliminarily identified, and functional annotations showed these genes were mainly involved in metabolism, inflammation, and immune-related biological functions and pathways. Integrative bioinformatic algorithms determined a crucial gene cluster associated with inflammatory/immune responses, such as TNF signaling pathway, JAK-STAT signaling pathway, and regulation of interferon-gamma-mediated signaling. Eight hub ORDEGs were validated, including 6 down-regulated genes (SOCS3, PPARG, ICAM-1, CCL2, MYC, and NT5E) and 2 up-regulated genes (PTGS2 and VEGFA). Furthermore, 14 differential OIICs were identified by ssGSEA and xCell, and SOCS3 was overlapped to be the core gene, which was associated with multiple immune infiltrates (dendritic cells, macrophage, and T cells) and six m6A modifiers as well as four 5mC regulators in OLF. Reduced SOCS3 and FTO expression and up-regulated DNMT1 level in OLF were validated by Western blotting. CONCLUSION This study deciphered immune/inflammatory signatures of obesity-related gene clusters for the first time, and defined SOCS3 as one core gene. The crosstalk between 5mC/m6A methylation may be a key mediator of SOCS3 expression and immune infiltration. These findings will provide more insights into molecular mechanisms and therapeutic targets of obesity-related OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Lei Yuan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Guanghui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xi Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xiaoxi Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Tianqi Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- *Correspondence: Zhongqiang Chen,
| |
Collapse
|
21
|
Shah KS, Uchiyama CM. Thoracic ossification of the ligamentum flavum causing acute myelopathy in a patient with cervical ossification of the posterior longitudinal ligament: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE2178. [PMID: 35855184 PMCID: PMC9265228 DOI: 10.3171/case2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND Ossification of the ligamentum flavum (OLF) has been well characterized as a distinct entity but also in tandem with ossification of the posterior longitudinal ligament (OPLL) in noncontiguous spinal regions. The majority of OLF cases are reported from East Asian countries where prevalent, but such cases are rarely reported in the North American population. OBSERVATIONS The authors present a case of a Thai-Cambodian American who presented with symptomatic thoracic OLF in tandem with asymptomatic cervical OPLL. A “floating” thoracic laminectomy, resection of OLF, and partial dural ossification (DO) resection with circumferential release of ossified dura were performed. Radiographic dural reexpansion and spinal cord decompression occurred despite the immediate intraoperative appearance of persistent thecal sac compression from retained DO. LESSONS Entire spinal axis imaging should be considered for patients with spinal ligamentous ossification disease, particularly in those of East Asian backgrounds. A floating laminectomy is one of several surgical approaches for OLF, but no consensus approach has been clearly established. High surgical complication rates are associated with thoracic OLF, most commonly dural tears/cerebrospinal fluid (CSF) leaks. DO commonly coexists with OLF, is recognizable on computed tomographic scans, and increases the risk of CSF leaks.
Collapse
Affiliation(s)
- Kishan S. Shah
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California; and
- Department of Neurosurgery, Scripps Clinic Medical Group, La Jolla, California
| | | |
Collapse
|
22
|
Zhang B, Chen G, Chen X, Yang X, Fan T, Sun C, Chen Z. Integrating Bioinformatic Strategies with Real-World Data to Infer Distinctive Immunocyte Infiltration Landscape and Immunologically Relevant Transcriptome Fingerprints in Ossification of Ligamentum Flavum. J Inflamm Res 2021; 14:3665-3685. [PMID: 34354364 PMCID: PMC8331123 DOI: 10.2147/jir.s318009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Ossification of the ligamentum flavum (OLF) is a multifactorial disease characterized by an insidious and debilitating process of abnormal bone formation in ligamentum tissues. However, its definite pathogenesis has not been fully elucidated. Potential links between the immune system and various forms of heterotopic ossification have been discussed for many years, whereas no research investigated the immune effects on the initiation and development of OLF. Therefore, we attempt to shed light on this issue. Methods A series of bioinformatic algorithms were integrated to evaluate the immune score and the immunocyte infiltration patterns between OLF and normal samples, screen OLF-related and immune-related differentially expressed genes (OIDEGs), and analyze their biological functions. Correlation analysis inferred OIDEGs-related differentially expressed lncRNAs (OIDELs) and infiltrating immune cells (OIICs) to construct an immunoregulatory network. Results Differential immune score and immune cell infiltration were determined between two groups, and 10 OIDEGs with diverse biological function annotations were identified and verified. A lncRNA-gene-immunocyte regulatory network further revealed 10 OIDEGs, 41 OIDELs and 7 OIICs that were highly correlated. Among them, CD1E and STAT3 were predicted as hub genes whether at the expression level or interaction level. cDCs emerged as having the most prominent differences and the highest degree of connectivity. FO393414.3, AC096734.1, LINC01137 and DLX6-AS1 with the greatest number of OIDEGs were thought to be more likely to participate in immunoregulation of OLF. Conclusion This is the first research to preliminarily elucidate OLF-related immunocyte infiltration landscape and immune-associated transcriptome signatures based on bioinformatic strategies and real-world data, which may provide compelling insights into the pathogenesis and therapeutic targets of OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Guanghui Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xi Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xiaoxi Yang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Tianqi Fan
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chuiguo Sun
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Zhongqiang Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
23
|
Thoracic ligamentum flavum ossification: a rare cause of spinal cord injury without tomographic evidence of trauma in a Caucasian patient. Case report and literature review. Spinal Cord Ser Cases 2021; 7:57. [PMID: 34244480 DOI: 10.1038/s41394-021-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Acute spinal cord injury without tomographic evidence of vertebral fracture or dislocation in patients post trauma can represent a diagnostic challenge for the treating physician. The ossification of thoracic ligamentum flavum has been widely published as a cause of thoracic myelopathy, however its association with acute traumatic spinal cord injury is limited to isolated cases. CASE PRESENTATION we report a Caucasian 37-year-old man who suffered a high-energy thoracolumbar spine trauma in a motorcycle accident with acute paraplegia. He presented ossification of the ligamentum flavum between the thoracic vertebrae T10 and T11 with a decrease in the diameter of the vertebral canal as the only pathological finding. We treated the patient with early surgical release before 72 h of trauma. We performed a posterior approach with hemilaminectomy and T10-T11 flavectomy. Arthrodesis was done with T10-T11 pedicle screws. Postoperative neurological status improved from ASIA Impairment Scale (AIS) A to C with severe functional dependence. DISCUSSION Ossification of the ligamentum flavum should be considered in the differential diagnosis in patients presenting with acute traumatic spinal cord injury without tomographic evidence of trauma. A proper diagnosis in time is the key to decision making and treatment of spinal cord injury. Especially in adult patients, we must consider nontraumatic associated factors that could be involved in the spinal cord injury mechanism, such as ossification of the ligamentum flavum.
Collapse
|
24
|
Li J, Yu L, Guo S, Zhao Y. Identification of the molecular mechanism and diagnostic biomarkers in the thoracic ossification of the ligamentum flavum using metabolomics and transcriptomics. BMC Mol Cell Biol 2020; 21:37. [PMID: 32404047 PMCID: PMC7218621 DOI: 10.1186/s12860-020-00280-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background To establish a metabolite fingerprint of ossification of the thoracic ligamentum flavum (OTLF) patients using liquid chromatography-mass spectrometry (LC-MS) in combination with transcriptomic data and explore the potential molecular mechanism of pathogenesis. Results The study cohort was composed of 25 patients with OTLF and 23 healthy volunteers as a control group. Thirty-seven metabolites were identified out by UPLC-MS including uric acid and hypoxanthine. Nine metabolites, including uric acid and hypoxanthine, were found with a Variable Importance in Projection (VIP) score over 1 (p < 0.05). Pathway enrichment indicated that purine metabolism pathways and the other four metabolism pathways were enriched. Transcriptomic data revealed that purine metabolism have a substantial change in gene expression of OTLF and that xanthine dehydrogenase (XDH) is the key regulatory factor. Receiver operating characteristic (ROC) analysis indicated that 17 metabolites, including uric acid, were found with an AUC value of over 0.7. Conclusion Uric acid might be the potential biomarker for OTLF and play an important role within the detailed pathway. XDH could affect purine metabolism by suppressing the expression of hypoxanthine and xanthine leading to low serum levels of uric acid in OTLF, which could be a focal point in developing new therapeutic methods for OTLF.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, No. 1 Shuaifuyuan Dongdan, Dongcheng District, 100730, Beijing, P.R. China
| | - Lingjia Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, No. 1 Shuaifuyuan Dongdan, Dongcheng District, 100730, Beijing, P.R. China
| | - Shigong Guo
- National Spinal Injuries Centre, Stoke Mandeville Hospital, Aylesbury, UK
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, No. 1 Shuaifuyuan Dongdan, Dongcheng District, 100730, Beijing, P.R. China.
| |
Collapse
|
25
|
Chaput CD, Siddiqui M, Rahm MD. Obesity and calcification of the ligaments of the spine: a comprehensive CT analysis of the entire spine in a random trauma population. Spine J 2019; 19:1346-1353. [PMID: 30902702 DOI: 10.1016/j.spinee.2019.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Obesity, which is currently surging to epidemic levels within the United States, has been linked to hyperostotic conditions like diffuse idiopathic skeletal hyperostosis (DISH) and ossification of the posterior longitudinal ligament (OPLL). Excess adipose tissue and insulin-resistance may cause a systemic increase in serum levels of proinflammatory cytokines and these signals can affect bone metabolism. Spinal ligaments and discs may have receptors for these signaling molecules. Anecdotal observations at this institution suggested that there is a clinically important subset of younger patients with obesity and multilevel stenosis in the presence of unusual calcification of the spinal ligaments that is distinct from DISH. PURPOSE To determine if there is an association between truncal obesity and calcifications of the spine in nonelderly adults. STUDY DESIGN/SETTING This is a retrospective analysis of 214 sequential trauma patients between the ages of 29 and 50. Patients' age, sex, truncal obesity, history of hypertension, and diabetes were assessed for association with ligamentous calcification of the spine. PATIENT SAMPLE Sequential trauma patients were chosen from our institution's trauma database between 2006 and 2007. METHODS Full spine computed tomography (CT) imaging was examined for bone formation in the region of the anterior longitudinal ligament (ALL) and annulus, posterior longitudinal ligament (PLL) and annulus, and the ligamentum flavum (LF). Visceral and subcutaneous abdominal fat were also evaluated. The authors report no study funding sources or conflicts of interest. OUTCOME MEASURES Calcification of the ALL, PLL, and LF were assigned a score at each level and then combined for a total calcification score (TCS) for the entire spine. Obesity was estimated using a truncal body mass index (TBMI) by using a previously validated CT derived truncal total adiposity volume (TAV). RESULTS ALL calcification was associated with age, male gender, hypertension, and increased adiposity. PLL calcification was significantly associated with age and hypertension. LF calcification was only associated with increased obesity. CONCLUSIONS In our analysis of nonelderly patients, LF calcification was independently associated with truncal obesity. This implies obesity plays a greater role in calcification than could be accounted for by simply age-related degeneration or gender.
Collapse
Affiliation(s)
- Christopher D Chaput
- University of Texas Health Science Center at San Antonio, Address: 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Mehdi Siddiqui
- University of Texas Health Science Center at San Antonio, Address: 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Mark D Rahm
- Baylor Scott & White Health/Texas A&M Health Science Center College of Medicine, Address: 2401 S 31(st) St, Temple, TX 76508, USA
| |
Collapse
|
26
|
Kumar A, Banerjee S. Near complete block of spinal canal and thoracic myelopathy due to tuberous ossification of ligamentum flavum in a 32 year old female. INTERDISCIPLINARY NEUROSURGERY 2019. [DOI: 10.1016/j.inat.2019.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
27
|
Han Y, Hong Y, Li L, Li T, Zhang Z, Wang J, Xia H, Tang Y, Shi Z, Han X, Chen T, Liu Q, Zhang M, Zhang K, Hong W, Xue Y. A Transcriptome-Level Study Identifies Changing Expression Profiles for Ossification of the Ligamentum Flavum of the Spine. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:872-883. [PMID: 30161026 PMCID: PMC6120750 DOI: 10.1016/j.omtn.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023]
Abstract
Ossification of the ligamentum flavum (OLF) is a common spinal disorder that causes myelopathy and radiculopathy. Non-coding RNAs (ncRNAs) are involved in numerous pathological processes; however, very few ncRNAs have been identified to be correlated with OLF. Here we compared the expression of lncRNA, mRNA, circRNA, and microRNA in OLF tissues from OLF patients and healthy volunteers through mRNA, lncRNA, and circRNA microarrays and microRNA sequencing. A total of 2,054 mRNAs, 2,567 lncRNAs, 627 circRNAs, and 28 microRNAs (miRNAs) were altered during the process of OLF. qPCR confirmed the differential expression of selected mRNAs and ncRNAs. An lncRNA-mRNA co-expression network, miRNA-mRNA target prediction network, and competing endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA were constructed based on a correlation analysis of the differentially expressed RNA transcripts. Subsequently, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for the differentially expressed mRNAs and the predicted miRNAs target genes were performed. In addition, a deregulated miRNA-19b-3p-based miRNA-circRNA-lncRNA-mRNA network was confirmed, by gain-of-function and loss-of-function experiments, to function in the process of ossification. Taken together, this study provides a systematic perspective on the potential function of ncRNAs in the pathogenesis of OLF.
Collapse
Affiliation(s)
- Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuheng Hong
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Liandong Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengshuai Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Han Xia
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yutao Tang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengxia Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yuan Xue
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
28
|
Yang X, Qu X, Meng X, Li M, Fan D, Fan T, Huang AY, Chen Z, Zhang C. MiR-490-3p inhibits osteogenic differentiation in thoracic ligamentum flavum cells by targeting FOXO1. Int J Biol Sci 2018; 14:1457-1465. [PMID: 30262997 PMCID: PMC6158729 DOI: 10.7150/ijbs.26686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a rare heterotopic ossification of spinal ligaments, which is the major cause of thoracic spinal canal stenosis and myelopathy. In this study, the roles of miR-490-3p and forkhead box O1 (FOXO1) in osteogenesis of human thoracic ligamentum flavum cells were investigated. MiR-490-3p was found to be down-regulated during osteogenic differentiation of thoracic ligamentum flavum cells, while their overexpression inhibited osteogenic differentiation. In addition, the analysis of target prediction and dual luciferase reporter assays supported that miR-490-3p directly targeted FOXO1 and suppressed the expression of FOXO1. Moreover, FOXO1 knockdown was displayed to attenuate the effect of miR-490-3p inhibition. ChIP assays showed that miR-490-3p negatively regulated the interaction of FOXO1 and RUNX2. These findings suggest that miR-490-3p performs an inhibitory role in osteogenic differentiation of thoracic ligamentum flavum cells by potentially targeting FOXO1.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiaochen Qu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ann Y Huang
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China.,Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
29
|
Feng B, Cao S, Zhai J, Ren Y, Hu J, Tian Y, Weng X. Roles and mechanisms of leptin in osteogenic stimulation in cervical ossification of the posterior longitudinal ligament. J Orthop Surg Res 2018; 13:165. [PMID: 29970120 PMCID: PMC6029428 DOI: 10.1186/s13018-018-0864-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Hyperleptinemia is a common feature of obese people, and leptin, an adipocyte-derived cytokine, is believed to be an important factor in the pathogenesis of cervical ossification of the posterior longitudinal ligament(C-OPLL). So this research was to identify the relation between the serum leptin and bone metabolic markers and how the leptin induced osteogenic effect in C-OPLL. Methods Sixty-four samples were selected to determine the concentration of leptin, insulin, and alkaline phosphatase. And the association of leptin with these factors was also examined. We also evaluate the effect of leptin on the development of C-OPLL and further explored the possible underlying mechanism in vitro. Results We found that serum leptin concentrations were higher in females than in males. Serum leptin and ALP concentrations were increased significantly in C-OPLL females compared to non-OPLL females. In OPLL subjects, the serum leptin concentration corrected for body mass index correlated negatively with the ALP concentrations. In C-OPLL cells, leptin treatment led to a significant increase in mRNA expressions of ALP and OCN and formation of mineralized nodule. Our experiments reported here that osteogenic effect of leptin in C-OPLL cells could be mediated via ERK1/2, p38 MAPK, and/or JNK signaling pathways. Conclusions From this research, we got that leptin treatment led to a significant increase in mRNA expressions of ALP and OCN and formation of mineralized nodule. And the osteogenic effect of leptin in C-OPLL cells could be mediated via ERK1/2, p38 MAPK, and/or JNK signaling pathways.
Collapse
Affiliation(s)
- Bin Feng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Shiliang Cao
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiliang Zhai
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Ren
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianhua Hu
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ye Tian
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Xisheng Weng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
30
|
Abstract
STUDY DESIGN An experimental model study and a short review of literature. OBJECTIVE The purpose of this study was to explore a new hypothesis suggesting that the curvatures seen in adolescent idiopathic scoliosis (AIS) originate from restrained differential growth between the vertebral column and the surrounding musculo-ligamentary structures. SUMMARY OF BACKGROUND DATA Despite decades of research, there is no generally accepted theory on the physical origin of the severe spinal deformations seen in AIS. The prevailing theories tend to focus on left-right asymmetry, rotational instability, or the sagittal spinal profile in idiopathic scoliosis. METHODS We test our hypothesis with a physical model of the spine that simulates growth, counteracted by ligaments and muscles, modeled by tethers and springs. Growth of the spine is further restrained by an anterior band representing the thorax, the linea alba, and abdominal musculature. We also explore literature in search of molecular mechanisms that may induce differential growth. RESULTS Differential growth in the restrained spine model first induces hypokyphosis and mild lateral bending of the thoracic spine, but then suddenly escalates into a scoliotic deformity, consistent with clinical observations of AIS. The band simulating the ventral structures of the body had a pivotal effect on sagittal curvature and the initiation of lateral bending and rotation. In literature, several molecular mechanisms were found that may explain the occurrence of differential growth between the spine and the musculo-ligamentary structures. CONCLUSION While AIS is a three-dimensional deformation of the spine, it appears that restrained differential growth in the sagittal plane can result in lateral bending and rotation without a pre-existing left-right asymmetry. This supports the concept that AIS may result from a growth imbalance rather than a local anatomical defect. LEVEL OF EVIDENCE N/A.
Collapse
|
31
|
Wang B, Chen Z, Meng X, Li M, Yang X, Zhang C. iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem Biophys Res Commun 2017; 487:834-839. [PMID: 28455229 DOI: 10.1016/j.bbrc.2017.04.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a unique disease with ectopic ossification, and is a major cause of thoracic spinal stenosis and myelopathy. However, the underlying etiology remains largely unknown. In this study, the ligamentum flavum was systematically analyzed in TOLF patients by using comprehensive iTRAQ labeled quantitative proteomics. Among 1285 detected proteins, there were 282 proteins identified to be differentially expressed. The Gene Ontology (GO) analysis regarding functional annotation of proteins consists of the following three aspects: the biological process, the molecular function, and the cellular components. The function clustering analysis revealed that ten of the above proteins are related to inflammation, such as tumor necrosis factor (TNF). This finding was subsequently validated by ELISA, which indicated that serum TNF-α of TOLF patients was significantly higher compared with the control group. To address the effect of TNF-α on ossification-related gene expression, we purified and cultured primary cells from thoracic ligamentum flavum of patients with TOLF. TNF-α was then used to stimulate cells. RNA was isolated and analyzed by RT-PCR. Our results showed that TNF-α was able to induce the expressions of osteoblast-specific transcription factor Osterix (Osx) in ligamentum flavum cells, suggesting that it can promote osteoblast differentiation. In addition, as the Osx downstream osteoblast genes OCN and ALP were also activated by TNF-α. This is the first proteomic study to identify inflammation factors such as TNF-α involved in ossified ligamentum flavum in TOLF, which may contribute to a better understanding of the cause of TOLF.
Collapse
Affiliation(s)
- Bingxiang Wang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing 102206, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing 102206, China
| | - Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing 102206, China; Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Jiang H, Chen Y, Chen G, Tian X, Tang J, Luo L, Huang M, Yan B, Ao X, Zhou W, Wang L, Bai X, Zhang Z, Wang L, Xian CJ. Leptin accelerates the pathogenesis of heterotopic ossification in rat tendon tissues via mTORC1 signaling. J Cell Physiol 2017; 233:1017-1028. [PMID: 28407241 DOI: 10.1002/jcp.25955] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Leptin, an adipocyte-derived cytokine associated with bone metabolism, is believed to play a critical role in the pathogenesis of heterotopic ossification (HO). The effect and underlying action mechanism of leptin were investigated on osteogenic differentiation of tendon-derived stem cells (TDSCs) in vitro and the HO formation in rat tendons. Isolated rat TDSCs were treated with various concentrations of leptin in the presence or absence of mTORC1 signaling specific inhibitor rapamycin in vitro. A rat model with Achilles tenotomy was employed to evaluate the effect of leptin on HO formation together with or without rapamycin treatment. In vitro studies with TDSCs showed that leptin increased the expression of osteogenic biomarkers (alkaline phosphatase, runt-related transcription factor 2, osterix, osteocalcin) and enhanced mineralization of TDSCs via activating the mTORC1 signal pathway (as indicated by phosphorylation of p70 ribosomal S6 kinase 1 and p70 ribosomal S6). However, mTORC1 signaling blockade with rapamycin treatment suppressed leptin-induced osteogenic differentiation and mineralization. In vivo studies showed that leptin promoted HO formation in the Achilles tendon after tenotomy, and rapamycin treatment blocked leptin-induced HO formation. In conclusion, leptin can promote TDSC osteogenic differentiation and heterotopic bone formation via mTORC1 signaling in both vitro and vivo model, which provides a new potential therapeutic target for HO prevention.
Collapse
Affiliation(s)
- Huaji Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Guorong Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xinggui Tian
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Jiajun Tang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Lei Luo
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiang Ao
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Wen Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Xiaochun Bai
- Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China.,Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
33
|
Zhang C, Chen Z, Meng X, Li M, Zhang L, Huang A. The involvement and possible mechanism of pro-inflammatory tumor necrosis factor alpha (TNF-α) in thoracic ossification of the ligamentum flavum. PLoS One 2017; 12:e0178986. [PMID: 28575129 PMCID: PMC5456390 DOI: 10.1371/journal.pone.0178986] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic bone formation in the ligamentum flavum and is considered to be a leading cause of thoracic spinal canal stenosis and myelopathy. However, the underlying etiology is not well understood. An iTRAQ proteomics was used to reveal the involvement of inflammation factors in TOLF. TNF-α is a pro-inflammatory cytokine implicated in the pathogenesis of many human diseases. Protein profiling analysis showed that the protein level of TNF-α increased in the ossified ligamentum flavum of TOLF, which was confirmed by western blot. The effects of TNF-α on primary ligamentum flavum cells was examined. Cell proliferation assay demonstrated that primary cells from the ossified ligamentum flavum of TOLF grew faster than the control. Flow cytometry assay indicated that the proportions of cells in S phase of cell cycle of primary cells increased after TNF-α stimulation. To address the effect of TNF-α on gene expression, primary cells were derived from ligamentum flavum of TOLF patients. Culture cells were stimulated by TNF-α. RNA was isolated and analyzed by quantitative RT-PCR. G1/S-specific proteins cyclin D1 and c-Myc were upregulated after TNF-α stimulation. On the other hand, osteoblast differentiation related genes such as Bmp2 and Osterix (Osx) were upregulated in the presence of TNF-α. TNF-α activated Osx expression in a dose-dependent manner. Interestingly, a specific mitogen-activated protein kinase ERK inhibitor U0126, but not JNK kinase inhibitor SP600125, abrogated TNF-α activation of Osx expression. This suggests that TNF-α activates Osx expression through the mitogen-activated protein kinase ERK pathway. Taken together, we provide the evidence to support that TNF-α involves in TOLF probably through regulating cell proliferation via cyclin D1 and c-Myc, and promoting osteoblast differentiation via Osx.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CZ); (ZC)
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Haidian District, Beijing, China
- * E-mail: (CZ); (ZC)
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Zhang
- Department of Research, Daobio Inc., Dallas, Texas, United States of America
| | - Ann Huang
- Department of Research, Daobio Inc., Dallas, Texas, United States of America
| |
Collapse
|
34
|
Yin J, Zhuang G, Zhu Y, Hu X, Zhao H, Zhang R, Guo H, Fan X, Cao Y. MiR-615-3p inhibits the osteogenic differentiation of human lumbar ligamentum flavum cells via suppression of osteogenic regulators GDF5 and FOXO1. Cell Biol Int 2017; 41:779-786. [PMID: 28460412 DOI: 10.1002/cbin.10780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jichao Yin
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
| | - Yi Zhu
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xinglv Hu
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Hongmou Zhao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Rongqiang Zhang
- Department of Public Health; Shaanxi University of Chinese Medicine; Xi'an China
| | - Hao Guo
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xiaochen Fan
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Yi Cao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| |
Collapse
|
35
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Guo Z, Qi Q, Li W. MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch signalling pathway. J Cell Mol Med 2016; 21:1159-1170. [PMID: 27957826 PMCID: PMC5431140 DOI: 10.1111/jcmm.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a pathology almost only reported in East Asian countries. The leading cause of OLF is thoracic spinal canal stenosis and myelopathy. In this study, the role of miR-199b-5p and jagged 1 (JAG1) in primary ligamentum flavum cell osteogenesis was examined. MiR-199b-5p was found to be down-regulated during osteogenic differentiation in ligamentum flavum cells, while miR-199b-5p overexpression inhibited osteogenic differentiation. In addition, JAG1 was found to be up-regulated during osteogenic differentiation in ligamentum flavum cells, while JAG1 knockdown via RNA interference caused an inhibition of Notch signalling and osteogenic differentiation. Moreover, target prediction analysis and dual luciferase reporter assays supported the notion that JAG1 was a direct target of miR-199b-5p, with miR-199b-5p found to down-regulate both JAG1 and Notch. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. These findings imply that miR-199b-5p performs an inhibitory role in osteogenic differentiation in ligamentum flavum cells by potentially targeting JAG1 and influencing the Notch signalling pathway.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhaoqing Guo
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
36
|
Ning S, Chen Z, Fan D, Sun C, Zhang C, Zeng Y, Li W, Hou X, Qu X, Ma Y, Yu H. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. Int J Mol Med 2016; 39:135-143. [PMID: 28004120 PMCID: PMC5179181 DOI: 10.3892/ijmm.2016.2803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
Abstract
Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non‑TOLF and single‑ and multiple‑level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis‑related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt‑related transcription factor‑2 (Runx‑2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple‑level than in the single‑level TOLF group, whereas no changes were observed in the non‑TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple‑level as compared to the single‑level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple‑level as compared to the non‑TOLF group. The osterix and ALP protein levels were higher in the multiple‑level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single‑ and multiple‑level TOLF that may be related to the different pathogenesis and genetic background.
Collapse
Affiliation(s)
- Shanglong Ning
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chi Zhang
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Zeng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiaofei Hou
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiaochen Qu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yunlong Ma
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Huilei Yu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
37
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y. MiR-132-3p Regulates the Osteogenic Differentiation of Thoracic Ligamentum Flavum Cells by Inhibiting Multiple Osteogenesis-Related Genes. Int J Mol Sci 2016; 17:ijms17081370. [PMID: 27556448 PMCID: PMC5000765 DOI: 10.3390/ijms17081370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
38
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Hou X, Ning S. Notch signaling pathways in human thoracic ossification of the ligamentum flavum. J Orthop Res 2016; 34:1481-91. [PMID: 27208800 DOI: 10.1002/jor.23303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/19/2016] [Indexed: 02/04/2023]
Abstract
This study investigated the pathological process of Notch signaling in the osteogenesis of ligamentum flavum tissues and cells, and the associated regulatory mechanisms. Notch receptors, ligands, and target genes were identified by quantitative polymerase chain reaction (qPCR) in ligamentum flavum cells and immunohistochemistry in ligamentum flavum sections from ossification of the ligamentum flavum (OLF) patients and controls. The temporospatial expression patterns of JAG1/Notch2/HES1 in human ligamentum flavum cells during osteogenic differentiation were determined by qPCR. Lentiviral vectors for Notch2 overexpression and knockdown were constructed and transfected into ligamentum flavum cells before osteogenic differentiation to examine the function of Notch signaling pathways in the osteogenic differentiation of ligamentum flavum cells. Alkaline phosphatase, Runx2, Osterix, osteocalcin, and osteopontin mRNA levels, alkaline phosphatase activity, and Alizarin Red staining were used as indicators of osteogenic differentiation. JAG1/Notch2/HES1 mRNA levels were up-regulated in ligamentum flavum cells from OLF patients, which increased during osteogenic differentiation. Immunohistochemical analysis suggested positive Notch2 expression at the ossification front. Down-regulation of Notch2 expression decelerated osteogenic differentiation of ligamentum flavum cells, and Notch2 overexpression promoted osteogenic differentiation of ligamentum flavum cells. Expression of Runx2 and Osterix increased in a manner similar to that of Notch2 during osteogenic differentiation of ligamentum flavum cells, and Notch2 knockdown and overexpression influenced their expression levels. Notch signaling plays an important role in OLF, and Notch may affect the osteogenic differentiation of ligamentum flavum cells via interactions with Runx2 and Osterix.© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1481-1491, 2016.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaofei Hou
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Shanglong Ning
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
39
|
Toledo JA, Isseldyk FV, Re M, Garrote M. Ossification of the ligamentum flavum as cause of thoracic cord compression: Case report of a Latin American man and review of the literature. Surg Neurol Int 2013; 4:119. [PMID: 24083054 PMCID: PMC3784953 DOI: 10.4103/2152-7806.118489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022] Open
Abstract
Background: Ossification of the ligamentum flavum is a widely described pathology in eastern Asia. Cases have been reported in northern Africa, the Middle-East, India, the Caribbean, Europe, and North America, but no cases from Latin America have been published in the literature. It affects mostly elderly men, with a possible association with obesity and type 2 diabetes. Case Description: A 38-year-old previously healthy Latin American male presented to the emergency room department with severe functional disability and a 3/5 paraparesis. Blood reports showed no abnormalities. Computed tomography and magnetic resonance imaging showed a ligamentum flavum ossification with myelopathy. The patient underwent a T3-T9 laminotomy. At hospital discharge, the patient remained with a 3/5 paraparesis, mild hypoesthesia in both lower limbs and bladder incontinence. Rectal sphincter was continent. At 6 months, he was able to walk with a cane, with no sphincter or sensory alterations. Conclusions: Ligamentum flavum ossification is rare. To our understanding, this is the first case reported in the Latin American population.
Collapse
Affiliation(s)
- Javier A Toledo
- Department of Neurosurgery, Hospital Clemente Álvarez, Rosario, Santa Fe, Argentina
| | | | | | | |
Collapse
|
40
|
Zhou S, Zhang J, Zheng H, Zhou Y, Chen F, Lin J. Inhibition of mechanical stress-induced NF-κB promotes bone formation. Oral Dis 2012; 19:59-64. [DOI: 10.1111/j.1601-0825.2012.01949.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Ikeda Y, Nakajima A, Aiba A, Koda M, Okawa A, Takahashi K, Yamazaki M. Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1450-8. [PMID: 21258825 DOI: 10.1007/s00586-011-1688-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/11/2010] [Accepted: 01/09/2011] [Indexed: 12/12/2022]
Abstract
Obesity is a risk factor for ossification of the posterior longitudinal ligament (OPLL) of the spine, which is characterized by heterotopic bone formation in the posterior longitudinal spinal ligament. Hyperleptinemia is a common feature of obese people and leptin is believed to be an important factor in the pathogenesis of OPLL. However, the association between leptin and bone metabolism and the development of OPLL is not understood fully. The objective of the present study was to determine the association between serum leptin concentration and bone metabolic markers and the extent of heterotopic ossification of the spinal ligament in patients with OPLL. The serum concentrations of leptin, insulin, fructosamine, bone-specific alkaline phosphatase, and carboxyterminal propeptide of type I procollagen, urine deoxypyridinoline levels, and the number of vertebrae with OPLL involvement were measured in 125 (68 males and 57 females) patients with OPLL. The correlation between leptin and these other factors was then examined. Serum leptin and insulin concentrations were increased significantly in OPLL females compared to non-OPLL female controls. In the females with OPLL, serum leptin concentrations corrected for body mass index correlated positively with the number of vertebrae with OPLL involvement. In females, serum leptin levels were significantly higher in patients in whom OPLL extended to the thoracic and/or lumbar spine than in patients in whom OPLL was limited to the cervical spine. Our results suggest that hyperleptinemia, in combination with hyperinsulinemia, may contribute to the development of heterotopic ossification of the spinal ligament in female patients with OPLL.
Collapse
Affiliation(s)
- Yoshikazu Ikeda
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Li H, Jiang LS, Dai LY. High glucose potentiates collagen synthesis and bone morphogenetic protein-2-induced early osteoblast gene expression in rat spinal ligament cells. Endocrinology 2010; 151:63-74. [PMID: 19915165 DOI: 10.1210/en.2009-0833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an independent risk factor for ossification of the posterior longitudinal ligament, but the mechanism is unclear. We isolated cells from rat cervical spine ligaments and studied the effects of high glucose on expression of osteoblast genes to provide insight into molecular mechanism. Using these cells, high glucose stimulated the synthesis of type I collagen and significantly potentiated expression of early osteoblast genes (Runx2; alkaline phosphatase, ALP; and osteopontin, OP) induced by bone morphogenetic protein-2 (BMP-2). Notably, these effects of high glucose were fully mimicked and augmented by H(2)O(2), although blocked by the reactive oxygen species inhibitor N-acetyl cysteine. Furthermore, exposure of these cells to high glucose significantly suppressed the phosphorylation of p38MAPK while enhancing the phosphorylation of protein kinase C (PKC) in the cells. Consistent with these observations, an inhibitor of p38 augmented the potentiation of high glucose on BMP-2-induced early osteogenic gene expression, whereas the PKC inhibitor repressed the effect of high glucose on type I collagen synthesis of the cells. In conclusion, high glucose, via production of reactive oxygen species, subsequent activation of PKC, and inhibition of p38, enhances type I collagen synthesis and expression of early osteogenesis genes induced by BMP-2 in rat spinal ligament cells. Hyperglycemia may play an important role in the onset or progression of ossification of the posterior longitudinal ligament by promoting the responsiveness of ligament cells to osteogenic differentiation.
Collapse
Affiliation(s)
- Hai Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092 Shanghai, China
| | | | | |
Collapse
|