1
|
Lin Y, Perovanovic J, Kong Y, Igyarto BZ, Zurawski S, Tantin D, Zurawski G, Bettini M, Bettini ML. Antibody-Mediated Targeting of a Hybrid Insulin Peptide Toward Neonatal Thymic Langerin-Positive Cells Enhances T-Cell Central Tolerance and Delays Autoimmune Diabetes. Diabetes 2022; 71:1735-1745. [PMID: 35622068 PMCID: PMC9490359 DOI: 10.2337/db21-1069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022]
Abstract
Thymic presentation of self-antigens is critical for establishing a functional yet self-tolerant T-cell population. Hybrid peptides formed through transpeptidation within pancreatic β-cell lysosomes have been proposed as a new class of autoantigens in type 1 diabetes (T1D). While the production of hybrid peptides in the thymus has not been explored, due to the nature of their generation, it is thought to be highly unlikely. Therefore, hybrid peptide-reactive thymocytes may preferentially escape thymic selection and contribute significantly to T1D progression. Using an antibody-peptide conjugation system, we targeted the hybrid insulin peptide (HIP) 2.5HIP toward thymic resident Langerin-positive dendritic cells to enhance thymic presentation during the early neonatal period. Our results indicated that anti-Langerin-2.5HIP delivery can enhance T-cell central tolerance toward cognate thymocytes in NOD.BDC2.5 mice. Strikingly, a single dose treatment with anti-Langerin-2.5HIP during the neonatal period delayed diabetes onset in NOD mice, indicating the potential of antibody-mediated delivery of autoimmune neoantigens during early stages of life as a therapeutic option in the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Yong Lin
- Baylor College of Medicine, Houston, TX
| | | | | | - Botond Z. Igyarto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Baylor Scott and White Research Institute, Dallas, TX
| | - Dean Tantin
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Baylor Scott and White Research Institute, Dallas, TX
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT
- Corresponding author: Matthew L. Bettini,
| |
Collapse
|
2
|
Komati A, Anand A, Nagendla NK, Madhusudana K, Mudiam MKR, Babu KS, Tiwari AK. Bombax ceiba
calyx displays antihyperglycemic activity via improving insulin secretion and sensitivity: Identification of bioactive phytometabolomes by UPLC‐QTof‐MS/MS. J Food Sci 2022; 87:1865-1881. [DOI: 10.1111/1750-3841.16093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Anusha Komati
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Ajay Anand
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
- Carver College of Medicine, Department of Pathology, University Of Iowa Iowa City USA
| | - Narendra Kumar Nagendla
- Analytical & Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Kuncha Madhusudana
- Applied Biology Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Mohana Krishna Reddy Mudiam
- Analytical & Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Katragadda Suresh Babu
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Ashok Kumar Tiwari
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
3
|
Srivastava N, Hu H, Vomund AN, Peterson OJ, Baker RL, Haskins K, Teyton L, Wan X, Unanue ER. Chromogranin A Deficiency Confers Protection From Autoimmune Diabetes via Multiple Mechanisms. Diabetes 2021; 70:2860-2870. [PMID: 34497137 PMCID: PMC8660984 DOI: 10.2337/db21-0513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022]
Abstract
Recognition of β-cell antigens by autoreactive T cells is a critical step in the initiation of autoimmune type1 diabetes. A complete protection from diabetes development in NOD mice harboring a point mutation in the insulin B-chain 9-23 epitope points to a dominant role of insulin in diabetogenesis. Generation of NOD mice lacking the chromogranin A protein (NOD.ChgA-/-) completely nullified the autoreactivity of the BDC2.5 T cell and conferred protection from diabetes onset. These results raised the issue concerning the dominant antigen that drives the autoimmune process. Here we revisited the NOD.ChgA-/- mice and found that their lack of diabetes development may not be solely explained by the absence of chromogranin A reactivity. NOD.ChgA-/- mice displayed reduced presentation of insulin peptides in the islets and periphery, which corresponded to impaired T-cell priming. Diabetes development in these mice was restored by antibody treatment targeting regulatory T cells or inhibiting transforming growth factor-β and programmed death-1 pathways. Therefore, the global deficiency of chromogranin A impairs recognition of the major diabetogenic antigen insulin, leading to broadly impaired autoimmune responses controlled by multiple regulatory mechanisms.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Hao Hu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Orion J Peterson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II–VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
5
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
6
|
The zinc transporter Zip14 (SLC39a14) affects Beta-cell Function: Proteomics, Gene expression, and Insulin secretion studies in INS-1E cells. Sci Rep 2019; 9:8589. [PMID: 31197210 PMCID: PMC6565745 DOI: 10.1038/s41598-019-44954-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin secretion from pancreatic beta-cells is dependent on zinc ions as essential components of insulin crystals, zinc transporters are thus involved in the insulin secretory process. Zip14 (SLC39a14) is a zinc importing protein that has an important role in glucose homeostasis. Zip14 knockout mice display hyperinsulinemia and impaired insulin secretion in high glucose conditions. Endocrine roles for Zip14 have been established in adipocytes and hepatocytes, but not yet confirmed in beta-cells. In this study, we investigated the role of Zip14 in the INS-1E beta-cell line. Zip14 mRNA was upregulated during high glucose stimulation and Zip14 silencing led to increased intracellular insulin content. Large-scale proteomics showed that Zip14 silencing down-regulated ribosomal mitochondrial proteins, many metal-binding proteins, and others involved in oxidative phosphorylation and insulin secretion. Furthermore, proliferation marker Mki67 was down-regulated in Zip14 siRNA-treated cells. In conclusion, Zip14 gene expression is glucose sensitive and silencing of Zip14 directly affects insulin processing in INS-1E beta-cells. A link between Zip14 and ribosomal mitochondrial proteins suggests altered mitochondrial RNA translation, which could disturb mitochondrial function and thereby insulin secretion. This highlights a role for Zip14 in beta-cell functioning and suggests Zip14 as a future pharmacological target in the treatment of beta-cell dysfunction.
Collapse
|
7
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
8
|
Abstract
Catestatin (CST) was first named in 1997 for its catecholamine-inhibitory activity. It was discovered as a potent inhibitor of catecholamine secretion and as a regulator of histamine release. Accumulating evidence shows that CST is involved with cardiovascular diseases; however, whether CST is a protective factor for these conditions and the mechanisms by which such actions may be mediated are not well understood. In this article, we review recent basic research and clinical trials in the study of CST and summarize the association of CST with cardiovascular diseases. We review data obtained from MedLine via PubMed and from our own investigations.
Collapse
Affiliation(s)
- Yilin Zhao
- The Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dan Zhu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology & Regulatory Peptides, Ministry of Health & Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
9
|
Pereda D, Pardo MR, Morales Y, Dominguez N, Arnau MR, Borges R. Mice lacking chromogranins exhibit increased aggressive and depression-like behaviour. Behav Brain Res 2014; 278:98-106. [PMID: 25257107 DOI: 10.1016/j.bbr.2014.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
Chromogranins are acidic proteins; both chromogranins A and B constitute the main protein component in the vesicular matrix of large dense core vesicles. Chromogranins are a natural source of peptides with different physiological activities that have been associated with vascular and neurological diseases. We have used three different genetic mutant models of mice lacking chromogranin A, chromogranin B and both all on the same C57BL/6J background, to characterize the physiological roles of these proteins using metabolic, cardiovascular and behavioural tests. In mice from 3 to 18 months of age, the lack of any chromogranin promoted age-dependent hypersensitivity to insulin, while the lack of both chromogranins provoked progressive lack of response to stress, as restriction did not promote tachycardia in old mice. Moreover, the lack of chromogranin B produced a depressive-like and aggressive phenotype, while the lack either or both chromogranins increased barbering behaviour. In addition, we observed no effects on light-dark box or RotaRod tests. Mice lacking chromogranin B exhibited lower exploratory activity. Based on this extensive phenotyping with more than 2800 mice, these findings support roles of chromogranins, or the peptides derived from them, in the control of aggressive behaviour along with changes in their metabolic profile beyond their previously described activities in the secretory pathway.
Collapse
Affiliation(s)
- Daniel Pereda
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain
| | - Marta R Pardo
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain
| | - Yezer Morales
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain
| | - Natalia Dominguez
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain
| | - Maria Rosa Arnau
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain
| | - Ricardo Borges
- Pharmacology Unit, Medical School, University of La Laguna, Tenerife, Spain.
| |
Collapse
|
10
|
Abstract
Impaired insulin secretion from pancreatic β-cells is a major factor in the pathogenesis of type 2 diabetes. The main regulator of insulin secretion is the plasma glucose concentration. Insulin secretion is modified by other nutrients, circulating hormones and the autonomic nervous system, as well as local paracrine and autocrine signals. Autocrine signalling involves diffusible molecules that bind to receptors on the same cell from which they have been released. The first transmitter to be implicated in the autocrine regulation of β-cell function was insulin itself. The importance of autocrine insulin signalling is underscored by the finding that mice lacking insulin receptors in β-cells are glucose intolerant. In addition to insulin, β-cells secrete a variety of additional substances, including peptides (e.g. amylin, chromogranin A and B and their cleavage products), neurotransmitters (ATP and γ-aminobutyric acid) and ions (e.g. zinc). Here we review the autocrine effects of substances secreted from β-cells, with a focus on acute effects in stimulus-secretion coupling, present some novel data and discuss the general significance of autocrine signals for the regulation of insulin secretion.
Collapse
Affiliation(s)
- M Braun
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
11
|
Schvartz D, Brunner Y, Couté Y, Foti M, Wollheim CB, Sanchez JC. Improved characterization of the insulin secretory granule proteomes. J Proteomics 2012; 75:4620-31. [PMID: 22569486 DOI: 10.1016/j.jprot.2012.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/22/2012] [Accepted: 04/20/2012] [Indexed: 11/15/2022]
Abstract
Insulin secretory granules (ISGs) are pivotal organelles of pancreatic ß-cells and represent a key participant to glucose homeostasis. Indeed, insulin is packed and processed within these vesicles before its release by exocytosis. It is therefore crucial to acquire qualitative and quantitative data on the ISG proteome, in order to increase our knowledge on ISG biogenesis, maturation and exocytosis. Despites efforts made in the past years, the coverage of the ISG proteome is still incomplete and comprises many potential protein contaminants most likely coming from suboptimal sample preparations. We developed here a 3-step gradient purification procedure combined to Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to further characterize the ISG protein content. Our results allowed to build three complementary proteomes containing 1/ proteins which are enriched in mature ISGs, 2/ proteins sharing multiple localizations including ISGs, and finally 3/ proteins sorted out from immature ISGs and/or co-purifying contaminants. As a proof of concept, the ProSAAS, a neuronal protein found in ISGs was further characterized and its granular localization proved. ProSAAS might represent a novel potential target allowing to better understand the defaults in insulin processing and secretion observed during type 2 diabetes progression. This article is part of a special issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Domitille Schvartz
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Tesfai J, Crane L, Baziard-Mouysset G, Edwards LP. Novel I 1-Imidazoline Agonist S43126 Augment Insulin Secretion in Min6 Cells. ACTA ACUST UNITED AC 2012; 3. [PMID: 27429837 PMCID: PMC4944854 DOI: 10.4172/2155-6156.1000183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The I1-imidazoline receptor is a novel drug target for hypertension and insulin resistance which are major disorders associated with Type II diabetes. In the present study, we examined the effects of a novel imidazoline agonist S43126 on calcium fluxes and insulin secretion from Min6 β-cells. We also examined the effects of S43126 on the induction of IRAS, and phosphorylation of components in the I1-imidazoline signaling pathways, namely ERK and PKB. Min6 β-cells were treated with varying doses of S43126 [10−8M to 10−5M] for various time (5–60mins). S43126 at higher dose [10−5M] stimulated insulin secretion under elevated glucose concentration compared to basal. In addition, insulin secretion and Ca2+ influx mediated by S43126 [10−5M] were decreased following co-treatment with efaroxan (I1-antagonist) and nifedipine (L-type voltage-gated Ca2+-channel blocker) at various times (5–60mins). Furthermore, S43126 at [10−5M] increased Ca2+ oscillation, [Ca2+] and 45Ca2+ uptake in a time and dose-dependent manner. Moreover, Western blot analysis of treated samples showed that S43126 caused an increased protein expression of IRAS as well as phosphorylation of both ERK1/2 and PKB in a concentration-dependent manner. We conclude that S43126 exerts its insulinotropic effect in a glucose dependent manner by a mechanism involving L-type calcium channels and imidazoline I1-receptors.
Collapse
Affiliation(s)
- Jerusalem Tesfai
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Louis Crane
- Laboratoire de Chimie Pharmaceutique, Universite Paul Sabatier, Faculté de Pharmacie, USA
| | | | - Lincoln P Edwards
- Center for Dental Research, School of Dentistry and School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
13
|
Suckale J, Solimena M. The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 2010; 21:599-609. [PMID: 20609596 DOI: 10.1016/j.tem.2010.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023]
Abstract
The insulin granule was previously thought of as merely a container, but accumulating evidence suggests that it also acts as a signaling node. Regulatory pathways intersect at but also originate from the insulin granule membrane. Examples include the small G-proteins Rab3a and Rab27a, which influence granule movement, and the transmembrane proteins (tyrosine phosphatase receptors type N) PTPRN and PTPRN2, which upregulate β-cell transcription and proliferation. In addition, many cosecreted compounds possess regulatory functions, often related to energy metabolism. For instance, ATP and γ-amino butyric acid (GABA) modulate insulin and glucagon secretion, respectively; C-peptide protects β-cells and kidney cells; and amylin reduces gastric emptying and food intake via the brain. In this paper, we review the current knowledge of the insulin granule proteome and discuss its regulatory functions.
Collapse
Affiliation(s)
- Jakob Suckale
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic Carl Gustav Carus, Dresden University of Technology, Dresden 01307, Germany
| | | |
Collapse
|
14
|
D’Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA, Cardozo AK, Workman CT, Moreau Y, Eizirik DL, Waelkens E, Overbergh L, Mathieu C. Novel Insights into the Global Proteome Responses of Insulin-Producing INS-1E Cells To Different Degrees of Endoplasmic Reticulum Stress. J Proteome Res 2010; 9:5142-52. [DOI: 10.1021/pr1004086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wannes D’Hertog
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Gabriela B. Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Eefje Verdrengh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Kasper Lage
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Daniel A. Hansen
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Alessandra K. Cardozo
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Christopher T. Workman
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Yves Moreau
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Decio L. Eizirik
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Etienne Waelkens
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Lutgart Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| |
Collapse
|
15
|
Zhao E, Zhang D, Basak A, Trudeau VL. New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 2009; 164:161-74. [PMID: 19523383 DOI: 10.1016/j.ygcen.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
The granin protein family is composed of two chromogranin and five secretogranin members that are acidic, heat-stable proteins in secretory granules in cells of the nervous and endocrine systems. We report that there is little evidence for evolutionary relationships among the granins except for the chromogranin group. The main granin members, including chromogranin A and B, and secretogranin II are moderately conserved in the vertebrates. Several small bioactive peptides can be generated by proteolysis from those homologous domains existing within the granin precursors, reflecting the conservation of biological activities in different vertebrates. In this context, we focus on reviewing the distribution and function of the major granin-derived peptides, including vasostatin, bovine CgB(1-41) and secretoneurin in vertebrate endocrine systems, especially those associated with growth, glucose metabolism and reproduction.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
16
|
Portela-Gomes GM, Gayen JR, Grimelius L, Stridsberg M, Mahata SK. The importance of chromogranin A in the development and function of endocrine pancreas. ACTA ACUST UNITED AC 2008; 151:19-25. [PMID: 18722481 DOI: 10.1016/j.regpep.2008.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 06/15/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chromogranin (Cg) A is expressed in neuroendocrine and neuronal tissues. It is involved in the generation of secretory granules and is cleaved to form biologically active peptides. Targeted ablation of the Chga gene resulted in increased plasma catecholamines, high blood pressure, and decreased size and number of adrenal medullary chromaffin granules. The aim of this study was to determine whether Chga null mice display changes in the morphology and function of the endocrine pancreas. MATERIALS AND METHODS Sections of pancreata from Chga-/-, Chga+/- and Chga+/+ mice, were immunostained with antibodies against synaptophysin, CgA, CgB, secretogranin II and the four major pancreatic islet hormones. Plasma was analysed for glucose, insulin, glucagon, somatostatin and pancreatic polypeptide (PP). RESULTS CgA epitopes were undetectable in the islets of Chga-/- animals. CgB and secretogranin II epitopes were expressed in the islets of all animal groups albeit with decreased expression in Chga-/- islets. The islet number and size were decreased in the Chga-/- animals compared with Chga+/+. The proportion of insulin cells was decreased but somatostatin and PP cells were increased in Chga-/- mice compared to Chga+/+ mice. The nuclear size was decreased in insulin cells and increased in somatostatin cells in Chga-/- mice. Plasma insulin level was markedly decreased in the Chga-/- mice although fasting plasma glucose and glucagon were normal. CONCLUSION Ablation of the Chga gene affected the islet volume, the composition, distribution and nuclear size of islet cell types and plasma insulin concentration. Our data indicate decreased insulin cell function and increased glucagon cell function. Our study shows that CgA exerts a significant influence on the endocrine pancreas with importance in maintaining islet volume, cellular composition and function.
Collapse
Affiliation(s)
- G M Portela-Gomes
- Department of Genetics and Pathology, Clinical Chemistry, Uppsala University, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, Ziara KB, Jing L, Boysen G, Bronson R, Klebanov S, Chen X, Swenberg JA, Stridsberg M, Parker CE, Harrison DE, Combs TP. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol 2008; 44:26-33. [PMID: 18582556 DOI: 10.1016/j.exger.2008.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
Abstract
Pit1 null (Snell dwarf) and Proph1 null (Ames dwarf) mutant mice lack GH, PRL and TSH. Snell and Ames dwarf mice also exhibit reduced IGF-I, resistance to cancer and a longer lifespan than control mice. Endogenous glucose production during fasting is reduced in Snell dwarf mice compared to fasting control mice. In view of cancer cell dependence on glucose for energy, low endogenous glucose production may provide Snell dwarf mice with resistance to cancer. We investigated whether endogenous glucose production is lower in Snell dwarf mice during feeding. Inhibition of endogenous glucose production by glucose injection was enhanced in 12 to 14 month-old female Snell dwarf mice. Thus, we hypothesize that lower endogenous glucose production during feeding and fasting reduces cancer cell glucose utilization providing Snell dwarf mice with resistance to cancer. The elevation of circulating adiponectin, a hormone produced by adipose tissue, may contribute to the suppression of endogenous glucose production in 12 to 14 month-old Snell dwarf mice. We compared the incidence of cancer at time of death between old Snell dwarf and control mice. Only 18% of old Snell dwarf mice had malignant lesions at the time of death compared to 82% of control mice. The median ages at death for old Snell dwarf and control mice were 33 and 26 months, respectively. By contrast, previous studies showed a high incidence of cancer in old Ames dwarf mice at the time of death. Hence, resistance to cancer in old Snell dwarf mice may be mediated by neuroendocrine factors that reduce glucose utilization besides elevated adiponectin, reduced IGF-I and a lack of GH, PRL and TSH, seen in both Snell and Ames dwarf mice. Proteomics analysis of pituitary secretions from Snell dwarf mice confirmed the absence of GH and PRL, the secretion of ACTH and elevated secretion of Chromogranin B and Secretogranin II. Radioimmune assays confirmed that circulating Chromogranin B and Secretogranin II were elevated in 12 to 14 month-old Snell dwarf mice. In summary, our results in Snell dwarf mice suggest that the pituitary gland and adipose tissue are part of a neuroendocrine loop that lowers the risk of cancer during aging by reducing the availability of glucose.
Collapse
|
18
|
Giordano T, Brigatti C, Podini P, Bonifacio E, Meldolesi J, Malosio ML. Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation. Diabetologia 2008; 51:997-1007. [PMID: 18437352 DOI: 10.1007/s00125-008-0980-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/08/2008] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. METHODS The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. RESULTS Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. CONCLUSIONS/INTERPRETATION The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.
Collapse
Affiliation(s)
- T Giordano
- Immunology of Diabetes Research Unit, San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|