1
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of versican expression in macrophages is mediated by canonical type I interferon signaling via ISGF3. Am J Physiol Cell Physiol 2024; 327:C1274-C1288. [PMID: 39400584 PMCID: PMC11559644 DOI: 10.1152/ajpcell.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving Toll-like receptor (TLR)4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via interferon-stimulated gene factor 3 (ISGF3), the heterotrimeric transcription factor complex of Irf9, Stat1, and Stat2, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.NEW & NOTEWORTHY We report the novel finding that versican expression is regulated by the interferon-stimulated gene factor 3 (ISGF3) arm of canonical type I Ifn signaling in LPS-stimulated macrophages. This pathway is distinct from mechanisms that control versican expression in other cell types. This suggests that macrophage-derived versican may play a role in limiting a potentially excessive inflammatory response. The detailed understanding of how versican expression is regulated in different cells could lead to unique approaches for enhancing its anti-inflammatory properties.
Collapse
Affiliation(s)
- Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Christina K Chan
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Anne M Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - William A Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
2
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of Versican Expression in Macrophages is Mediated by Canonical Type I Interferon Signaling via ISGF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585097. [PMID: 38559011 PMCID: PMC10980001 DOI: 10.1101/2024.03.14.585097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving TLR4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via the heterotrimeric transcription factor, ISGF3, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.
Collapse
Affiliation(s)
- Mary Y. Chang
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Christina K. Chan
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Jourdan E. Brune
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Anne M. Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - William A. Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Rahaman S, Faravelli S, Voegeli S, Becskei A. Polysome propensity and tunable thresholds in coding sequence length enable differential mRNA stability. SCIENCE ADVANCES 2023; 9:eadh9545. [PMID: 37756413 PMCID: PMC10530222 DOI: 10.1126/sciadv.adh9545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The half-life of mRNAs, as well as their translation, increases in proportion to the optimal codons, indicating a tight coupling of codon-dependent differential translation and degradation. Little is known about the regulation of this coupling. We found that the mRNA stability gain in yeast depends on the mRNA coding sequence length. Below a critical length, codon optimality fails to affect the stability of mRNAs although they can be efficiently translated into short peptides and proteins. Above this threshold length, codon optimality-dependent differential mRNA stability emerges in a switch-like fashion, which coincides with a similar increase in the polysome propensity of the mRNAs. This threshold length can be tuned by the untranslated regions (UTR). Some of these UTRs can destabilize mRNAs without reducing translation, which plays a role in controlling the amplitude of the oscillatory expression of cell cycle genes. Our findings help understand the translation of short peptides from noncoding RNAs and the translation by localized monosomes in neurons.
Collapse
Affiliation(s)
- Sayanur Rahaman
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
4
|
Xu J, Ruan Y, Sun J, Shi P, Huang J, Dai L, Xiao M, Xu H. Association Analysis of PRKAA2 and MSMB Polymorphisms and Growth Traits of Xiangsu Hybrid Pigs. Genes (Basel) 2022; 14:genes14010113. [PMID: 36672854 PMCID: PMC9858937 DOI: 10.3390/genes14010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, Xiangsu hybrid pig growth traits were evaluated via PRKAA2 and MSMB as candidate genes. Sanger sequencing revealed three mutation sites in PRKAA2, namely, g.42101G>T, g.60146A>T, and g.61455G>A, and all these sites were intronic mutations. Moreover, six mutation sites were identified in MSMB: intronic g.4374G>T, exonic g.4564T>C, exonic g.6378G>A, exonic g.6386C>T, intronic g.8643G>A, and intronic g.8857A>G. Association analysis revealed that g.42101G>T, g.60146A>T, g.61455G>A, g.4374G>T, g.4564T>C, g.6378G>A, g.6386C>T, g.8643G>A, and g.8857A>G showed different relationship patterns among body weight, body length, body height, chest circumference, abdominal circumference, tube circumference, and chest depth. Real-time polymerase chain reaction results revealed that the expression of PRKAA2 was highest in the longissimus dorsi muscle, followed by that in the heart, kidney, liver, lung, and spleen. The expression of MSMB was highest in the spleen, followed by that in the liver, kidney, lung, heart, and longissimus dorsi muscle. These results suggest that PRKAA2 and MSMB can be used in marker-assisted selection to improve growth related traits in Xiangsu hybrid pigs, providing new candidate genes for Pig molecular breeding.
Collapse
Affiliation(s)
- Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
5
|
Wu Y, Zhang L, Zeng XC, Shi W. Intronic Number Polymorphism in the Genes Encoding Potassium Channel Specific Venom Toxins from Scorpion. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
The Expanding Role of Alternative Splicing in Vascular Smooth Muscle Cell Plasticity. Int J Mol Sci 2021; 22:ijms221910213. [PMID: 34638554 PMCID: PMC8508619 DOI: 10.3390/ijms221910213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to ‘switch’ between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling. When their plasticity is pathological, it can lead to cardiovascular diseases such as atherosclerosis and restenosis. Coinciding with significant technological and conceptual innovations in RNA biology, there has been a growing focus on the role of alternative splicing in VSMC gene expression regulation. Herein, we review how alternative splicing and its regulatory factors are involved in generating protein diversity and altering gene expression levels in VSMC plasticity. Moreover, we explore how recent advancements in the development of splicing-modulating therapies may be applied to VSMC-related pathologies.
Collapse
|
7
|
Wang G, Li M, Zhou J, An X, Bai F, Gao Y, Yu J, Li H, Lei C, Dang R. A novel A > G polymorphism in the intron 2 of TBX3 gene is significantly associated with body size in donkeys. Gene 2021; 785:145602. [PMID: 33766712 DOI: 10.1016/j.gene.2021.145602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
T-box transcription factor 3 (TBX3) gene encodes a transcriptional suppressor and plays an important role in embryonic development, which belongs to the T-box family. TBX3 also has been found to be associated with body size traits in horse that is a relative of donkey. Therefore, TBX3 is considered as a promising candidate gene for economic traits of donkey. This study aimed to reveal the significant variation of TBX3 gene in Dezhou donkey and explores the relationship between genotypes and body sizes. In this study, an A > G mutation was found in the intron 2 of TBX3 gene by sequencing, and three genotypes (AA, GG and AG) were identified in 380 Dezhou donkey individuals with Tm-shift method. Association analysis illustrated that there were significant differences between AA and GG genotype in body length, body height, chest depth, chest circumference, body weight, hucklebone width and rump length. Our results demonstrated that the polymorphism of TBX3 is significantly associated with body size traits, which can serve as a marker to improve donkey production performance.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Mei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Jun Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Xiaoya An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Fuxia Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China; National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Done-E Country, Shandong Province 252201, China.
| | - Haijing Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., No. 78, E-jiao Street, Done-E Country, Shandong Province 252201, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| |
Collapse
|
8
|
Blumberg A, Zhao Y, Huang YF, Dukler N, Rice EJ, Chivu AG, Krumholz K, Danko CG, Siepel A. Characterizing RNA stability genome-wide through combined analysis of PRO-seq and RNA-seq data. BMC Biol 2021; 19:30. [PMID: 33588838 PMCID: PMC7885420 DOI: 10.1186/s12915-021-00949-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The concentrations of distinct types of RNA in cells result from a dynamic equilibrium between RNA synthesis and decay. Despite the critical importance of RNA decay rates, current approaches for measuring them are generally labor-intensive, limited in sensitivity, and/or disruptive to normal cellular processes. Here, we introduce a simple method for estimating relative RNA half-lives that is based on two standard and widely available high-throughput assays: Precision Run-On sequencing (PRO-seq) and RNA sequencing (RNA-seq). RESULTS Our method treats PRO-seq as a measure of transcription rate and RNA-seq as a measure of RNA concentration, and estimates the rate of RNA decay required for a steady-state equilibrium. We show that this approach can be used to assay relative RNA half-lives genome-wide, with good accuracy and sensitivity for both coding and noncoding transcription units. Using a structural equation model (SEM), we test several features of transcription units, nearby DNA sequences, and nearby epigenomic marks for associations with RNA stability after controlling for their effects on transcription. We find that RNA splicing-related features are positively correlated with RNA stability, whereas features related to miRNA binding and DNA methylation are negatively correlated with RNA stability. Furthermore, we find that a measure based on U1 binding and polyadenylation sites distinguishes between unstable noncoding and stable coding transcripts but is not predictive of relative stability within the mRNA or lincRNA classes. We also identify several histone modifications that are associated with RNA stability. CONCLUSION We introduce an approach for estimating the relative half-lives of individual RNAs. Together, our estimation method and systematic analysis shed light on the pervasive impacts of RNA stability on cellular RNA concentrations.
Collapse
Affiliation(s)
- Amit Blumberg
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yixin Zhao
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yi-Fei Huang
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Present Address: Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alexandra G Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katie Krumholz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
9
|
Lan J, Rajan N, Bizet M, Penning A, Singh NK, Guallar D, Calonne E, Li Greci A, Bonvin E, Deplus R, Hsu PJ, Nachtergaele S, Ma C, Song R, Fuentes-Iglesias A, Hassabi B, Putmans P, Mies F, Menschaert G, Wong JJL, Wang J, Fidalgo M, Yuan B, Fuks F. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat Commun 2020; 11:4956. [PMID: 33009383 PMCID: PMC7532169 DOI: 10.1038/s41467-020-18729-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
Tet-enzyme-mediated 5-hydroxymethylation of cytosines in DNA plays a crucial role in mouse embryonic stem cells (ESCs). In RNA also, 5-hydroxymethylcytosine (5hmC) has recently been evidenced, but its physiological roles are still largely unknown. Here we show the contribution and function of this mark in mouse ESCs and differentiating embryoid bodies. Transcriptome-wide mapping in ESCs reveals hundreds of messenger RNAs marked by 5hmC at sites characterized by a defined unique consensus sequence and particular features. During differentiation a large number of transcripts, including many encoding key pluripotency-related factors (such as Eed and Jarid2), show decreased cytosine hydroxymethylation. Using Tet-knockout ESCs, we find Tet enzymes to be partly responsible for deposition of 5hmC in mRNA. A transcriptome-wide search further reveals mRNA targets to which Tet1 and Tet2 bind, at sites showing a topology similar to that of 5hmC sites. Tet-mediated RNA hydroxymethylation is found to reduce the stability of crucial pluripotency-promoting transcripts. We propose that RNA cytosine 5-hydroxymethylation by Tets is a mark of transcriptome flexibility, inextricably linked to the balance between pluripotency and lineage commitment. TET mediated RNA-hydroxymethylation (5hmC) has been detected in mammals, but its physiological role remains unclear. Here the authors map 5hmC during embryonic stem cell (ESC) differentiation and find that Tet-mediated RNA hydroxymethylation reduces the stability of crucial pluripotency related transcripts.
Collapse
Affiliation(s)
- Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicholas Rajan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Audrey Penning
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nitesh K Singh
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Diana Guallar
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Li Greci
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elise Bonvin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Phillip J Hsu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Sigrid Nachtergaele
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Chengjie Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, 430072, Wuhan, People's Republic of China
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Alejandro Fuentes-Iglesias
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédérique Mies
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Lab of Bioinformatics and Computational Genomics, Ghent University, Ghent, Belgium
| | - Justin J L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
| | - Miguel Fidalgo
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Bifeng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, 430072, Wuhan, People's Republic of China
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Welbio Investigator, Université Libre de Bruxelles (ULB), Brussels, Belgium. .,WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium.
| |
Collapse
|
10
|
Brain-related genes are specifically enriched with long phase 1 introns. PLoS One 2020; 15:e0233978. [PMID: 32470086 PMCID: PMC7259759 DOI: 10.1371/journal.pone.0233978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/16/2020] [Indexed: 11/19/2022] Open
Abstract
Intronic gene regions are mostly considered in the scope of gene expression regulation, such as alternative splicing. However, relations between basic statistical properties of introns are much rarely studied in detail, despite vast available data. Particularly, little is known regarding the relationship between the intron length and the intron phase. Intron phase distribution is significantly different at different intron length thresholds. In this study, we performed GO enrichment analysis of gene sets with a particular intron phase at varying intron length thresholds using a list of 13823 orthologous human-mouse gene pairs. We found a specific group of 153 genes with phase 1 introns longer than 50 kilobases that were specifically expressed in brain, functionally related to synaptic signaling, and strongly associated with schizophrenia and other mental disorders. We propose that the prevalence of long phase 1 introns arises from the presence of the signal peptide sequence and is connected with 1–1 exon shuffling.
Collapse
|
11
|
Green EW, Bunse L, Bozza M, Sanghvi K, Platten M. TCR validation toward gene therapy for cancer. Methods Enzymol 2019; 629:419-441. [PMID: 31727252 DOI: 10.1016/bs.mie.2019.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The speed of T cell receptor (TCR) discovery has been revolutionized by barcode-based TCR sequencing approaches that allow the reconstitution of a T cell's paired alpha and beta TCR chain, and the process of TCR discovery promises to become ever faster and cheaper with the continuing development single cell analysis techniques. This technological progress has generated an urgent need to develop efficient TCR validation platforms for the rapid and safe clinical translation of TCRs into therapeutic agents. Whereas much attention has in the past focused on CD8-positive cytotoxic T cells recognizing MHC class I presented epitopes, the increasing demand to validate TCRs expressed on neoepitope-reactive CD4 T cells requires the implementation of large-scale T cell activation-based readout assays to complement existing multimer and cytotoxicity-based assays. Here, we present commonly used TCR validation assays, and include detailed guidance on TCR synthesis, delivery, and appropriate experimental control TCRs. We also comment on upcoming methods that hold promise for further speeding the process of TCR validation, hastening the translation of TCRs from the laboratory into the clinic.
Collapse
Affiliation(s)
- Edward W Green
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Lukas Bunse
- German Cancer Research Center, DKFZ, Heidelberg, Germany; University Hospital Mannheim, Mannheim, Germany; University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Bozza
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Khwab Sanghvi
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Michael Platten
- German Cancer Research Center, DKFZ, Heidelberg, Germany; University Hospital Mannheim, Mannheim, Germany; University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
SAIKIA J, VERMA A, GUPTA ID, SINGH S, HAZARIKA D. Identification of genetic variants in HSF1 gene and their association with heat tolerance in Murrah buffaloes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i10.95006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The study was carried out to identify Single Nucleotide Polymorphism (SNPs) and their association with thermostolerance traits in 200 murrah Buffalos. Genomic DNA was extracted from frozen/thawed blood samples collected in Beckton-Dickinson vacutainer containing 0.5% (10 μl/ml of blood) anticoagulant EDTA, using phenol-chloroform extraction method. Further the samples were processed for checked quality of DNA on 0.8% agarose gel electrophoresis while its quantification was done using Biospec-nano spectrophotometer method. Custom sequencing results revealed 7 SNPs at the position of A15732G located in intron 4, C17061T in intron 6, C17202T and A17226G in intron 7, G17454A in intron 8, C17605T in exon 9 and T18421C in intron 9 of HSF1 gene sequence. Association analysis showed that the thermal tolerance trait in Murrah buffaloes was significantly affected by three SNP locus, viz. A15732G, C17061T and T18421C. The association among the different genotype of this SNP locus with thermo-tolerance was analyzed using Generalized Linear Model procedure in Statistical Analysis System. Animals of GG genotype at locus A15732 G, TT genotype at locus T18421C and C17061T locus showed lower respiration rate and least HTC was observed in animals belonging to GG genotype at locus A15732G. At linkage, disequilibrium and haplotype construction were analysed using SHEsis software. Haplotypes (49) were constructed, and out of these seven haplotypes (>3 sample size) were considered for association studies. The individuals with Hap6 (ACCAGCC) haplotype combination had lower respiration rate (RR) than other haplotype combinations and these individuals may have better thermal adaptability in comparison to others animals.
Collapse
|
13
|
Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Sci Rep 2019; 9:9358. [PMID: 31249345 PMCID: PMC6597718 DOI: 10.1038/s41598-019-45750-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023] Open
Abstract
During vertebrate retinal development, transient populations of retinal progenitor cells with restricted cell fate choices are formed. One of these progenitor populations expresses the Thrb gene and can be identified by activity of the ThrbCRM1 cis-regulatory element. Short-term assays have concluded that these cells preferentially generate cone photoreceptors and horizontal cells, however developmental timing has precluded an extensive cell type characterization of their progeny. Here we describe the development and validation of a recombinase-based lineage tracing system for the chicken embryo to further characterize the lineage of these cells. The ThrbCRM1 element was found to preferentially form photoreceptors and horizontal cells, as well as a small number of retinal ganglion cells. The photoreceptor cell progeny are exclusively cone photoreceptors and not rod photoreceptors, confirming that ThrbCRM1 progenitor cells are restricted from the rod fate. In addition, specific subtypes of horizontal cells and retinal ganglion cells were overrepresented, suggesting that ThrbCRM1 progenitor cells are not only restricted for cell type, but for cell subtype as well.
Collapse
|
14
|
Wu J, Li A, Cai H, Zhang C, Lei C, Lan X, Chen H. Intron retention as an alternative splice variant of the cattle ANGPTL6 gene. Gene 2019; 709:17-24. [PMID: 31102716 DOI: 10.1016/j.gene.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein 6, which is encoded by ANGPTL6 gene (also known as angiopoietin growth factor, AGF), has been extensively characterized with regard to its proposed functions as angiogenesis and energy metabolism. The present results showed the occurrence of alternative splicing by intron retention (IR) event in the bovine ANGPTL6 gene (bANGPTL6). By means of RT-PCR, TA clone and sequencing, we have shown that the bANGPTL6 gene has a splice variant generated by the retention of its partial intron 3. The computational analysis of the bANGPTL6 genomic sequence showed that its intron 3 has a high percentage of GC (62.31%) and a length of 199 nt, characteristics that have been associated with an IR event. The IR event does not interfere with the coding region as the bANGPTL6 prepropeptide is entirely coded in the third exon. Additionally, both the intronless (namely, bANGPTL6α) and intron-retaining (namely, bANGPTL6β) ANGPTL6 transcripts are constitutively co-expressed in the bovine liver. Further, the relative expression level of different variants in liver was tested by both semi-RT-PCR and RT-qPCR methods. The results suggested bANGPTL6β are significantly higher than bANGPTL6α. Overall, our findings will be helpful for studies on the molecular mechanism of IR events and the functions of ANGPTL6 gene. Specially, bANGPTL6β gene probably contributes to a new target for treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Jiyao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Aimin Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Hanfang Cai
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Chenge Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China.
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling 712100, PR China.
| |
Collapse
|
15
|
Yang EW, Bahn JH, Hsiao EYH, Tan BX, Sun Y, Fu T, Zhou B, Van Nostrand EL, Pratt GA, Freese P, Wei X, Quinones-Valdez G, Urban AE, Graveley BR, Burge CB, Yeo GW, Xiao X. Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA. Nat Commun 2019; 10:1338. [PMID: 30902979 PMCID: PMC6430814 DOI: 10.1038/s41467-019-09292-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and immunoprecipitation (eCLIP) method. We developed a new computational approach, called BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data. BEAPR takes into account crosslinking-induced sequence propensity and variations between replicated experiments. Using simulated and actual data, we show that BEAPR largely outperforms often-used count analysis methods. Importantly, BEAPR overcomes the inherent overdispersion problem of these methods. Complemented by experimental validations, we demonstrate that the application of BEAPR to ENCODE eCLIP-Seq data of 154 proteins helps to predict functional GVs that alter splicing or mRNA abundance. Moreover, many GVs with ASB patterns have known disease relevance. Overall, BEAPR is an effective method that helps to address the outstanding challenge of functional interpretation of GVs.
Collapse
Affiliation(s)
- Ei-Wen Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Esther Yun-Hua Hsiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - Boon Xin Tan
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Yiwei Sun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Ting Fu
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
| | - Peter Freese
- Department of Biology, MIT, Cambridge, MA, 02139, USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, 06030, USA
| | | | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, 06030, USA
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, 92093, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Molecular Engineering Laboratory, A*STAR, Singapore, 138673, Singapore
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Conservation of Intronic Sequences in Vertebrate Mitochondrial Solute Carrier Genes (Zebrafish, Chicken, Mouse and Human). Noncoding RNA 2019; 5:ncrna5010004. [PMID: 30621336 PMCID: PMC6468709 DOI: 10.3390/ncrna5010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
The conservation of intronic sequences was studied in the mitochondrial solute carrier (SLC25A*) genes of Zebrafish, Chicken, Mouse and Human. These genes are homologous and the coding sequences have been well conserved throughout Vertebrates, but the corresponding intronic sequences have been extensively re-edited. However, significant segments of Zebrafish introns are conserved in Chicken, Mouse and Human in carriers SLC25A3, SLC25A21, SLC25A25, SLC25A26, and SLC25A36; Chicken intron segments are conserved in Mouse or Human in three additional carriers, namely SLC25A12, SLC25A13, and SLC25A29. Thus, a quota of the intronic sequences of Euteleostomi has been transferred (through Sarcopterygii) to Birds and (through Sarcopterygii and ancestral Mammals) to Mouse and Human. The degree of conservation of Euteleostomi-derived sequences is low and quite similar in Chicken, Mouse and Human (0.23⁻0.27%). The overall degree of conservation of Sarcopterygii-derived sequences in Mammals is higher, and it is significantly higher in Human than in Mouse (4.4% and 3.2%, respectively). Some of the conserved intronic sequences of SLC25A3, SLC25A21, SLC25A25, and SLC25A29 are exonized in some transcript variants of Zebrafish, Chicken, Mouse, and Human and, with minor nucleotide changes, in other Birds or Mammals.
Collapse
|
17
|
Ge X, Shi QM, Ding Z, Ju Q, Wang H, Wang Q, Li MX, Chen G, Wang HX, Xu LC. Association Between CRISPLD2 Polymorphisms and the Risk of Nonsyndromic Clefts of the Lip and/or Palate: A Meta-analysis. Cleft Palate Craniofac J 2018; 55:328-334. [PMID: 29437515 DOI: 10.1177/1055665617738995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Nonsyndromic clefts of the lip and/or palate (NSCL/P) are one of the most common polygenic diseases. Recently, many studies focused on the association between CRISPLD2 polymorphisms and NSCL/P risk. However, some studies have shown opposite results. In this study, meta-analysis was used to confirm whether CRISPLD2 polymorphism was associated with NSCL/P, and the possible mechanism between CRISPLD2 and NSCL/P was explored. METHODS Relevant studies were conducted on PubMed, Ovid, EBSCO, CINAHL, FMRS, Web of Science, CNKI, and Wanfang databases from their inception up to June 31, 2016. Review Manager 5.0.24 was used to analyze whether CRISPLD2 polymorphism was involved in NSCL/P by pooling odds ratios (ORs) and 95% confidence intervals (CIs). Potential publication bias was evaluated by visual inspection of the funnel plot. RESULTS CRISPLD2 rs4783099 was associated with cleft lip and/or palate (CL/P) statistically (OR = 3.18, P < .01). Compared to genotype TT, genotypes CC and CT were correlated significantly (OR = 2.04, P = .04) with CL/P. No evidence showed an association between genetic variation at the CRISPLD2 locus and cleft palate only (CP). CONCLUSION The polymorphism of CRISPLD2 rs4783099 is correlated with an increased risk of CL/P.
Collapse
Affiliation(s)
- Xing Ge
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiao-Mei Shi
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Ding
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Ju
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Wang
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Wang
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Xue Li
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Chen
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Heng-Xue Wang
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li-Chun Xu
- 1 School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc Natl Acad Sci U S A 2018; 115:E1485-E1494. [PMID: 29386391 DOI: 10.1073/pnas.1712312115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The decay of mRNA plays a vital role in modulating mRNA abundance, which, in turn, influences cellular and organismal processes. In plants and metazoans, three distinct pathways carry out the decay of most cytoplasmic mRNAs: The mRNA decapping complex, which requires the scaffold protein VARICOSE (VCS), removes a protective 5' cap, allowing for 5' to 3' decay via EXORIBONUCLEASE4 (XRN4, XRN1 in metazoans and yeast), and both the exosome and SUPPRESSOR OF VCS (SOV)/DIS3L2 degrade RNAs in the 3' to 5' direction. However, the unique biological contributions of these three pathways, and whether they degrade specialized sets of transcripts, are unknown. In Arabidopsis, the participation of SOV in RNA homeostasis is also unclear, because Arabidopsis sov mutants have a normal phenotype. We carried out mRNA decay analyses in wild-type, sov, vcs, and vcs sov seedlings, and used a mathematical modeling approach to determine decay rates and quantify gene-specific contributions of VCS and SOV to decay. This analysis revealed that VCS (decapping) contributes to decay of 68% of the transcriptome, and, while it initiates degradation of mRNAs with a wide range of decay rates, it especially contributes to decay of short-lived RNAs. Only a few RNAs were clear SOV substrates in that they decayed more slowly in sov mutants. However, 4,506 RNAs showed VCS-dependent feedback in sov that modulated decay rates, and, by inference, transcription, to maintain RNA abundances, suggesting that these RNAs might also be SOV substrates. This feedback was shown to be independent of siRNA activity.
Collapse
|
19
|
Mishra SK, Thakran P. Intron specificity in pre-mRNA splicing. Curr Genet 2018; 64:777-784. [PMID: 29299619 DOI: 10.1007/s00294-017-0802-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J, https://doi.org/10.15252/embj.201796751 , 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India.
| | - Poonam Thakran
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India
| |
Collapse
|
20
|
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol 2017; 91:145-155. [PMID: 28673892 DOI: 10.1016/j.biocel.2017.06.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
In many eukaryotes, including mammals, plants, yeast, and insects, introns can increase gene expression without functioning as a binding site for transcription factors. This phenomenon was termed 'intron-mediated enhancement'. Introns can increase transcript levels by affecting the rate of transcription, nuclear export, and transcript stability. Moreover, introns can also increase the efficiency of mRNA translation. This review discusses the current knowledge about these processes. The role of splicing in IME and the significance of intron position relative to the sites of transcription and translation initiation are elaborated. Particular emphasis is placed on the question why different introns, present at the same location of the same genes and spliced at a similar high efficiency, can have very different impacts on expression - from almost no effect to considerable stimulation. This situation can be at least partly accounted for by the identification of splicing-unrelated intronic elements with a special ability to enhance mRNA accumulation or translational efficiency. The many factors that could lead to the large variation observed between the impact of introns in different genes and experimental systems are highlighted. It is suggested that there is no sole, definite answer to the question "how do introns enhance gene expression". Rather, each intron-gene combination might undergo its own unique mixture of processes that lead to the perceptible outcome.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
21
|
Chorev M, Joseph Bekker A, Goldberger J, Carmel L. Identification of introns harboring functional sequence elements through positional conservation. Sci Rep 2017. [PMID: 28646210 PMCID: PMC5482813 DOI: 10.1038/s41598-017-04476-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many human introns carry out a function, in the sense that they are critical to maintain normal cellular activity. Their identification is fundamental to understanding cellular processes and disease. However, being noncoding elements, such functional introns are poorly predicted based on traditional approaches of sequence and structure conservation. Here, we generated a dataset of human functional introns that carry out different types of functions. We showed that functional introns share common characteristics, such as higher positional conservation along the coding sequence and reduced loss rates, regardless of their specific function. A unique property of the data is that if an intron is unknown to be functional, it still does not mean that it is indeed non-functional. We developed a probabilistic framework that explicitly accounts for this unique property, and predicts which specific human introns are functional. We show that we successfully predict function even when the algorithm is trained on introns with a different type of function. This ability has many implications in studying regulatory networks, gene regulation, the effect of mutations outside exons on human disease, and on our general understanding of intron evolution and their functional exaptation in mammals.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904, Israel
| | | | - Jacob Goldberger
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
22
|
Wang W, Li Y, Li S, Wu Z, Yuan M, Wang T, Wang S. Pooling-Based Genome-Wide Association Study Identifies Risk Loci in the Pathogenesis of Ovarian Endometrioma in Chinese Han Women. Reprod Sci 2016; 24:400-406. [PMID: 27506219 DOI: 10.1177/1933719116657191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endometriosis, regarded as a complex disease, is influenced by multiple genetic factors. Recent genome-wide association studies (GWASs) in endometriosis have identified several susceptibility loci in Caucasian and Japanese populations. However, the overlapped susceptible loci were few. This case-control study tried to identify risk loci-related genes for ovarian endometrioma in Chinese Han women from central China using DNA pooling-based GWAS. Genome DNA samples were extracted from 3038 participants in central China. Pooling-based genome-wide scan and individual genotyping were performed using Affymetrix Genome-Wide Human SNP Array 6.0 and IPLEX Gold system, which demonstrated 10 ovarian endometrioma-related novel risk loci. There were 3 of them with P value < 5 × 10-06, separately locating in intron of insulin-like growth factor 1 receptor, chromosome 7 open reading frame 50, and Meis homeobox 1. In conclusion, the pooling-based GWAS for ovarian endometrioma identified some novel single-nucleotide polymorphisms in Chinese Han women of central China. Further assessment in other samples will be crucial to confirm the susceptibility of these results and explore the mechanisms of the related genes in the pathogenesis of ovarian endometrioma.
Collapse
Affiliation(s)
- Wenwen Wang
- 1 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yan Li
- 1 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sha Li
- 2 Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhangying Wu
- 3 Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Ming Yuan
- 1 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Wang
- 1 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shixuan Wang
- 1 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Liu M, Liu M, Li B, Zhou Y, Huang Y, Lan X, Qu W, Qi X, Bai Y, Chen H. Polymorphisms of FLII implicate gene expressions and growth traits in Chinese cattle. Mol Cell Probes 2016; 30:266-272. [DOI: 10.1016/j.mcp.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 01/23/2023]
|
24
|
Zheng M, Mitra RN, Filonov NA, Han Z. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model. FASEB J 2015; 30:1076-86. [PMID: 26564956 DOI: 10.1096/fj.15-280511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications.
Collapse
Affiliation(s)
- Min Zheng
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Rajendra N Mitra
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nazar A Filonov
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Zongchao Han
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Yi F, Chen J, Yu J. Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet. BMC PLANT BIOLOGY 2015; 15:241. [PMID: 26444665 PMCID: PMC4594888 DOI: 10.1186/s12870-015-0632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/30/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND mRNA degradation plays an important role in the determination of mRNA abundance and can quickly regulate gene expression. The production of uncapped mRNAs, an important mechanism of mRNA degradation, can be initiated by decapping enzymes, endonucleases or small RNAs such as microRNAs (miRNAs). Little is known, however, about the role of uncapped mRNAs in plants under environmental stress. RESULTS Using a novel approach called parallel analysis of RNA ends (PARE), we performed a global study of uncapped mRNAs under drought stress in foxtail millet (Setaria italica [L.] P. Beauv.). When both gene degradation (PARE) and gene transcription (RNA-sequencing) data were considered, four types of mRNA decay patterns were identified under drought stress. In addition, 385 miRNA-target interactions were identified in the PARE data using PAREsnip. The PARE analysis also suggested that two miRNA hairpin processing mechanisms--loop-last and loop-first processing--operate in foxtail millet, with both miR319 and miR156 gene families undergoing precise processing via the unusual loop-first mechanism. Finally, we found 11 C4 photosynthesis-related enzymes encoded by drought-responsive genes. CONCLUSIONS We performed a global analysis of mRNA degradation under drought stress and uncovered diverse drought-response mechanisms in foxtail millet. This information will deepen our understanding of mRNA expression under stressful environmental conditions in gramineous plants. In addition, PARE analysis identified many miRNA targets and revealed miRNA-precursor processing modes in foxtail millet.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Yu Q, He S, Zeng N, Ma J, Zhang B, Shi B, Jia Z. BMP7 Gene involved in nonsyndromic orofacial clefts in Western Han Chinese. Med Oral Patol Oral Cir Bucal 2015; 20:e298-304. [PMID: 25662552 PMCID: PMC4464917 DOI: 10.4317/medoral.20335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/25/2014] [Indexed: 02/05/2023] Open
Abstract
Background Nonsyndromic orofacial clefts (NSOCs) are the most common craniofacial birth defects with complex etiology in which multiple genes and environmental exposures are involved. Bone morphogenetic protein 7 (BMP7), as a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to play crucial roles in palate and other orofacial ectodermal appendages development in animal models. Material and Methods This study was designed to investigate the possible associations between BMP7 gene and the NSOCs (221 case-parent trios) in Western Han Chinese. Five tagSNPs at BMP7, rs12438, rs6099486, rs6127973, rs230188 and rs6025469 were picked and tried to cover the entire gene. In order to identify the contribution of BMP7 gene to the etiology of NSOCs, we performed several statistical analysis from different aspects including transmission disequilibrium test (TDT), pairwise linkage disequilibrium (LD), parent-of-origin effect and Chi-squared/Fisher’s exact tests. Results Rs6127973 G allele and G/G homozygotes were over-transmitted for both NSOCs (P=0.005 and P=0.011, respectively) and NSCL/P (P=0.0061 and P=0.011, respectively), rs6127973 G allele was also paternally over-transmitted for both NSOCs (P=0.0061) and NSCL/P (P=0.011). Conclusions This study suggested that rs6127973 may be a risk factor of being NSOCs and confirmed the role of BMP7 gene in orofacial deformity from Western Han Chinese, which will also supply scientific evidence for future research and genetic counseling. Key words:
Single nucleotide polymorphisms, nonsyndromic orofacial clefts, BMP7.
Collapse
Affiliation(s)
- Qiongqiong Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin Nan Road, Chengdu, China, 610041
| | | | | | | | | | | | | |
Collapse
|
27
|
Zeng N, Wu J, Zhu W, Shi B, Jia Z. Evaluation of the association of polymorphisms in
EYA
1
, environmental factors, and non‐syndromic orofacial clefts in Western Han Chinese. J Oral Pathol Med 2015; 44:864-9. [PMID: 25640282 DOI: 10.1111/jop.12311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Wu
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Wen‐Chao Zhu
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Bing Shi
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| | - Zhong‐Lin Jia
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Cleft Lip and Palate Surgery West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
28
|
Liu M, Li M, Wang S, Xu Y, Lan X, Li Z, Lei C, Yang D, Jia Y, Chen H. Association analysis of bovine Foxa2 gene single sequence variant and haplotype combinations with growth traits in Chinese cattle. Gene 2014; 536:385-92. [DOI: 10.1016/j.gene.2013.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 10/25/2022]
|
29
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
30
|
HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death Differ 2013; 20:1675-87. [PMID: 24037088 DOI: 10.1038/cdd.2013.119] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 12/26/2022] Open
Abstract
Recent data have linked hypoxia, a classic feature of the tumor microenvironment, to the function of specific microRNAs (miRNAs); however, whether hypoxia affects other types of noncoding transcripts is currently unknown. Starting from a genome-wide expression profiling, we demonstrate for the first time a functional link between oxygen deprivation and the modulation of long noncoding transcripts from ultraconserved regions, termed transcribed-ultraconserved regions (T-UCRs). Interestingly, several hypoxia-upregulated T-UCRs, henceforth named 'hypoxia-induced noncoding ultraconserved transcripts' (HINCUTs), are also overexpressed in clinical samples from colon cancer patients. We show that these T-UCRs are predominantly nuclear and that the hypoxia-inducible factor (HIF) is at least partly responsible for the induction of several members of this group. One specific HINCUT, uc.475 (or HINCUT-1) is part of a retained intron of the host protein-coding gene, O-linked N-acetylglucosamine transferase, which is overexpressed in epithelial cancer types. Consistent with the hypothesis that T-UCRs have important function in tumor formation, HINCUT-1 supports cell proliferation specifically under hypoxic conditions and may be critical for optimal O-GlcNAcylation of proteins when oxygen tension is limiting. Our data gives a first glimpse of a novel functional hypoxic network comprising protein-coding transcripts and noncoding RNAs (ncRNAs) from the T-UCRs category.
Collapse
|
31
|
Zhang J, Mao Z, Chong K. A global profiling of uncapped mRNAs under cold stress reveals specific decay patterns and endonucleolytic cleavages in Brachypodium distachyon. Genome Biol 2013; 14:R92. [PMID: 24000894 PMCID: PMC4054888 DOI: 10.1186/gb-2013-14-8-r92] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 08/30/2013] [Indexed: 01/15/2023] Open
Abstract
Background mRNA degradation is a critical factor in determining mRNA abundance and enables rapid adjustment of gene expression in response to environmental stress. The involvement of processing bodies in stress response suggests a role for decapping-mediated mRNA degradation. However, little is known about the role of mRNA degradation under stressful environmental conditions. Results Here, we perform a global study of uncapped mRNAs, via parallel analysis of RNA ends (PARE), under cold stress in Brachypodium distachyon. Enrichment analysis indicates that degradation products detected by PARE are mainly generated by the decapping pathway. Endonucleolytic cleavages are detected, uncovering another way of modulating gene expression. PARE and RNA-Seq analyses identify four types of mRNA decay patterns. Type II genes, for which light-harvesting processes are over-represented in gene ontology analyses, show unchanged transcript abundance and altered uncapped transcript abundance. Uncapping-mediated transcript stability of light harvesting-related genes changes significantly in response to cold stress, which may allow rapid adjustments in photosynthetic activity in response to cold stress. Transcript abundance and uncapped transcript abundance for type III genes changes in opposite directions in response to cold stress, indicating that uncapping-mediated mRNA degradation plays a role in regulating gene expression. Conclusion To our knowledge, this is the first global analysis of mRNA degradation under environmental stress conditions in Brachypodium distachyon. We uncover specific degradation and endonucleolytic cleavage patterns under cold stress, which will deepen our understanding of mRNA degradation under stressful environmental conditions, as well as the cold stress response mechanism in monocots.
Collapse
|
32
|
Genome-wide survey of interindividual differences of RNA stability in human lymphoblastoid cell lines. Sci Rep 2013; 3:1318. [PMID: 23422947 PMCID: PMC3576867 DOI: 10.1038/srep01318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
The extent to which RNA stability differs between individuals and its contribution to the interindividual expression variation remain unknown. We conducted a genome-wide analysis of RNA stability in seven human HapMap lymphoblastoid cell lines (LCLs) and analyzed the effect of DNA sequence variation on RNA half-life differences. Twenty-six percent of the expressed genes exhibited RNA half-life differences between LCLs at a false discovery rate (FDR) < 0.05, which accounted for ~ 37% of the gene expression differences between individuals. Nonsense polymorphisms were associated with reduced RNA half-lives. In genes presenting interindividual RNA half-life differences, higher coding GC3 contents (G and C percentages at the third-codon positions) were correlated with increased RNA half-life. Consistently, G and C alleles of single nucleotide polymorphisms (SNPs) in protein coding sequences were associated with enhanced RNA stability. These results suggest widespread interindividual differences in RNA stability related to DNA sequence and composition variation.
Collapse
|
33
|
Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, Janbon G. Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway. PLoS Genet 2013; 9:e1003686. [PMID: 23966870 PMCID: PMC3744415 DOI: 10.1371/journal.pgen.1003686] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Most Cryptococccus neoformans genes are interrupted by introns, and alternative splicing occurs very often. In this study, we examined the influence of introns on C. neoformans gene expression. For most tested genes, elimination of introns greatly reduces mRNA accumulation. Strikingly, the number and the position of introns modulate the gene expression level in a cumulative manner. A screen for mutant strains able to express functionally an intronless allele revealed that the nuclear poly(A) binding protein Pab2 modulates intron-dependent regulation of gene expression in C. neoformans. PAB2 deletion partially restored accumulation of intronless mRNA. In addition, our results demonstrated that the essential nucleases Rrp44p and Xrn2p are implicated in the degradation of mRNA transcribed from an intronless allele in C. neoformans. Double mutant constructions and over-expression experiments suggested that Pab2p and Xrn2p could act in the same pathway whereas Rrp44p appears to act independently. Finally, deletion of the RRP6 or the CID14 gene, encoding the nuclear exosome nuclease and the TRAMP complex associated poly(A) polymerase, respectively, has no effect on intronless allele expression. Cryptococcus neoformans is a major human pathogen responsible for deadly infection in immunocompromised patients. The analysis of its genome previously revealed that most of its genes are interrupted by introns. Here, we demonstrate that introns modulate gene expression in a cumulative manner. We also demonstrate that introns can play a positive or a negative role in this process. We identify a nuclear poly(A) binding protein (Pab2p) as implicated in the intron-dependent control of gene expression in C. neoformans. We also demonstrate that the essential nucleases Rrp44p and Xrn2p are implicated in two independent pathways controlling the intron-dependent regulation of gene expression in C. neoformans. Xrn2p regulation seems to depend on Pab2p whereas Rrp44p acts independently. In contrast, the other exosome nuclease Rrp6p and the TRAMP associated poly(A) polymerase Cid14p do not appear to be implicated in this regulation. Our results provide new insights into the regulation of gene expression in eukaryotes and more specifically into the biology and virulence of C. neoformans.
Collapse
Affiliation(s)
- Carolin Goebels
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Aline Thonn
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Sara Gonzalez-Hilarion
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Olga Rolland
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Frederique Moyrand
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Traude H. Beilharz
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Guilhem Janbon
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Zeng N, Wu J, Zhu WC, Ma L, Jia ZL, Shi B. Associations between EYA1 single-nucleotide polymorphisms and non-syndromic orofacial clefts in Western Han Chinese. J Oral Pathol Med 2013; 42:711-5. [PMID: 23601008 DOI: 10.1111/jop.12063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Cleft Lip and Palate Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Jun Wu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Cleft Lip and Palate Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Wen-Chao Zhu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Cleft Lip and Palate Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Li Ma
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Cleft Lip and Palate Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Cleft Lip and Palate Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| | - Bing Shi
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Cleft Lip and Palate Surgery; West China Hospital of Stomatology, Sichuan University; Chengdu China
| |
Collapse
|
35
|
Role of RNA splicing in mediating lineage-specific expression of the von Willebrand factor gene in the endothelium. Blood 2013; 121:4404-12. [PMID: 23529929 DOI: 10.1182/blood-2012-12-473785] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We previously demonstrated that the first intron of the human von Willebrand factor (vWF) is required for gene expression in the endothelium of transgenic mice. Based on this finding, we hypothesized that RNA splicing plays a role in mediating vWF expression in the vasculature. To address this question, we used transient transfection assays in human endothelial cells and megakaryocytes with intron-containing and intronless human vWF promoter-luciferase constructs. Next, we generated knockin mice in which LacZ was targeted to the endogenous mouse vWF locus in the absence or presence of the native first intron or heterologous introns from the human β-globin, mouse Down syndrome critical region 1, or hagfish coagulation factor X genes. In both the in vitro assays and the knockin mice, the loss of the first intron of vWF resulted in a significant reduction of reporter gene expression in endothelial cells but not megakaryocytes. This effect was rescued to varying degrees by the introduction of a heterologous intron. Intron-mediated enhancement of expression was mediated at a posttranscriptional level. Together, these findings implicate a role for intronic splicing in mediating lineage-specific expression of vWF in the endothelium.
Collapse
|
36
|
Association of an oestrogen receptor gene polymorphism in Chinese Han women with endometriosis and endometriosis-related infertility. Reprod Biomed Online 2013. [DOI: 10.1016/j.rbmo.2012.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
38
|
Zraly CB, Dingwall AK. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit. Nucleic Acids Res 2012; 40:5975-87. [PMID: 22467207 PMCID: PMC3401471 DOI: 10.1093/nar/gks288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nucleosome remodeling catalyzed by the ATP-dependent SWI/SNF complex is essential for regulated gene expression. Transcriptome profiling studies in flies and mammals identified cell cycle and hormone responsive genes as important targets of remodeling complex activities. Loss of chromatin remodeling function has been linked to developmental abnormalities and aggressive cancers. The Drosophila Brahma (Brm) SWI/SNF complex assists in reprogramming and coordinating gene expression in response to ecdysone hormone signaling at critical points during development. We used RNAi knockdown in cultured cells and transgenic flies, and conditional mutant alleles to identify unique and important functions of two conserved Brm complex core subunits, SNR1/SNF5 and BRM/SNF2-SWI2, on target gene regulation. Unexpectedly, we found that incorporation of a loss of function SNR1 subunit led to alterations in RNA polymerase elongation, pre-mRNA splicing regulation and chromatin accessibility of ecdysone hormone regulated genes, revealing that SNR1 functions to restrict BRM-dependent nucleosome remodeling activities downstream of the promoter region. Our results reveal critically important roles of the SNR1/SNF5 subunit and the Brm chromatin remodeling complex in transcription regulation during elongation by RNA Polymerase II and completion of pre-mRNA transcripts that are dependent on hormone signaling in late development.
Collapse
Affiliation(s)
- Claudia B Zraly
- Cardinal Bernardin Cancer Center, Oncology Institute, Stritch School of Medicine, Loyola University of Chicago, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
39
|
Abstract
TREX is a conserved multiprotein complex that is necessary for efficient mRNA export to the cytoplasm. In Saccharomyces cerevisiae, the TREX complex is additionally implicated in RNA quality control pathways, but it is unclear whether this function is conserved in mammalian cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds and recruits the TREX component REF/Aly to viral mRNAs. Here, we demonstrate that REF/Aly is recruited to the KSHV noncoding polyadenylated nuclear (PAN) RNA by ORF57. This recruitment correlates with ORF57-mediated stabilization of PAN RNA, suggesting that REF/Aly promotes nuclear RNA stability. Further supporting this idea, tethering REF/Aly to PAN RNA is sufficient to increase the nuclear abundance and half-life of PAN RNA but is not sufficient to promote its export. Interestingly, REF/Aly appears to protect the poly(A) tail from deadenylation, and REF/Aly-stabilized transcripts are further adenylated over time, consistent with previous reports linking poly(A) tail length with nuclear RNA surveillance. These studies show that REF/Aly can stabilize nuclear RNAs independently of their export and support a broader conservation of RNA quality control mechanisms from yeast to humans.
Collapse
|
40
|
Hong SP, Seip J, Walters-Pollak D, Rupert R, Jackson R, Xue Z, Zhu Q. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter. Yeast 2011; 29:59-72. [PMID: 22222800 DOI: 10.1002/yea.1917] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/03/2011] [Indexed: 11/07/2022] Open
Abstract
Oleaginous yeast Yarrowia lipolytica is an important host for the production of lipid-derived compounds or heterologous proteins. Selection of strong promoters and effective expression systems is critical for heterologous protein secretion. To search for a strong promoter in Y. lipolytica, activities of FBA1, TDH1 and GPM1 promoters were compared to that of TEF1 promoter by constructing GUS reporter fusions. The FBA1 promoter activity was 2.2 and 5.5 times stronger than the TDH1 and GPM1 promoters, respectively. The FBA1IN promoter (FBA1 sequence of -826 to +169) containing an intron (+64 to +165) showed five-fold higher expression than the FBA1 promoter (-831 to -1). The transcriptional enhancement by the 5'-region within the FBA1 gene was confirmed by GPM1::FBA1 chimeric promoter construction. Using the strong FBA1IN promoter, four different S. cerevisiae SUC2 expression cassettes were tested for the SUC+ phenotype in Y. lipolytica. Functional invertase secretion was facilitated by the Xpr2 prepro-region with an additional 13 amino acids of mature Xpr2, or by the native Suc2 signal sequence. However, these two secretory signals in tandem, or the mature Suc2 with no secretory signal, did not direct secretion of functional invertase. Unlike previously reported Y. lipolytica SUC+ strains, our engineered stains secreted most of invertase into the medium.
Collapse
Affiliation(s)
- Seung-Pyo Hong
- Central Research and Development, DuPont Co., Wilmington, DE, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Shen X, Liu RM, Yang L, Wu H, Li PQ, Liang YL, Xie XD, Yao T, Zhang TT, Yu M. The CRISPLD2 gene is involved in cleft lip and/or cleft palate in a Chinese population. ACTA ACUST UNITED AC 2011; 91:918-24. [PMID: 21800413 DOI: 10.1002/bdra.20840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nonsyndromic cleft lip and/or cleft palate (NSCLP) are common congenital anomalies in humans, the etiologies of which are complex and associated with both genetic and environmental factors. Previous data suggested single nucleotide polymorphisms (SNPs) of rs1546124, rs4783099, and rs16974880 of the CRISPLD2 gene were associated with an increased risk of NSCLP; however, subsequent studies have yielded conflicting results. This study aims to evaluate the associations of the aforementioned polymorphisms with NSCLP in a Northwestern Chinese population. METHODS Three CRISPLD2 SNPs were genotyped in a case-control study (n = 907), including 444 NSCLP patients and 463 healthy individuals, using polymerase chain reaction-denaturing high-performance liquid chromatography (PCR-DHPLC). RESULTS The genotype and allele frequencies of rs1546124 (odds ratio [OR], 2.30; 95% confidence interval [CI], 1.58-3.34; p = 1 × 10(-5) ) and rs4783099 (OR, 0.73; 95% CI, 0.54-1.00; p = 0.05) were different in NSCLP patients compared with controls. Furthermore, the CC genotype at rs1546124 was associated with increased risk for cleft lip with or without cleft palate (CL/P; OR, 2.11; 95% CI, 1.41-3.15; p(correct) = 1.5 × 10(-4) ) and for cleft palate only (CPO; OR, 2.93; 95% CI, 1.69-5.07; p(correct) = 5.4 × 10(-4) ), whereas the T allele of rs4783099 was associated with decreased risk for CPO. Further gender stratification showed that the statistical association of these two loci is mainly in the male patients, and not in female patients. CONCLUSION Our results suggest that the CRISPLD2 gene contributes to the etiology of NSCLP in the Northwestern Chinese population. SNP rs1546124 is significantly related to NSCLP, associated with both CL/P and CPO groups, and SNP rs4783099 is significantly associated with CPO.
Collapse
Affiliation(s)
- Xi Shen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Niu DK, Yang YF. Why eukaryotic cells use introns to enhance gene expression: splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity. Biol Direct 2011; 6:24. [PMID: 21592350 PMCID: PMC3118952 DOI: 10.1186/1745-6150-6-24] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background The costs and benefits of spliceosomal introns in eukaryotes have not been established. One recognized effect of intron splicing is its known enhancement of gene expression. However, the mechanism regulating such splicing-mediated expression enhancement has not been defined. Previous studies have shown that intron splicing is a time-consuming process, indicating that splicing may not reduce the time required for transcription and processing of spliced pre-mRNA molecules; rather, it might facilitate the later rounds of transcription. Because the densities of active RNA polymerase II on most genes are less than one molecule per gene, direct interactions between the splicing apparatus and transcriptional complexes (from the later rounds of transcription) are infrequent, and thus unlikely to account for splicing-mediated gene expression enhancement. Presentation of the hypothesis The serine/arginine-rich protein SF2/ASF can inhibit the DNA topoisomerase I activity that removes negative supercoiling of DNA generated by transcription. Consequently, splicing could make genes more receptive to RNA polymerase II during the later rounds of transcription, and thus affect the frequency of gene transcription. Compared with the transcriptional enhancement mediated by strong promoters, intron-containing genes experience a lower frequency of cut-and-paste processes. The cleavage and religation activity of DNA strands by DNA topoisomerase I was recently shown to account for transcription-associated mutagenesis. Therefore, intron-mediated enhancement of gene expression could reduce transcription-associated genome instability. Testing the hypothesis Experimentally test whether transcription-associated mutagenesis is lower in intron-containing genes than in intronless genes. Use bioinformatic analysis to check whether exons flanking lost introns have higher frequencies of short deletions. Implications of the hypothesis The mechanism of intron-mediated enhancement proposed here may also explain the positive correlation observed between intron size and gene expression levels in unicellular organisms, and the greater number of intron containing genes in higher organisms. Reviewers This article was reviewed by Dr Arcady Mushegian, Dr Igor B Rogozin (nominated by Dr I King Jordan) and Dr Alexey S Kondrashov. For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
43
|
Li QL, Ju ZH, Huang JM, Li JB, Li RL, Hou MH, Wang CF, Zhong JF. Two Novel SNPs inHSF1Gene Are Associated with Thermal Tolerance Traits in Chinese Holstein Cattle. DNA Cell Biol 2011; 30:247-54. [DOI: 10.1089/dna.2010.1133] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Qiu-Ling Li
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Zhi-Hua Ju
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Jin-Ming Huang
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Jian-Bin Li
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Rong-Ling Li
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Ming-Hai Hou
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Chang-Fa Wang
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| | - Ji-Feng Zhong
- Dairy Cattle Research Centre, Shandong Academy of Agricultural Science, Ji'nan, Shandong, P.R. China
| |
Collapse
|
44
|
Yao T, Yang L, Li PQ, Wu H, Xie HB, Shen X, Xie XD. Association of Wnt3A gene variants with non-syndromic cleft lip with or without cleft palate in Chinese population. Arch Oral Biol 2010; 56:73-8. [PMID: 20932509 DOI: 10.1016/j.archoralbio.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE non-syndromic cleft lip with or without cleft palate (NSCLP) is one of the most common birth defects all over the world. Both genetic and environmental factors may contribute to NSCLP. Recent studies have demonstrated that Wnt/β-catenin signalling pathway is required for lip and palate formation. WNT family may play an important role in the development of NSCLP. This study aimed to evaluate the association between Wnt3A gene polymorphisms and NSCLP in Chinese population from Northwest China. DESIGN 216 patients with NSCLP and 233 normal controls were genotyped for two SNPs of Wnt3A by PCR-RFLP. Both SNPs genotype frequencies were analysed between cases group and controls group. RESULTS the frequencies of rs752107 TT and rs3121310 AA were significantly higher in NSCLP cases group (7.4%, 15.3%) than that in controls group (2.1%, 9.5%) with p-value=0.013, 0.014, corrected p value (p-corr) <0.05 and with odds ratio (OR)=3.49, 95% confidence interval [CI]: 1.244-9.79, OR=2.27, 95% CI: 1.17-4.38, respectively; the frequency of rs3121310 GA was also higher in NSCLP cases group (57.4%) than in controls group (52.0%) with p-value=0.042 and OR=1.56 (95% CI: 1.02-2.39). And the frequency of rs752107 TT of Wnt3A showed higher risk in female patients, while the frequency of A allele of rs3121310 showed stronger association in male patients. CONCLUSIONS this is the first report that two SNPs of Wnt3A (rs752107 and rs3121310) are significantly associated with NSCLP in Chinese population. These findings provide a context for understanding the genetic aetiology of NSCLP.
Collapse
Affiliation(s)
- Ting Yao
- School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Alméciga-Díaz CJ, Montaño AM, Tomatsu S, Barrera LA. Adeno-associated virus gene transfer in Morquio A disease - effect of promoters and sulfatase-modifying factor 1. FEBS J 2010; 277:3608-19. [PMID: 20716181 DOI: 10.1111/j.1742-4658.2010.07769.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mucopolysaccharidosis (MPS) IVA is an autosomal recessive disorder caused by deficiency of the lysosomal enzyme N-acetylgalatosamine-6-sulfate sulfatase (GALNS), which leads to the accumulation of keratan sulfate and chondroitin 6-sulfate, mainly in bone. To explore the possibility of gene therapy for Morquio A disease, we transduced the GALNS gene into HEK293 cells, human MPS IVA fibroblasts and murine MPS IVA chondrocytes by using adeno-associated virus (AAV)-based vectors, which carry human GALNS cDNA. The effects of the promoter and the cotransduction with the sulfatase-modifying factor 1 gene (SUMF1) on GALNS activity levels was evaluated. Downregulation of the cytomegalovirus (CMV) immediate early enhancer/promoter was not observed for 10 days post-transduction. The eukaryotic promoters induced equal or higher levels of GALNS activity than those induced by the CMV promoter in HEK293 cells. Transduction of human MPS IVA fibroblasts induced GALNS activity levels that were 15-54% of those of normal human fibroblasts, whereas in transduced murine MPS IVA chondrocytes, the enzyme activities increased up to 70% of normal levels. Cotransduction with SUMF1 vector yielded an additional four-fold increase in enzyme activity, although the level of elevation depended on the transduced cell type. These findings suggest the potential application of AAV vectors for the treatment of Morquio A disease, depending on the combined choice of transduced cell type, selection of promoter, and cotransduction of SUMF1.
Collapse
Affiliation(s)
- Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | |
Collapse
|
46
|
Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 2010; 6:e1000799. [PMID: 20221435 PMCID: PMC2832700 DOI: 10.1371/journal.ppat.1000799] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023] Open
Abstract
The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.
Collapse
|
47
|
Zhao C, Datta S, Mandal P, Xu S, Hamilton T. Stress-sensitive regulation of IFRD1 mRNA decay is mediated by an upstream open reading frame. J Biol Chem 2010; 285:8552-62. [PMID: 20080976 PMCID: PMC2838277 DOI: 10.1074/jbc.m109.070920] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this report, we demonstrate that cellular stress regulates expression of IFRD1 by a post-transcriptional control mechanism. IFRD1 mRNA and protein are elevated in tunicamycin-treated human kidney epithelial cells via stabilization of the mRNA. IFRD1 mRNA instability in resting cells requires translation of an upstream open reading frame (ORF) that represses translation of the major ORF. During stress response, the mRNA is stabilized via inhibition of translational initiation mediated by phosphorylated eIF2alpha. Translation of the major ORF of IFRD1 involves both leaky scanning at the upstream AUG codon and re-initiation at the major AUG codon and is not altered during stress. Finally, the instability mechanism depends upon UPF1, suggesting that it is related to nonsense-mediated decay. Importantly, the sequence and length of the upstream ORF are critical but do not need to code for a specific peptide. Moreover the sequence environment of the upstream ORF termination site is not an essential feature of instability. These features of decay collectively define a distinct upstream ORF-mediated instability mechanism whereby cellular stress can modulate specific gene expression through alteration of mRNA half-life.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
48
|
Chow EMC, Batty S, Mogridge J. Anthrax lethal toxin promotes dephosphorylation of TTP and formation of processing bodies. Cell Microbiol 2009; 12:557-68. [PMID: 19995385 DOI: 10.1111/j.1462-5822.2009.01418.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anthrax lethal toxin (LeTx) is composed of protective antigen (PA) and lethal factor (LF) - PA is the receptor-binding moiety and LF is a protease that cleaves mitogen-activated protein kinase kinases (MAPKKs). LeTx subverts the immune response to Bacillus anthracis in several ways, such as downregulating interleukin-8 (IL-8) by increasing the rate of IL-8 mRNA degradation. Many transcripts are regulated through cis-acting elements that bind proteins that either impede or promote degradation. Some of these RNA-binding proteins are regulated by MAPKs and previous work has demonstrated that interfering with MAPK signalling decreases the half-life of IL-8 mRNA. Here, we have localized a segment within the IL-8 3' untranslated region responsible for LeTx-induced transcript destabilization and show that this is caused by inhibition of the p38, ERK and JNK pathways. TTP, an RNA-binding protein involved in IL-8 mRNA decay, became hypophosphorylated in LeTx-treated cells and knock-down of TTP prevented LeTx from destabilizing the IL-8 transcript. Cells that were treated with LeTx exhibited increased localization of TTP to Processing bodies, which are structures that accumulate transcripts targeted for degradation. We furthermore observed that LeTx promoted the formation of Processing bodies, revealing a link between the toxin and a major mRNA decay pathway.
Collapse
Affiliation(s)
- Edith M C Chow
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | |
Collapse
|
49
|
Chen L. A global comparison between nuclear and cytosolic transcriptomes reveals differential compartmentalization of alternative transcript isoforms. Nucleic Acids Res 2009; 38:1086-97. [PMID: 19969546 PMCID: PMC2831334 DOI: 10.1093/nar/gkp1136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses have typically disregarded nucleocytoplasmic differences. This approach has ignored some post-transcriptional regulations and their effect on the ultimate protein expression levels. Despite a longstanding interest in the differences between the nuclear and cytosolic transcriptomes, it is only recently that data have become available to study such differences and their associated features on a genome-wide scale. Here, we compared the nuclear and cytosolic transcriptomes of HepG2 and HeLa cells. HepG2 and HeLa cells vary significantly in the differential compartmentalization of their transcript isoforms, indicating that nucleocytoplasmic compartmentalization is a cell-specific characteristic. The differential compartmentalization is manifested at the transcript isoform level instead of the gene level because alternative isoforms of one gene can display different nucleocytoplasmic distributions. The isoforms enriched in the cytosol tend to have more introns and longer introns in their pre-mRNAs. They have more functional RNA folds and unique exons in the 3′ regions. These isoforms are more conserved than the isoforms enriched in the nucleus. Surprisingly, the presence of microRNAs does not have a significant impact on the nucleocytoplasmic distribution of their target isoforms. In contrast, nonsense-mediated decay is significantly more associated with the isoforms enriched in the nucleus than those enriched in the cytosol.
Collapse
Affiliation(s)
- Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
50
|
Abstract
It has been recently argued that depletion attraction may play an important role in different aspects of cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of nuclear bodies. In this paper, we suggest a new application of these ideas in the context of the splicing process, a crucial step of messenger RNA maturation in eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher eukaryotes can find evolutionary realistic motivation in the light of our model.
Collapse
Affiliation(s)
- Matteo Osella
- Dipartimento di Fisica Teorica and INFN, Università degli Studi di Torino, v. Pietro Giuria 1, 10125 Torino, Italy.
| | | |
Collapse
|