1
|
Implications of Microorganisms in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4584-4615. [PMID: 36286029 PMCID: PMC9600878 DOI: 10.3390/cimb44100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Collapse
|
2
|
Substrate recruitment by γ-secretase. Semin Cell Dev Biol 2020; 105:54-63. [DOI: 10.1016/j.semcdb.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
|
3
|
Roda AR, Montoliu-Gaya L, Villegas S. The Role of Apolipoprotein E Isoforms in Alzheimer's Disease. J Alzheimers Dis 2020; 68:459-471. [PMID: 30775980 DOI: 10.3233/jad-180740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia worldwide, is characterized by high levels of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Genetically, the ɛ4 allele of apolipoprotein E (ApoE) has been established as the major risk factor for developing late-onset AD (LOAD), the most common form of the disease. Although the role ApoE plays in AD is still not completely understood, a differential role of its isoforms has long been known. The current review compiles the involvement of ApoE isoforms in amyloid-β protein precursor transcription, Aβ aggregation and clearance, synaptic plasticity, neuroinflammation, lipid metabolism, mitochondrial function, and tau hyperphosphorylation. Due to the complexity of LOAD, an accurate description of the interdependence among all the related molecular mechanisms involved in the disease is needed for developing successful therapies.
Collapse
Affiliation(s)
- Alejandro R Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
5
|
Trambauer J, Fukumori A, Kretner B, Steiner H. Analyzing Amyloid-β Peptide Modulation Profiles and Binding Sites of γ-Secretase Modulators. Methods Enzymol 2017; 584:157-183. [DOI: 10.1016/bs.mie.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Ashford JW. Treatment of Alzheimer's Disease: The Legacy of the Cholinergic Hypothesis, Neuroplasticity, and Future Directions. J Alzheimers Dis 2016; 47:149-56. [PMID: 26402763 DOI: 10.3233/jad-150381] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this issue, an article by Waring et al. provides a meta-analysis of the effects of apo-lipo-protein E (APOE) genotype on the beneficial effect of acetyl-cholinesterase inhibitors (AChEIs) in patients with Alzheimer's disease (AD). There was no significant effect found. As of 2015, AChEI medications are the mainstay of AD treatment, and APOE genotype is the most significant factor associated with AD causation. This lack of a significant effect of APOE is analyzed with respect to the "Cholinergic Hypothesis" of AD, dating from 1976, through the recognition that cholinergic neurons are not the sole target of AD, but rather that AD attacks all levels of neuroplasticity in the brain, an idea originated by Ashford and Jarvik in 1985 and which still provides the clearest explanation for AD dementia. The "Amyloid Hypothesis" is dissected back to the alpha/beta pathway switching mechanism affecting the nexin-amyloid pre-protein (NAPP switch). The NAPP switch may be the critical neuroplasticity component of all learning involving synapse remodeling and subserve all learning mechanisms. The gamma-secretase cleavage is discussed, and its normal complementary products, beta-amyloid and the NAPP intracellular domain (NAICD), appear to be involved in natural synapse removal, but the link to AD dementia may involve the NAICD rather than beta-amyloid. Understanding neuroplasticity and the critical pathways to AD dementia are needed to determine therapies and preventive strategies for AD. In particular, the effect of APOE on AD predisposition needs to be established and a means found to adjust its effect to prevent AD.
Collapse
|
7
|
Woodling NS, Colas D, Wang Q, Minhas P, Panchal M, Liang X, Mhatre SD, Brown H, Ko N, Zagol-Ikapitte I, van der Hart M, Khroyan TV, Chuluun B, Priyam PG, Milne GL, Rassoulpour A, Boutaud O, Manning-Boğ AB, Heller HC, Andreasson KI. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer's disease model mice. Brain 2016; 139:2063-81. [PMID: 27190010 DOI: 10.1093/brain/aww117] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers.
Collapse
Affiliation(s)
- Nathaniel S Woodling
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 2 Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Damien Colas
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qian Wang
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paras Minhas
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maharshi Panchal
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xibin Liang
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Siddhita D Mhatre
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Holden Brown
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 4 Brains On-line LLC, South San Francisco, CA, USA
| | - Novie Ko
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irene Zagol-Ikapitte
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marieke van der Hart
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taline V Khroyan
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bayarsaikhan Chuluun
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Prachi G Priyam
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ginger L Milne
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arash Rassoulpour
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Boutaud
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy B Manning-Boğ
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Craig Heller
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katrin I Andreasson
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Woodling NS, Andreasson KI. Untangling the Web: Toxic and Protective Effects of Neuroinflammation and PGE2 Signaling in Alzheimer's Disease. ACS Chem Neurosci 2016; 7:454-63. [PMID: 26979823 DOI: 10.1021/acschemneuro.6b00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The neuroinflammatory response has received increasing attention as a key factor in the pathogenesis of Alzheimer's disease (AD). Microglia, the innate immune cells and resident phagocytes of the brain, respond to accumulating Aβ peptides by generating a nonresolving inflammatory response. While this response can clear Aβ peptides from the nervous system in some settings, its failure to do so in AD accelerates synaptic injury, neuronal loss, and cognitive decline. The complex molecular components of this response are beginning to be unraveled, with identification of both damaging and protective roles for individual components of the neuroinflammatory response. Even within one molecular pathway, contrasting effects are often present. As one example, recent studies of the inflammatory cyclooxygenase-prostaglandin pathway have revealed both beneficial and detrimental effects dependent on the disease context, cell type, and downstream signaling pathway. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenases, are associated with reduced AD risk when taken by cognitively normal populations, but additional clinical and mouse model studies have added complexities and caveats to this finding. Downstream of cyclooxygenase activity, prostaglandin E2 signaling exerts both damaging pro-inflammatory and protective anti-inflammatory effects through actions of specific E-prostanoid G-protein coupled receptors on specific cell types. These complexities underscore the need for careful study of individual components of the neuroinflammatory response to better understand their contribution to AD pathogenesis and progression.
Collapse
Affiliation(s)
- Nathaniel S. Woodling
- Department of Neurology and
Neurological Sciences, Stanford University School of Medicine, 1201
Welch Road, Stanford, California 94305, United States
| | - Katrin I. Andreasson
- Department of Neurology and
Neurological Sciences, Stanford University School of Medicine, 1201
Welch Road, Stanford, California 94305, United States
| |
Collapse
|
9
|
Lessard CB, Cottrell BA, Maruyama H, Suresh S, Golde TE, Koo EH. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP). PLoS One 2015; 10:e0144758. [PMID: 26678856 PMCID: PMC4683055 DOI: 10.1371/journal.pone.0144758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.
Collapse
Affiliation(s)
- Christian B. Lessard
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Barbara A. Cottrell
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Hiroko Maruyama
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Suraj Suresh
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Todd E. Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, College of Medicine, University of Florida, Florida, United States of America
| | - Edward H. Koo
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
10
|
Ringman JM, Goate A, Masters CL, Cairns NJ, Danek A, Graff-Radford N, Ghetti B, Morris JC. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr Neurol Neurosci Rep 2014; 14:499. [PMID: 25217249 PMCID: PMC4162987 DOI: 10.1007/s11910-014-0499-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the original publication describing the illness in 1907, the genetic understanding of Alzheimer's disease (AD) has advanced such that it is now clear that it is a genetically heterogeneous condition, the subtypes of which may not uniformly respond to a given intervention. It is therefore critical to characterize the clinical and preclinical stages of AD subtypes, including the rare autosomal dominant forms caused by known mutations in the PSEN1, APP, and PSEN2 genes that are being studied in the Dominantly Inherited Alzheimer Network study and its associated secondary prevention trial. Similar efforts are occurring in an extended Colombian family with a PSEN1 mutation, in APOE ε4 homozygotes, and in Down syndrome. Despite commonalities in the mechanisms producing the AD phenotype, there are also differences that reflect specific genetic origins. Treatment modalities should be chosen and trials designed with these differences in mind. Ideally, the varying pathological cascades involved in the different subtypes of AD should be defined so that both areas of overlap and of distinct differences can be taken into account. At the very least, clinical trials should determine the influence of known genetic factors in post hoc analyses.
Collapse
Affiliation(s)
- John M Ringman
- Mary S. Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine at University of California, Los Angeles, 10911 Weyburn Ave., #200, Los Angeles, 90095-7226, CA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chronic γ-secretase inhibition reduces amyloid plaque-associated instability of pre- and postsynaptic structures. Mol Psychiatry 2014; 19:937-46. [PMID: 24061497 PMCID: PMC4113951 DOI: 10.1038/mp.2013.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022]
Abstract
The loss of synapses is a strong histological correlate of the cognitive decline in Alzheimer's disease (AD). Amyloid β-peptide (Aβ), a cleavage product of the amyloid precursor protein (APP), exerts detrimental effects on synapses, a process thought to be causally related to the cognitive deficits in AD. Here, we used in vivo two-photon microscopy to characterize the dynamics of axonal boutons and dendritic spines in APP/Presenilin 1 (APP(swe)/PS1(L166P))-green fluorescent protein (GFP) transgenic mice. Time-lapse imaging over 4 weeks revealed a pronounced, concerted instability of pre- and postsynaptic structures within the vicinity of amyloid plaques. Treatment with a novel sulfonamide-type γ-secretase inhibitor (GSI) attenuated the formation and growth of new plaques and, most importantly, led to a normalization of the enhanced dynamics of synaptic structures close to plaques. GSI treatment did neither affect spines and boutons distant from plaques in amyloid precursor protein/presenilin 1-GFP (APPPS1-GFP) nor those in GFP-control mice, suggesting no obvious neuropathological side effects of the drug.
Collapse
|
12
|
Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L. γ-Secretase inhibitors and modulators. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2898-907. [PMID: 23791707 PMCID: PMC3857966 DOI: 10.1016/j.bbamem.2013.06.005] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
γ-Secretase is a fascinating, multi-subunit, intramembrane cleaving protease that is now being considered as a therapeutic target for a number of diseases. Potent, orally bioavailable γ-secretase inhibitors (GSIs) have been developed and tested in humans with Alzheimer's disease (AD) and cancer. Preclinical studies also suggest the therapeutic potential for GSIs in other disease conditions. However, due to inherent mechanism based-toxicity of non-selective inhibition of γ-secretase, clinical development of GSIs will require empirical testing with careful evaluation of benefit versus risk. In addition to GSIs, compounds referred to as γ-secretase modulators (GSMs) remain in development as AD therapeutics. GSMs do not inhibit γ-secretase, but modulate γ-secretase processivity and thereby shift the profile of the secreted amyloid β peptides (Aβ) peptides produced. Although GSMs are thought to have an inherently safe mechanism of action, their effects on substrates other than the amyloid β protein precursor (APP) have not been extensively investigated. Herein, we will review the current state of development of GSIs and GSMs and explore pertinent biological and pharmacological questions pertaining to the use of these agents for select indications. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
13
|
Combination therapy in a transgenic model of Alzheimer's disease. Exp Neurol 2013; 250:228-238. [PMID: 24120437 DOI: 10.1016/j.expneurol.2013.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 12/31/2022]
Abstract
The pathological accumulation of the β-amyloid protein (Aβ) has been closely associated with synaptic loss and neurotoxicity contributing to cognitive dysfunction in Alzheimer's disease (AD). Oligomers of Aβ42 appear to be the most neurotoxic form. Two of the most promising attempts to reduce Aβ accumulation have been with scyllo-inositol, an inositol steroisomer, that stabilizes Aβ42 peptide and prevents it from progressing to oligomers and fibrils and R-flurbiprofen, a purified enantiomer of the classical racemic non-steroidal anti-inflammatory drugs (NSAID), flurbiprofen, that retains the ability to specifically lower Aβ42. In the present study we evaluated the effects of scyllo-inositol and the combination treatment of scyllo-inositol+R-flurbiprofen on amyloid pathology and hippocampal-dependent memory function in 5XFAD mice, a model of Aβ pathology characterized by an enormous production of Aβ42. Our expectations were that the combination treatment of scyllo-inositol+R-flurbiprofen would have an additive effect in preventing Aβ accumulation and that cognition would be improved. Mice treated with scyllo-inositol exhibit 41 and 35% reduction in the deposition of the amyloid plaques stained by antibody against Aβ42 and Aβ40 respectively. Scyllo-inositol was not more effective when combined with R-flurbiprofen for the measures tested. Scyllo-inositol treated mice performed significantly better at the radial arm water maze (RAWM) task than untreated and scyllo-inositol+R-flurbiprofen treated mice.
Collapse
|
14
|
Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sönnichsen FD, Sanders CR. The quiet renaissance of protein nuclear magnetic resonance. Biochemistry 2013; 52:1303-20. [PMID: 23368985 DOI: 10.1021/bi4000436] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 1980s.
Collapse
Affiliation(s)
- Paul J Barrett
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bulic B, Ness J, Hahn S, Rennhack A, Jumpertz T, Weggen S. Chemical Biology, Molecular Mechanism and Clinical Perspective of γ-Secretase Modulators in Alzheimer's Disease. Curr Neuropharmacol 2012; 9:598-622. [PMID: 22798753 PMCID: PMC3391656 DOI: 10.2174/157015911798376352] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/25/2010] [Accepted: 11/01/2010] [Indexed: 12/25/2022] Open
Abstract
Comprehensive evidence supports that oligomerization and accumulation of amyloidogenic Aβ42 peptides in brain is crucial in the pathogenesis of both familial and sporadic forms of Alzheimer's disease. Imaging studies indicate that the buildup of Aβ begins many years before the onset of clinical symptoms, and that subsequent neurodegeneration and cognitive decline may proceed independently of Aβ. This implies the necessity for early intervention in cognitively normal individuals with therapeutic strategies that prioritize safety. The aspartyl protease γ-secretase catalyses the last step in the cellular generation of Aβ42 peptides, and is a principal target for anti-amyloidogenic intervention strategies. Due to the essential role of γ-secretase in the NOTCH signaling pathway, overt mechanism-based toxicity has been observed with the first generation of γ-secretase inhibitors, and safety of this approach has been questioned. However, two new classes of small molecules, γ-secretase modulators (GSMs) and NOTCH-sparing γ-secretase inhibitors, have revitalized γ-secretase as a drug target in AD. GSMs are small molecules that cause a product shift from Aβ42 towards shorter and less toxic Ab peptides. Importantly, GSMs spare other physiologically important substrates of the γ-secretase complex like NOTCH. Recently, GSMs with nanomolar potency and favorable in vivo properties have been described. In this review, we summarize the knowledge about the unusual proteolytic activity of γ-secretase, and the chemical biology, molecular mechanisms and clinical perspective of compounds that target the γ-secretase complex, with a particular focus on GSMs.
Collapse
Affiliation(s)
- Bruno Bulic
- Research Group Chemical Biology of Neurodegenerative Diseases, Center of Advanced European Studies and Research, D-53175 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Young JE, Goldstein LSB. Alzheimer's disease in a dish: promises and challenges of human stem cell models. Hum Mol Genet 2012; 21:R82-9. [PMID: 22865875 DOI: 10.1093/hmg/dds319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells can differentiate into disease-relevant cell types, which capture the unique genome of an individual patient and provide insight into pathological mechanisms of human disease. Recently, human stem cell models for Alzheimer's disease (AD), the most common neurodegenerative dementia, have been described. Stem cell-derived neurons from patients with familial and sporadic AD and Down's syndrome recapitulate human disease phenotypes such as amyloid β peptide production, hyperphosphorylation of tau protein and endosomal abnormalities. Treatment of human neurons with small molecules can modulate these phenotypes, demonstrating the utility of this system for drug development and screening. This review will highlight the current AD stem cell models and discuss the remaining challenges and potential future directions of this field.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Cellular and Molecular Medicine, USCD School of Medicine,9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
17
|
Consequences of inhibiting amyloid precursor protein processing enzymes on synaptic function and plasticity. Neural Plast 2012; 2012:272374. [PMID: 22792491 PMCID: PMC3390164 DOI: 10.1155/2012/272374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/22/2012] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of β- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aβ alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aβ generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aβ-producing enzymes suggest that Aβ itself may have normal physiological functions which are disrupted by abnormal accumulation of Aβ during AD pathology. This interpretation suggests that AD therapeutics targeting the β- and γ-secretases should be developed to restore normal levels of Aβ or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.
Collapse
|
18
|
Weggen S, Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2012; 4:9. [PMID: 22494386 PMCID: PMC3334542 DOI: 10.1186/alzrt107] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations in both the amyloid precursor protein (APP) and the presenilin (PSEN) genes cause familial Alzheimer's disease (FAD) with autosomal dominant inheritance and early onset of disease. The clinical course and neuropathology of FAD and sporadic Alzheimer's disease are highly similar, and patients with FAD constitute a unique population in which to conduct treatment and, in particular, prevention trials with novel pharmaceutical entities. It is critical, therefore, to exactly defi ne the molecular consequences of APP and PSEN FAD mutations. Both APP and PSEN mutations drive amyloidosis in FAD patients through changes in the brain metabolism of amyloid-β (Aβ) peptides that promote the formation of pathogenic aggregates. APP mutations do not seem to impair the physiological functions of APP. In contrast, it has been proposed that PSEN mutations compromise γ-secretase-dependent and -independent functions of PSEN. However, PSEN mutations have mostly been studied in model systems that do not accurately refl ect the genetic background in FAD patients. In this review, we discuss the reported cellular phenotypes of APP and PSEN mutations, the current understanding of their molecular mechanisms, the need to generate faithful models of PSEN mutations, and the potential bias of APP and PSEN mutations on therapeutic strategies that target Aβ.
Collapse
Affiliation(s)
- Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
19
|
Jumpertz T, Rennhack A, Ness J, Baches S, Pietrzik CU, Bulic B, Weggen S. Presenilin is the molecular target of acidic γ-secretase modulators in living cells. PLoS One 2012; 7:e30484. [PMID: 22238696 PMCID: PMC3253113 DOI: 10.1371/journal.pone.0030484] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/16/2011] [Indexed: 01/19/2023] Open
Abstract
The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs), which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP) and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC50 of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN), the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex.
Collapse
Affiliation(s)
- Thorsten Jumpertz
- Department of Neuropathology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Andreas Rennhack
- Research Group Chemical Biology of Neurodegenerative Diseases, Center of Advanced European Studies and Research, Bonn, Germany
| | - Julia Ness
- Department of Neuropathology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sandra Baches
- Department of Neuropathology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Claus U. Pietrzik
- Molecular Neurodegeneration Group, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bruno Bulic
- Research Group Chemical Biology of Neurodegenerative Diseases, Center of Advanced European Studies and Research, Bonn, Germany
- * E-mail: (BB); (SW)
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Duesseldorf, Germany
- * E-mail: (BB); (SW)
| |
Collapse
|
20
|
Van Broeck B, Chen JM, Tréton G, Desmidt M, Hopf C, Ramsden N, Karran E, Mercken M, Rowley A. Chronic treatment with a novel γ-secretase modulator, JNJ-40418677, inhibits amyloid plaque formation in a mouse model of Alzheimer's disease. Br J Pharmacol 2011; 163:375-89. [PMID: 21232036 DOI: 10.1111/j.1476-5381.2011.01207.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE γ-Secretase modulators represent a promising therapeutic approach for Alzheimer's disease (AD) because they selectively decrease amyloid β 42 (Aβ42), a particularly neurotoxic Aβ species that accumulates in plaques in the brains of patients with AD. In the present study, we describe the in vitro and in vivo pharmacological properties of a potent novel γ-secretase modulator, 2-(S)-(3,5-bis(4-(trifluoromethyl)phenyl)phenyl)-4-methylpentanoic acid (JNJ-40418677). EXPERIMENTAL APPROACH The potency and selectivity of JNJ-40418677 for Aβ reduction was investigated in human neuroblastoma cells, rat primary neurones and after treatment with single oral doses in non-transgenic mouse brains. To evaluate the effect of JNJ-40418677 on plaque formation, Tg2576 mice were treated from 6 until 13 months of age via the diet. KEY RESULTS JNJ-40418677 selectively reduced Aβ42 secretion in human neuroblastoma cells and rat primary neurones, but it did not inhibit Notch processing or formation of other amyloid precursor protein cleavage products. Oral treatment of non-transgenic mice with JNJ-40418677 resulted in an excellent brain penetration of the compound and a dose- and time-dependent decrease of brain Aβ42 levels. Chronic treatment of Tg2576 mice with JNJ-40418677 reduced brain Aβ levels, the area occupied by plaques and plaque number in a dose-dependent manner compared with transgenic vehicle-treated mice. CONCLUSIONS AND IMPLICATIONS JNJ-40418677 selectively decreased Aβ42 production, showed an excellent brain penetration after oral administration in mice and lowered brain Aβ burden in Tg2576 mice after chronic treatment. JNJ-40418677 therefore warrants further investigation as a potentially effective disease-modifying therapy for AD.
Collapse
Affiliation(s)
- B Van Broeck
- Neuroscience Department, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hillmann A, Hahn S, Schilling S, Hoffmann T, Demuth HU, Bulic B, Schneider-Axmann T, Bayer TA, Weggen S, Wirths O. No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 2011; 33:833.e39-50. [PMID: 21943956 DOI: 10.1016/j.neurobiolaging.2011.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/08/2011] [Accepted: 08/16/2011] [Indexed: 12/24/2022]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) that has been reported to reduce the risk of developing Alzheimer's disease (AD). Its preventive effects in AD are likely pleiotropic as ibuprofen displays both anti-inflammatory activity by inhibition of cyclooxygenases and anti-amyloidogenic activity by modulation of γ-secretase. In order to study the anti-inflammatory properties of ibuprofen independent of its anti-amyloidogenic activity, we performed a long-term treatment study with ibuprofen in 5XFAD mice expressing a presenilin-1 mutation that renders this AD model resistant to γ-secretase modulation. As expected, ibuprofen treatment for 3 months resulted in a reduction of the inflammatory reaction in the 5XFAD mouse model. Importantly, an unchanged amyloid beta (Aβ) plaque load, an increase in soluble Aβ42 levels, and an aggravation of some behavioral parameters were noted, raising the question whether suppression of inflammation by nonsteroidal anti-inflammatory drug is beneficial in AD.
Collapse
Affiliation(s)
- Antje Hillmann
- Division of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, Department of Psychiatry, University Medicine Goettingen, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci 2011; 31:9513-25. [PMID: 21715616 DOI: 10.1523/jneurosci.0858-11.2011] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized pathologically by progressive neuronal loss, extracellular plaques containing the amyloid-β (Aβ) peptides, and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Aβ is thought to act upstream of tau, affecting its phosphorylation and therefore aggregation state. One of the major risk factors for AD is traumatic brain injury (TBI). Acute intra-axonal Aβ and diffuse extracellular plaques occur in ∼30% of human subjects after severe TBI. Intra-axonal accumulations of tau but not tangle-like pathologies have also been found in these patients. Whether and how these acute accumulations contribute to subsequent AD development is not known, and the interaction between Aβ and tau in the setting of TBI has not been investigated. Here, we report that controlled cortical impact TBI in 3xTg-AD mice resulted in intra-axonal Aβ accumulations and increased phospho-tau immunoreactivity at 24 h and up to 7 d after TBI. Given these findings, we investigated the relationship between Aβ and tau pathologies after trauma in this model by systemic treatment of Compound E to inhibit γ-secretase activity, a proteolytic process required for Aβ production. Compound E treatment successfully blocked posttraumatic Aβ accumulation in these injured mice at both time points. However, tau pathology was not affected. Our data support a causal role for TBI in acceleration of AD-related pathologies and suggest that TBI may independently affect Aβ and tau abnormalities. Future studies will be required to assess the behavioral and long-term neurodegenerative consequences of these pathologies.
Collapse
|
23
|
Hieke M, Ness J, Steri R, Greiner C, Werz O, Schubert-Zsilavecz M, Weggen S, Zettl H. SAR studies of acidic dual γ-secretase/PPARγ modulators. Bioorg Med Chem 2011; 19:5372-82. [PMID: 21873070 DOI: 10.1016/j.bmc.2011.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022]
Abstract
A novel set of dual γ-secretase/PPARγ modulators characterized by a 2-benzyl hexanoic acid scaffold is presented. Synthetic efforts were focused on the variation of the substitution pattern of the central benzene. Finally, we obtained a new class of 2,5-disubstituted 2-benzylidene hexanoic acid derivatives, which act as dual γ-secretase/PPARγ modulators in the low micromolar range. We have explored broad SAR and successfully improved the dual pharmacological activity and the selectivity profile against potential off-targets such as NOTCH and COX. Compound 17 showed an IC(50) Aβ42=2.4 μM and an EC(50) PPARγ=7.2 μM and could be a valuable tool to further evaluate the concept of dual γ-secretase/PPARγ modulators in animal models of Alzheimer's disease.
Collapse
Affiliation(s)
- Martina Hieke
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zall A, Kieser D, Höttecke N, Naumann EC, Thomaszewski B, Schneider K, Steinbacher DT, Schubenel R, Masur S, Baumann K, Schmidt B. NSAID-derived γ-secretase modulation requires an acidic moiety on the carbazole scaffold. Bioorg Med Chem 2011; 19:4903-9. [PMID: 21763147 DOI: 10.1016/j.bmc.2011.06.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 01/04/2023]
Abstract
Modulation of γ-secretase activity holds potential for the treatment of Alzheimer's disease. Most NSAID-derived γ-secretase modulators feature a carboxylic acid, which may impair blood-brain barrier permeation. The structure activity relationship of 33 carbazoles featuring diverse carboxylic acid isosteres or metabolic precursors thereof was established in a cellular amyloid secretion assay. The modulatory activity was observed for acidic moieties and metabolically labile esters only, which supports our hypothesis of an acid-lysine interaction to be relevant for this type of γ-secretase modulators.
Collapse
Affiliation(s)
- Andrea Zall
- Clemens Schöpf-Institute of Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstr. 22, Darmstadt D-64287, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grill JD, Ringman JM. Should persons with autosomal dominant AD be included in clinical trials? Alzheimers Res Ther 2011; 3:18. [PMID: 21609419 PMCID: PMC3226307 DOI: 10.1186/alzrt80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua D Grill
- Department of Neurology, Mary S, Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine at UCLA, 10911 Weyburn Avenue, Suite 200, Los Angeles, CA 90095-07226, USA.
| | | |
Collapse
|
26
|
Kretner B, Fukumori A, Gutsmiedl A, Page RM, Luebbers T, Galley G, Baumann K, Haass C, Steiner H. Attenuated Abeta42 responses to low potency gamma-secretase modulators can be overcome for many pathogenic presenilin mutants by second-generation compounds. J Biol Chem 2011; 286:15240-51. [PMID: 21357415 DOI: 10.1074/jbc.m110.213587] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sequential processing of the β-amyloid precursor protein by β- and γ-secretase generates the amyloid β-peptide (Aβ), which is widely believed to play a causative role in Alzheimer disease. Selective lowering of the pathogenic 42-amino acid variant of Aβ by γ-secretase modulators (GSMs) is a promising therapeutic strategy. Here we report that mutations in presenilin (PS), the catalytic subunit of γ-secretase, display differential responses to non-steroidal anti-inflammatory drug (NSAID)-type GSMs and more potent second-generation compounds. Although many pathogenic PS mutations resisted lowering of Aβ(42) generation by the NSAID sulindac sulfide, the potent NSAID-like second-generation compound GSM-1 was capable of lowering Aβ(42) for many but not all mutants. We further found that mutations at homologous positions in PS1 and PS2 can elicit differential Aβ(42) responses to GSM-1, suggesting that a positive GSM-1 response depends on the spatial environment in γ-secretase. The aggressive pathogenic PS1 L166P mutation was one of the few pathogenic mutations that resisted GSM-1, and Leu-166 was identified as a critical residue with respect to the Aβ(42)-lowering response of GSM-1. Finally, we found that GSM-1-responsive and -resistant PS mutants behave very similarly toward other potent second-generation compounds of different structural classes than GSM-1. Taken together, our data show that a positive Aβ(42) response for PS mutants depends both on the particular mutation and the GSM used and that attenuated Aβ(42) responses to low potency GSMs can be overcome for many PS mutants by second generation GSMs.
Collapse
Affiliation(s)
- Benedikt Kretner
- DZNE-German Center for Neurodegenerative Diseases, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM, Salloway S, Sperling RA, Windisch M, Xiong C. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2011; 3:1. [PMID: 21211070 PMCID: PMC3109410 DOI: 10.1186/alzrt59] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Autosomal-dominant Alzheimer's disease has provided significant understanding of the pathophysiology of Alzheimer's disease. The present review summarizes clinical, pathological, imaging, biochemical, and molecular studies of autosomal-dominant Alzheimer's disease, highlighting the similarities and differences between the dominantly inherited form of Alzheimer's disease and the more common sporadic form of Alzheimer's disease. Current developments in autosomal-dominant Alzheimer's disease are presented, including the international Dominantly Inherited Alzheimer Network and this network's initiative for clinical trials. Clinical trials in autosomal-dominant Alzheimer's disease may test the amyloid hypothesis, determine the timing of treatment, and lead the way to Alzheimer's disease prevention.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University School of Medicine, 660 S, Euclid, Campus Box 8111, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Basi GS, Hemphill S, Brigham EF, Liao A, Aubele DL, Baker J, Barbour R, Bova M, Chen XH, Dappen MS, Eichenbaum T, Goldbach E, Hawkinson J, Lawler-Herbold R, Hu K, Hui T, Jagodzinski JJ, Keim PS, Kholodenko D, Latimer LH, Lee M, Marugg J, Mattson MN, McCauley S, Miller JL, Motter R, Mutter L, Neitzel ML, Ni H, Nguyen L, Quinn K, Ruslim L, Semko CM, Shapiro P, Smith J, Soriano F, Szoke B, Tanaka K, Tang P, Tucker JA, Ye XM, Yu M, Wu J, Xu YZ, Garofalo AW, Sauer JM, Konradi AW, Ness D, Shopp G, Pleiss MA, Freedman SB, Schenk D. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2010; 2:36. [PMID: 21190552 PMCID: PMC3031881 DOI: 10.1186/alzrt60] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/16/2010] [Accepted: 12/29/2010] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Inhibition of gamma-secretase presents a direct target for lowering Aβ production in the brain as a therapy for Alzheimer's disease (AD). However, gamma-secretase is known to process multiple substrates in addition to amyloid precursor protein (APP), most notably Notch, which has limited clinical development of inhibitors targeting this enzyme. It has been postulated that APP substrate selective inhibitors of gamma-secretase would be preferable to non-selective inhibitors from a safety perspective for AD therapy. METHODS In vitro assays monitoring inhibitor potencies at APP γ-site cleavage (equivalent to Aβ40), and Notch ε-site cleavage, in conjunction with a single cell assay to simultaneously monitor selectivity for inhibition of Aβ production vs. Notch signaling were developed to discover APP selective gamma-secretase inhibitors. In vivo efficacy for acute reduction of brain Aβ was determined in the PDAPP transgene model of AD, as well as in wild-type FVB strain mice. In vivo selectivity was determined following seven days x twice per day (b.i.d.) treatment with 15 mg/kg/dose to 1,000 mg/kg/dose ELN475516, and monitoring brain Aβ reduction vs. Notch signaling endpoints in periphery. RESULTS The APP selective gamma-secretase inhibitors ELN318463 and ELN475516 reported here behave as classic gamma-secretase inhibitors, demonstrate 75- to 120-fold selectivity for inhibiting Aβ production compared with Notch signaling in cells, and displace an active site directed inhibitor at very high concentrations only in the presence of substrate. ELN318463 demonstrated discordant efficacy for reduction of brain Aβ in the PDAPP compared with wild-type FVB, not observed with ELN475516. Improved in vivo safety of ELN475516 was demonstrated in the 7d repeat dose study in wild-type mice, where a 33% reduction of brain Aβ was observed in mice terminated three hours post last dose at the lowest dose of inhibitor tested. No overt in-life or post-mortem indications of systemic toxicity, nor RNA and histological end-points indicative of toxicity attributable to inhibition of Notch signaling were observed at any dose tested. CONCLUSIONS The discordant in vivo activity of ELN318463 suggests that the potency of gamma-secretase inhibitors in AD transgenic mice should be corroborated in wild-type mice. The discovery of ELN475516 demonstrates that it is possible to develop APP selective gamma-secretase inhibitors with potential for treatment for AD.
Collapse
Affiliation(s)
- Guriqbal S Basi
- Elan Pharmaceuticals, Inc, 180 Oyster Point Blvd, S, San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hahn S, Brüning T, Ness J, Czirr E, Baches S, Gijsen H, Korth C, Pietrzik CU, Bulic B, Weggen S. Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer's disease attenuate the response of cultured cells to γ-secretase modulators regardless of their potency and structure. J Neurochem 2010; 116:385-95. [PMID: 21091478 DOI: 10.1111/j.1471-4159.2010.07118.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
γ-Secretase modulators (GSMs) inhibit the generation of amyloidogenic Aβ42 peptides and are promising agents for treatment or prevention of Alzheimer's disease (AD). Recently, a second generation of GSMs with favorable pharmacological properties has emerged, but preclinical studies to assess their efficacy in vivo are lacking. Such studies rely on transgenic mouse models that express amyloid precursor protein (APP) and presenilin (PSEN) mutations associated with early-onset familial AD. Previously, we have shown that certain PSEN1 mutations attenuated the response of cultured cells to GSMs and potentially confound in vivo studies in AD mouse models. However, different combinations of familial AD mutations might have synergistic or opposing effects, and we have now systematically determined the response of APP and PSEN1 mutations present in current AD models. Using a potent acidic GSM, we found that APP mutations, either single mutations or in combination, did not affect the potency of GSMs. In contrast, all PSEN1 mutations that have been used to accelerate pathological changes in AD models strongly attenuated the Aβ42-lowering activity of GSMs with two exceptions (M146L, A246E). Similar results were obtained with potent non-acidic GSMs indicating that the attenuating effect of PSEN1 mutations cannot simply be overcome by increased potency or structural changes. Notably, two non-acidic compounds fully compensated the attenuating effect of the PSEN1-G384A mutation. Taken together, our findings indicate that most AD models with rapid pathology and advanced phenotypes are unsuitable for preclinical GSM studies. However, we also provide evidence that additional compound screens could discover GSMs that are able to break the attenuating effects of PSEN mutations.
Collapse
Affiliation(s)
- Stefanie Hahn
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oehlrich D, Berthelot DJC, Gijsen HJM. γ-Secretase modulators as potential disease modifying anti-Alzheimer's drugs. J Med Chem 2010; 54:669-98. [PMID: 21141968 DOI: 10.1021/jm101168r] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Oehlrich
- Medicinal Chemistry, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | | |
Collapse
|
31
|
Uemura K, Farner KC, Hashimoto T, Nasser-Ghodsi N, Wolfe MS, Koo EH, Hyman BT, Berezovska O. Substrate docking to γ-secretase allows access of γ-secretase modulators to an allosteric site. Nat Commun 2010; 1:130. [PMID: 21119643 PMCID: PMC3060602 DOI: 10.1038/ncomms1129] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/02/2010] [Indexed: 01/24/2023] Open
Abstract
γ-Secretase generates the peptides of Alzheimer's disease, Aβ40 and Aβ42, by cleaving the amyloid precursor protein within its transmembrane domain. γ-Secretase also cleaves numerous other substrates, raising concerns about γ-secretase inhibitor off-target effects. Another important class of drugs, γ-secretase modulators, alter the cleavage site of γ-secretase on amyloid precursor protein, changing the Aβ42/Aβ40 ratio, and are thus a promising therapeutic approach for Alzheimer's disease. However, the target for γ-secretase modulators is uncertain, with some data suggesting that they function on γ-secretase, whereas others support their binding to the amyloid precursor. In this paper we address this controversy by using a fluorescence resonance energy transfer-based assay to examine whether γ-secretase modulators alter Presenilin-1/γ-secretase conformation in intact cells in the absence of its natural substrates such as amyloid precursor protein and Notch. We report that the γ-secretase allosteric site is located within the γ-secretase complex, but substrate docking is needed for γ-secretase modulators to access this site. γ-Secretase modulators have promise in the treatment of Alzheimer's disease, but their molecular target is uncertain. Here, fluorescence resonance energy transfer is used to determine that the γ-secretase allosteric site is within the γ-secretase complex and that substrate docking is required for modulators to access the site.
Collapse
Affiliation(s)
- Kengo Uemura
- 1] Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2]
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zettl H, Weggen S, Schneider P, Schneider G. Exploring the chemical space of γ-secretase modulators. Trends Pharmacol Sci 2010; 31:402-10. [DOI: 10.1016/j.tips.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022]
|
33
|
Amyloid beta 42 peptide (Abeta42)-lowering compounds directly bind to Abeta and interfere with amyloid precursor protein (APP) transmembrane dimerization. Proc Natl Acad Sci U S A 2010; 107:14597-602. [PMID: 20679249 DOI: 10.1073/pnas.1003026107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following ectodomain shedding by beta-secretase, successive proteolytic cleavages within the transmembrane sequence (TMS) of the amyloid precursor protein (APP) catalyzed by gamma-secretase result in the release of amyloid-beta (Abeta) peptides of variable length. Abeta peptides with 42 amino acids appear to be the key pathogenic species in Alzheimer's disease, as they are believed to initiate neuronal degeneration. Sulindac sulfide, which is known as a potent gamma-secretase modulator (GSM), selectively reduces Abeta42 production in favor of shorter Abeta species, such as Abeta38. By studying APP-TMS dimerization we previously showed that an attenuated interaction similarly decreased Abeta42 levels and concomitantly increased Abeta38 levels. However, the precise molecular mechanism by which GSMs modulate Abeta production is still unclear. In this study, using a reporter gene-based dimerization assay, we found that APP-TMS dimers are destabilized by sulindac sulfide and related Abeta42-lowering compounds in a concentration-dependent manner. By surface plasmon resonance analysis and NMR spectroscopy, we show that sulindac sulfide and novel sulindac-derived compounds directly bind to the Abeta sequence. Strikingly, the attenuated APP-TMS interaction by GSMs correlated strongly with Abeta42-lowering activity and binding strength to the Abeta sequence. Molecular docking analyses suggest that certain GSMs bind to the GxxxG dimerization motif in the APP-TMS. We conclude that these GSMs decrease Abeta42 levels by modulating APP-TMS interactions. This effect specifically emphasizes the importance of the dimeric APP-TMS as a promising drug target in Alzheimer's disease.
Collapse
|
34
|
Hieke M, Ness J, Steri R, Dittrich M, Greiner C, Werz O, Baumann K, Schubert-Zsilavecz M, Weggen S, Zettl H. Design, synthesis, and biological evaluation of a novel class of gamma-secretase modulators with PPARgamma activity. J Med Chem 2010; 53:4691-700. [PMID: 20503989 DOI: 10.1021/jm1003073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a novel class of dual modulators of gamma-secretase and peroxisome proliferator-activated receptor gamma (PPARgamma) based on the structure of 2-(bis(phenethoxy)pyrimidine-2-ylthio)hexanoic acid 8 (IC(50)(Abeta42) = 22.8 microM, EC(50)(PPARgamma) = 8.3 microM). The modulation of both targets with approved drugs (i.e., amyloid-beta 42 (Abeta42)-lowering NSAIDs for gamma-secretase and glitazones for PPARgamma) has demonstrated beneficial effects in in vitro and in vivo models of Alzheimer's disease (AD). However, although NSAIDs and PPARgamma agonists share similar structural features, no druglike compounds with dual activities as gamma-secretase modulators (GSMs) and PPARgamma agonists have been designed so far. On the basis of our initial lead structure 8, we present the structure-activity relationships (SARs) of broad structural variations. A significant improvement was reached by the introduction of p-trifluoromethyl substituents at the phenyl residues yielding compound 16 (IC(50)(Abeta42) = 6.0 microM, EC(50)(PPARgamma) = 11.0 microM) and the replacement of the two phenyl residues of 8 by cyclohexyl yielding compound 22 (IC(50)(Abeta42) = 5.1 microM, EC(50)(PPARgamma) = 6.6 microM).
Collapse
Affiliation(s)
- Martina Hieke
- Institute of Pharmaceutical Chemistry, ZAFES/LiFF/Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Czvitkovich S, Duller S, Mathiesen E, Lorenzoni K, Imbimbo BP, Hutter-Paier B, Windisch M, Wronski R. Comparison of pharmacological modulation of APP metabolism in primary chicken telencephalic neurons and in a human neuroglioma cell line. J Mol Neurosci 2010; 43:257-67. [PMID: 20603724 PMCID: PMC3041911 DOI: 10.1007/s12031-010-9416-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/18/2010] [Indexed: 01/29/2023]
Abstract
Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases and the formation of Aβ peptides are pivotal for Alzheimer's disease. Therefore, a large number of drugs has been developed targeting APP metabolism. However, many pharmacological compounds have been identified in vitro in immortalized APP overexpressing cell lines rather than in primary neurons. Here, we compared the effect of already characterized secretase inhibitors and modulators on Aβ formation in primary chicken telencephalic neurons and in a human neuroglioma cell line (H4) ectopically expressing human APP with the Swedish double mutation. Primary chicken neurons replicated the effects of a β-secretase inhibitor (β-secretase inhibitor IV), two γ-secretase inhibitors (DAPM, DAPT), two non-steroidal-anti-inflammatory drugs (sulindac sulfide, CW), and of the calpain inhibitor calpeptin. With the exception of the two γ-secretase inhibitors, all tested compounds were more efficacious in primary chicken telencephalic neurons than in the immortalized H4 cell line. Moreover, H4 cells failed to reproduce the effect of calpeptin. Hence, primary chicken telencephalic neurons represent a suitable cell culture model for testing drugs interfering with APP processing and are overall more sensitive to pharmacological interference than immortalized H4 cells ectopically expressing mutant human APP.
Collapse
|
36
|
Saura CA. Presenilin/gamma-Secretase and Inflammation. Front Aging Neurosci 2010; 2:16. [PMID: 20559464 PMCID: PMC2887037 DOI: 10.3389/fnagi.2010.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/08/2010] [Indexed: 01/02/2023] Open
Abstract
Presenilins (PS) are the catalytic components of γ-secretase, an aspartyl protease that regulates through proteolytic processing the function of multiple signaling proteins. Specially relevant is the γ-secretase-dependent cleavage of the β-amyloid precursor protein (APP) since generates the β-amyloid (Aβ) peptides that aggregate and accumulate in the brain of Alzheimer's disease (AD) patients. Abnormal processing and/or accumulation of Aβ disrupt synaptic and metabolic processes leading to neuron dysfunction and neurodegeneration. Studies in presenilin conditional knockout mice have revealed that presenilin-1 is essential for age-dependent Aβ accumulation and inflammation. By contrast, mutations in the presenilin genes responsible for early onset familial AD cause rapid disease progression and accentuate clinical and pathological features including inflammation. In addition, a number of loss of function mutations in presenilin-1 have been recently associated to non-Alzheimer's dementias including frontotemporal dementia and dementia with Lewy bodies. In agreement, total loss of presenilin function in the brain results in striking neurodegeneration and inflammation, which includes activation of glial cells and induction of proinflammatory genes, besides altered inflammatory responses in the periphery. Interestingly, some non-steroidal anti-inflammatory drugs that slow cognitive decline and reduce the risk of AD, decrease amyloidogenic Aβ42 levels by modulating allosterically PS/γ-secretase. In this review, I present current evidence supporting a role of presenilin/γ-secretase signaling on gliogenesis and gliosis in normal and pathological conditions. Understanding the cellular mechanisms regulated by presenilin/γ-secretase during chronic inflammatory processes may provide new approaches for the development of effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Departament Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
37
|
Beel AJ, Barrett P, Schnier PD, Hitchcock SA, Bagal D, Sanders CR, Jordan JB. Nonspecificity of binding of gamma-secretase modulators to the amyloid precursor protein. Biochemistry 2010; 48:11837-9. [PMID: 19928774 DOI: 10.1021/bi901839d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evidence that certain gamma-secretase modulators (GSMs) target the 99-residue C-terminal domain (C99) of the amyloid precursor protein, a substrate of gamma-secretase, but not the protease complex itself has been presented [Kukar, T. L., et al. (2008) Nature 453, 925-929]. Here, NMR results demonstrate a lack of specific binding of these GSMs to monodisperse C99 in LMPG micelles. In addition, results indicate that C99 was likely to have been aggregated in some of the key experiments of the previous work and that binding of GSMs to these C99 aggregates is also of a nonspecific nature.
Collapse
Affiliation(s)
- Andrew J Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Imbimbo BP. An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer's disease. Expert Opin Investig Drugs 2010; 18:1147-68. [PMID: 19589092 DOI: 10.1517/13543780903066780] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several epidemiological studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD), especially for patients carrying one or more epsilon4 allele of the apolipoprotein E. The biological mechanism of this protection is not completely understood and may involve inhibition of COX activity, inhibition of beta-amyloid(1-42) (Abeta42) production and aggregation, inhibition of beta-secretase activity, activation of PPAR-gamma or stimulation of neurotrophin synthesis. Unfortunately, long-term, placebo-controlled clinical trials with both non-selective and COX-2 selective NSAIDs in AD patients produced negative results. A secondary prevention study with rofecoxib in patients with mild cognitive impairment and a primary prevention study with naproxen and celecoxib in elderly subjects with a family history of AD were also negative. All these failures have diminished the hope that NSAIDs could be beneficial in the treatment of AD. It is hypothesized that the chronic use of NSAIDs may be beneficial only in the normal brain by inhibiting the production of Abeta42. Once the Abeta deposition process has started, NSAIDs are no longer effective and may even be detrimental because of their inhibiting activity on activated microglia of the AD brain, which mediates Abeta clearance and activates compensatory hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Via Palermo 26/A, 43100 Parma, Italy.
| |
Collapse
|
39
|
Imbimbo BP, Hutter-Paier B, Villetti G, Facchinetti F, Cenacchi V, Volta R, Lanzillotta A, Pizzi M, Windisch M. CHF5074, a novel gamma-secretase modulator, attenuates brain beta-amyloid pathology and learning deficit in a mouse model of Alzheimer's disease. Br J Pharmacol 2009; 156:982-93. [PMID: 19239474 DOI: 10.1111/j.1476-5381.2008.00097.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the effects of 1-(3',4'-dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074), a new gamma-secretase modulator, on brain beta-amyloid pathology and spatial memory in transgenic mice expressing the Swedish and London mutations of human amyloid precursor protein (hAPP). EXPERIMENTAL APPROACH Sixty 6-month-old hAPP mice were treated for 6 months with CHF5074 or ibuprofen (375 ppm in the diet) or standard diet. Twenty-one wild-type mice received standard diet. KEY RESULTS Compared with transgenic controls, CHF5074 treatment significantly reduced the area occupied by plaques in cortex (P = 0.003) and hippocampus (P = 0.004). The number of plaques were also reduced by CHF5074 in both cortex (P = 0.022) and hippocampus (P = 0.005). Plaque-associated microglia in CHF5074-treated animals was lower than in transgenic controls in cortex (P = 0.008) and hippocampus (P = 0.002). Ibuprofen treatment significantly reduced microglia area in cortex and hippocampus but not beta-amyloid burden. On the last day of the Morris water maze, transgenic controls performed significantly worse than the non-transgenic animals and the CHF5074-treated transgenic mice, on the swimming path to reach the hidden platform. Ibuprofen-treated animals did not perform significantly better than transgenic controls. CONCLUSIONS AND IMPLICATIONS Chronic CHF5074 treatment reduced brain beta-amyloid burden, associated microglia inflammation and attenuated spatial memory deficit in hAPP mice. This novel gamma-secretase modulator is a promising therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- B P Imbimbo
- Research and Development, Chiesi Farmaceutici, Via Palermo, Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Winkler E, Hobson S, Fukumori A, Dümpelfeld B, Luebbers T, Baumann K, Haass C, Hopf C, Steiner H. Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human gamma-secretase. Biochemistry 2009; 48:1183-97. [PMID: 19159235 DOI: 10.1021/bi801204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gamma-secretase is a unique intramembrane-cleaving protease complex, which cleaves the Alzheimer's disease-associated beta-amyloid precursor protein (APP) and a number of other type I membrane proteins. Human gamma-secretase consists of the catalytic subunit presenilin (PS) (PS1 or PS2), the substrate receptor nicastrin, APH-1 (APH-1a or APH-1b), and PEN-2. To facilitate in-depth biochemical analysis of gamma-secretase, we developed a fast and convenient multistep purification procedure for the endogenous enzyme. The enzyme was purified from HEK293 cells in an active form and had a molecular mass of approximately 500 kDa. Purified gamma-secretase was capable of producing the major amyloid-beta peptide (Abeta) species, such as Abeta40 and Abeta42, from a recombinant APP substrate in physiological ratios. Abeta generation could be modulated by pharmacological gamma-secretase modulators. Moreover, the Abeta42/Abeta40 ratio was strongly increased by purified PS1 L166P, an aggressive familial Alzheimer's disease mutant. Tandem mass spectrometry analysis revealed the consistent coisolation of several proteins with the known gamma-secretase core subunits. Among these were the previously described gamma-secretase interactors CD147 and TMP21 as well as other known interactors of these. Interestingly, the Niemann-Pick type C1 protein, a cholesterol transporter previously implicated in gamma-secretase-mediated processing of APP, was identified as a major copurifying protein. Affinity capture experiments using a biotinylated transition-state analogue inhibitor of gamma-secretase showed that these proteins are absent from active gamma-secretase complexes. Taken together, we provide an effective procedure for isolating endogenous gamma-secretase in considerably high grade, thus aiding further characterization of this pivotal enzyme. In addition, we provide evidence that the copurifying proteins identified are unlikely to be part of the active gamma-secretase enzyme.
Collapse
Affiliation(s)
- Edith Winkler
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ringman JM, Grill J, Rodriguez-Agudelo Y, Chavez M, Xiong C. Commentary on "a roadmap for the prevention of dementia II: Leon Thal Symposium 2008." Prevention trials in persons at risk for dominantly inherited Alzheimer's disease: opportunities and challenges. Alzheimers Dement 2009; 5:166-71. [PMID: 19328453 DOI: 10.1016/j.jalz.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022]
Affiliation(s)
- John M Ringman
- Mary S. Easton Center for Alzheimer's Disease Research, UCLA Department of Neurology, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
42
|
Garcia-Alloza M, Subramanian M, Thyssen D, Borrelli LA, Fauq A, Das P, Golde TE, Hyman BT, Bacskai BJ. Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575. Mol Neurodegener 2009; 4:19. [PMID: 19419556 PMCID: PMC2687427 DOI: 10.1186/1750-1326-4-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/06/2009] [Indexed: 11/10/2022] Open
Abstract
The gamma-secretase complex is a major therapeutic target for the prevention and treatment of Alzheimer's disease. Previous studies have shown that treatment of young APP mice with specific inhibitors of gamma-secretase prevented formation of new plaques. It has not yet been shown directly whether existing plaques would be affected by gamma-secretase inhibitor treatment. Similarly, alterations in neuronal morphology in the immediate vicinity of plaques represent a plaque-specific neurotoxic effect. Reversal of these alterations is an important endpoint of successful therapy whether or not a treatment affects plaque size. In the present study we used longitudinal imaging in vivo with multiphoton microscopy to study the effects of the orally active gamma-secretase inhibitor LY-411575 in 10-11 month old APP:PS1 mice with established amyloid pathology and neuritic abnormalities. Neurons expressed YFP allowing fluorescent detection of morphology whereas plaques were labelled with methoxy-XO4. The same identified neurites and plaques were followed in weekly imaging sessions in living mice treated daily (5 mg/kg) for 3 weeks with the compound. Although LY-411575 reduced Abeta levels in plasma and brain, it did not have an effect on the size of existing plaques. There was also no effect on the abnormal neuritic curvature near plaques, or the dystrophies in very close proximity to senile plaques. Our results suggest that therapeutics aimed at inhibition of Abeta generation are less effective for reversal of existing plaques than for prevention of new plaque formation and have no effect on the plaque-mediated neuritic abnormalities, at least under these conditions where Abeta production is suppressed but not completely blocked. Therefore, a combination therapy of Abeta suppression with agents that increase clearance of amyloid and/or prevent neurotoxicity might be needed for a more effective treatment in patients with pre-existing pathology.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Robles A. Pharmacological Treatment of Alzheimer's Disease: Is it Progressing Adequately? Open Neurol J 2009; 3:27-44. [PMID: 19461897 PMCID: PMC2684708 DOI: 10.2174/1874205x00903010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/26/2008] [Accepted: 01/02/2009] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Between 1993 and 2000 four acetylcholinesterase inhibitors were marketed as a symptomatic treatment for Alzheimer's disease (AD), as well as memantine in 2003. Current research is focused on finding drugs that favorably modify the course of the disease. However, their entrance into the market does not seem to be imminent. RESEARCH DEVELOPMENT The aim of AD research is to find substances that inhibit certain elements of the AD pathogenic chain (beta- and gamma-secretase inhibitors, alpha-secretase stimulants, beta-amyloid aggregability reducers or disaggregation and elimination inductors, as well as tau-hyperphosphorylation, glutamate excitotoxicity, oxidative stress and mitochondrial damage reducers, among other action mechanisms). Demonstrating a disease's retarding effect demands longer trials than those necessary to ascertain symptomatic improvement. Besides, a high number of patients (thousands of them) is necessary, all of which turns out to be difficult and costly. Furthermore, it would be necessary to count on diagnosis and progression markers in the disease's pre-clinical stage, markers for specific phenotypes, as well as high-selectivity molecules acting only where necessary. In order to compensate these difficulties, drugs acting on several defects of the pathogenic chain or showing both symptomatic and neuroprotective action simultaneously are being researched. CONCLUSIONS There are multiple molecules used in research to modify AD progression. Although it turns out to be difficult to obtain drugs with sufficient efficacy so that their marketing is approved, if they were achieved they would lead to a reduction of AD prevalence.
Collapse
Affiliation(s)
- Alfredo Robles
- La Rosaleda Hospital, Santiago León de Caracas street, no. 1, 15706 – Santiago de Compostela, Spain
| |
Collapse
|
44
|
Structure and function of gamma-secretase. Semin Cell Dev Biol 2008; 20:211-8. [PMID: 19007897 DOI: 10.1016/j.semcdb.2008.10.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/13/2008] [Indexed: 11/22/2022]
Abstract
The gamma-secretase complex is a prime target for pharmacological intervention in Alzheimer's disease and so far drug discovery efforts have yielded a large variety of potent and rather specific inhibitors of this enzymatic activity. However, as gamma-secretase is able to cleave a wide variety of physiological important substrates, the real challenge is to develop substrate-specific compounds. Therefore, obtaining structural information about gamma-secretase is indispensable. As crystal structures of the complex will be difficult to achieve, applied biochemical approaches need to be integrated with structural information obtained from other intramembrane-cleaving proteases. Here we review current knowledge about the structure and function of gamma-secretase and discuss the value of these findings for the mechanistic understanding of this unusual protease.
Collapse
|
45
|
Abstract
Gamma-secretase mediates the final proteolytic cleavage, which liberates amyloid beta-peptide (Abeta), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, gamma-secretase is a prime target for Abeta-lowering therapeutic strategies. gamma-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of gamma-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Abeta. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the gamma-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for gamma-secretase activity. At least six different gamma-secretase complexes exist that are composed of different variants of PS and APH-1. All gamma-secretase complexes can exert pathological Abeta production. Assembly of the gamma-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional gamma-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive gamma-secretase inhibitors have been developed; however, they interfere with the physiological function of gamma-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of gamma-secretase, which selectively affect the production of the pathological 42-amino acid Abeta, do not inhibit Notch signaling.
Collapse
Affiliation(s)
- Harald Steiner
- Center for Integrated Protein Science Munich and Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig Maximilians University, 80336 Munich, Germany.
| | | | | |
Collapse
|
46
|
Bateman RJ, Klunk WE. Measuring target effect of proposed disease-modifying therapies in Alzheimer's disease. Neurotherapeutics 2008; 5:381-90. [PMID: 18625449 PMCID: PMC2588423 DOI: 10.1016/j.nurt.2008.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is an increasing public health problem. Because of the severity and increasing prevalence of the disease in the population, it is urgent that better treatments be developed. Active research efforts over the past several decades have produced a vast knowledge base regarding AD natural history, pathology, and key biological mediators involved in pathogenesis. As knowledge of the biomolecular mechanisms of AD has increased over the past several decades, there has been a growing consensus on the pathophysiology of the disease. These scientific advancements have led to proposals for disease-modifying therapeutic interventions that promise to significantly alter the course of AD. The translation from preclinical models to human studies requires therapeutic biomarkers to increase the likelihood of success. This review covers the current methods and technologies used in the therapeutic translation of proposed disease-modifying therapies for AD.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
47
|
Sastre M, Walter J, Gentleman SM. Interactions between APP secretases and inflammatory mediators. J Neuroinflammation 2008; 5:25. [PMID: 18564425 PMCID: PMC2442055 DOI: 10.1186/1742-2094-5-25] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/18/2008] [Indexed: 02/08/2023] Open
Abstract
There is now a large body of evidence linking inflammation to Alzheimer's disease (AD). This association manifests itself neuropathologically in the presence of activated microglia and astrocytes around neuritic plaques and increased levels of inflammatory mediators in the brains of AD patients. It is considered that amyloid-β peptide (Aβ), which is derived from the processing of the longer amyloid precursor protein (APP), could be the most important stimulator of this response, and therefore determining the role of the different secretases involved in its generation is essential for a better understanding of the regulation of inflammation in AD. The finding that certain non-steroidal anti-inflammatory drugs (NSAIDs) can affect the processing of APP by inhibiting β- and γ-secretases, together with recent revelations that these enzymes may be regulated by inflammation, suggest that they could be an interesting target for anti-inflammatory drugs. In this review we will discuss some of these issues and the role of the secretases in inflammation, independent of their effect on Aβ formation.
Collapse
Affiliation(s)
- Magdalena Sastre
- Division of Neuroscience and Mental Health, Imperial College London, The Hammersmith Hospital, Du cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
48
|
Czirr E, Cottrell BA, Leuchtenberger S, Kukar T, Ladd TB, Esselmann H, Paul S, Schubenel R, Torpey JW, Pietrzik CU, Golde TE, Wiltfang J, Baumann K, Koo EH, Weggen S. Independent Generation of Aβ42 and Aβ38 Peptide Species by γ-Secretase. J Biol Chem 2008; 283:17049-54. [DOI: 10.1074/jbc.m802912200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Zhao B, Yu M, Neitzel M, Marugg J, Jagodzinski J, Lee M, Hu K, Schenk D, Yednock T, Basi G. Identification of γ-Secretase Inhibitor Potency Determinants on Presenilin. J Biol Chem 2008; 283:2927-38. [DOI: 10.1074/jbc.m708870200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
50
|
Page RM, Baumann K, Tomioka M, Pérez-Revuelta BI, Fukumori A, Jacobsen H, Flohr A, Luebbers T, Ozmen L, Steiner H, Haass C. Generation of Abeta38 and Abeta42 is independently and differentially affected by familial Alzheimer disease-associated presenilin mutations and gamma-secretase modulation. J Biol Chem 2007; 283:677-83. [PMID: 17962197 DOI: 10.1074/jbc.m708754200] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alzheimer disease amyloid beta-peptide (Abeta) is generated via proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretase. Gamma-secretase can be blocked by selective inhibitors but can also be modulated by a subset of non-steroidal anti-inflammatory drugs, including sulindac sulfide. These drugs selectively reduce the generation of the aggregation-prone 42-amino acid Abeta(42) and concomitantly increase the levels of the rather benign Abeta(38). Here we show that Abeta(42) and Abeta(38) generation occur independently from each other. The amount of Abeta(42) produced by cells expressing 10 different familial Alzheimer disease (FAD)-associated mutations in presenilin (PS) 1, the catalytic subunit of gamma-secretase, appeared to correlate with the respective age of onset in patients. However, Abeta(38) levels did not show a negative correlation with the age of onset. Modulation of gamma-secretase activity by sulindac sulfide reduced Abeta(42) in the case of wild type PS1 and two FAD-associated PS1 mutations (M146L and A285V). The remaining eight PS1 FAD mutants showed either no reduction of Abeta(42) or only rather subtle effects. Strikingly, even the mutations that showed no effect on Abeta(42) levels allowed a robust increase of Abeta(38) upon treatment with sulindac sulfide. Similar observations were made for fenofibrate, a compound known to increase Abeta(42) and to decrease Abeta(38). For mutants that predominantly produce Abeta(42), the ability of fenofibrate to further increase Abeta(42) levels became diminished, whereas Abeta(38) levels were altered to varying extents for all mutants analyzed. Thus, we conclude that Abeta(38) and Abeta(42) production do not depend on each other. Using an independent non-steroidal anti-inflammatory drug derivative, we obtained similar results for PS1 as well as for PS2. These in vitro results were confirmed by in vivo experiments in transgenic mice expressing the PS2 N141I FAD mutant. Our findings therefore have strong implications on the selection of transgenic mouse models used for screening of the Abeta(42)-lowering capacity of gamma-secretase modulators. Furthermore, human patients with certain PS mutations may not respond to gamma-secretase modulators.
Collapse
Affiliation(s)
- Richard M Page
- Center for Integrated Protein Science Munich and Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig Maximilians University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|