1
|
Nowak JI, Olszewska AM, Piotrowska A, Myszczyński K, Domżalski P, Żmijewski MA. PDIA3 modulates genomic response to 1,25-dihydroxyvitamin D 3 in squamous cell carcinoma of the skin. Steroids 2023; 199:109288. [PMID: 37549780 DOI: 10.1016/j.steroids.2023.109288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| | - Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| |
Collapse
|
2
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
3
|
Song D, Liu H, Wu J, Gao X, Hao J, Fan D. Insights into the role of ERp57 in cancer. J Cancer 2021; 12:2456-2464. [PMID: 33758622 PMCID: PMC7974888 DOI: 10.7150/jca.48707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jian Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoliang Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
4
|
Altieri F, Cairone F, Giamogante F, Carradori S, Locatelli M, Chichiarelli S, Cesa S. Influence of Ellagitannins Extracted by Pomegranate Fruit on Disulfide Isomerase PDIA3 Activity. Nutrients 2019; 11:E186. [PMID: 30658391 PMCID: PMC6356990 DOI: 10.3390/nu11010186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Pomegranate fruit is a functional food of high interest for human health due to its wide range of phytochemicals with antioxidant properties are implicated in the prevention of inflammation and cancer. Ellagitannins, such as punicalagin and ellagic acid, play a role as anti-atherogenic and neuroprotective molecules in the complex fighting against the degenerative diseases. The aim of this work was to evaluate the composition in punicalagins and ellagic acid of differently obtained extracts from whole fruit, peels and juices, prepared by squeezing or by centrifugation, of pomegranate belonging to different cultivars. Moreover, a wider phenolic fingerprint was also determined. The bioactivity of the extracts was tested on the redox activity of PDIA3 disulfide isomerase, an enzyme involved in the regulation of several cellular functions and associated with different diseases such as cancer, prion disorders, Alzheimer's and Parkinson's diseases. The results demonstrate that the different ratios between punicalagin and ellagic acid modulate the enzyme activity and other ellagitannins could interfere with this activity.
Collapse
Affiliation(s)
- Fabio Altieri
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università degli Studi di Roma "La Sapienza", Piazzale A. Moro, 5-00185 Rome, Italy.
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Roma, Italy.
| | - Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 5-00185 Roma, Italy.
| | - Flavia Giamogante
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università degli Studi di Roma "La Sapienza", Piazzale A. Moro, 5-00185 Rome, Italy.
| | - Simone Carradori
- Dipartimento di Farmacia, Università "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy.
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy.
| | - Silvia Chichiarelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università degli Studi di Roma "La Sapienza", Piazzale A. Moro, 5-00185 Rome, Italy.
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, 5-00185 Roma, Italy.
| |
Collapse
|
5
|
Punicalagin, an active pomegranate component, is a new inhibitor of PDIA3 reductase activity. Biochimie 2018; 147:122-129. [PMID: 29425676 DOI: 10.1016/j.biochi.2018.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polyphenolic compounds isolated from pomegranate fruit possess several pharmacological activities including anti-inflammatory, hepatoprotective, antigenotoxic and anticoagulant activities. The present work focuses the attention on PDIA3 interaction with punicalagin and ellagic acid, the most predominant components of pomegranate extracts. PDIA3, a member of the protein disulfide isomerase family involved in several cellular functions, is associated with different human diseases and it has the potential to be a pharmacological target. METHODS The interaction of polyphenols with PDIA3 purified protein was explored by fluorescence quenching and calorimetric techniques and their effect on PDIA3 activity was investigated. RESULTS A higher affinity was observed for punicalagin which also strongly affects PDIA3 reductase activity in vitro as a non-competitive inhibitor. Isothermal titration calorimetry confirmed the high affinity of punicalagin for PDIA3. Considering the PDIA3 involvement in oxidative cellular stress response observed in neuroblastoma cells after treatment with hydrogen peroxide, a comparative study was conducted to evaluate the effect of punicalagin on wild type and PDIA3-silenced cells. Punicalagin increases the cell sensitivity to hydrogen peroxide in neuroblastoma cells, but this effect is drastically reduced in PDIA3-silenced cells treated in the same experimental conditions. CONCLUSIONS Punicalagin binds PDIA3 and inhibits its redox activity. Comparative experiments conducted on unsilenced and PDIA3-silenced neuroblastoma cells suggest the potential of punicalagin to modulate PDIA3 reductase activity also in a biological model. GENERAL SIGNIFICANCE Punicalagin can be used as a new PDIA3 inhibitor and this can provide information on the molecular mechanisms underlying the biological activities of PDIA3 and punicalagin.
Collapse
|
6
|
Brittain GC, Gulnik S. A rapid method for quantifying cytoplasmic versus nuclear localization in endogenous peripheral blood leukocytes by conventional flow cytometry. Cytometry A 2017; 91:351-363. [PMID: 28371169 PMCID: PMC5516235 DOI: 10.1002/cyto.a.23103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
A biochemical system and method have been developed to enable the quantitative measurement of cytoplasmic versus nuclear localization within cells in whole blood. Compared with the analyses of nuclear localization by western blot or fluorescence microscopy, this system saves a lot of time and resources by eliminating the necessity of purification and culturing steps, and generates data that are free from the errors and artifacts associated with using tumor cell lines or calculating nuclear signals from 2D images. This user‐friendly system enables the analysis of cell signaling within peripheral blood cells in their endogenous environment, including measuring the kinetics of nuclear translocation for transcription factors without requiring protein modifications. We first demonstrated the efficiency and specificity of this system for targeting nuclear epitopes, and verified the results by fluorescence microscopy. Next, the power of the technique to analyze LPS‐induced signaling in peripheral blood monocytes was demonstrated. Finally, both FoxP3 localization and IL‐2‐induced STAT5 signaling in regulatory T cells were analyzed. We conclude that this system can be a useful tool for enabling multidimensional molecular‐biological analyses of cell signaling within endogenous peripheral blood cells by conventional flow cytometry. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
| | - Sergei Gulnik
- Beckman Coulter, Inc, Life Science Research, Miami, Florida
| |
Collapse
|
7
|
Comparative Analysis of the Interaction between Different Flavonoids and PDIA3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4518281. [PMID: 28044092 PMCID: PMC5164911 DOI: 10.1155/2016/4518281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022]
Abstract
Flavonoids, plant secondary metabolites present in fruits, vegetables, and products such as tea and red wine, show antioxidant, anti-inflammatory, antithrombotic, antiviral, and antitumor activity. PDIA3 is a member of the protein disulfide isomerase family mainly involved in the correct folding of newly synthetized glycoproteins. PDIA3 is associated with different human pathologies such as cancer, prion disorders, Alzheimer's disease, and Parkinson's diseases and it has the potential to be a pharmacological target. The interaction of different flavonoids with PDIA3 was investigated by quenching fluorescence analysis and the effects on protein activity were evaluated. A higher affinity was observed for eupatorin-5-methyl ether and eupatorin which also inhibit reductase activity of PDIA3 but do not significantly affect its DNA binding activity. The use of several flavonoids differing in chemical structure and functional groups allows us to make some consideration about the relationship between ligand structure and the affinity for PDIA3. The specific flavone backbone conformation and the degree of polarity seem to play an important role for the interaction with PDIA3. The binding site is probably similar but not equivalent to that of green tea catechins, which, as previously demonstrated, can bind to PDIA3 and prevent its interaction with DNA.
Collapse
|
8
|
Pinto RD, Moreira AR, Pereira PJB, dos Santos NMS. Two thioredoxin-superfamily members from sea bass (Dicentrarchus labrax, L.): characterization of PDI (PDIA1) and ERp57 (PDIA3). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1163-1175. [PMID: 23880452 DOI: 10.1016/j.fsi.2013.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/03/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
PDI (PDIA1) and ERp57 (PDIA3), members of the PDI family and of the thioredoxin (Trx) superfamily, are multifunctional proteins with wide physiological roles and have been implicated in several pathologies. Importantly, they are both involved in the MHC class I antigen presentation pathway. This paper reports the isolation and characterization of full cDNA and genomic clones from sea bass (Dicentrarchus labrax, L.) PDI (Dila-PDI) and ERp57 (Dila-ERp57). The genes are ~12.4 and ~7.1 kb long, originating 2155 and 2173 bp transcripts and encoding 497 and 484 amino acids mature proteins, for Dila-PDI and -ERp57, respectively. The PDI gene consists of eleven exons and ERp57 of thirteen. As described in other species, both molecules are composed of four Trx-like domains (abb'a') followed by a C-terminal tail, retaining two CGHC active sites and an ER-signalling sequence, suggestive of a conserved function. Additionally, three-dimensional homology models further support Dila-PDI and Dila-ERp57 as orthologs of mammalian PDI and ERp57, respectively. Finally, high similarity is observed to their vertebrate counterparts (>69% identity), especially among the few ones from closely related teleosts (>79% identity). Hence, these results provide relevant primary data and will enable further studies to clarify the roles of PDI and ERp57 in European sea bass immunity.
Collapse
Affiliation(s)
- Rute D Pinto
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | |
Collapse
|
9
|
Yang HY, Chay KO, Kwon J, Kwon SO, Park YK, Lee TH. Comparative proteomic analysis of cysteine oxidation in colorectal cancer patients. Mol Cells 2013; 35:533-42. [PMID: 23677378 PMCID: PMC3887873 DOI: 10.1007/s10059-013-0058-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress promotes damage to cellular proteins, lipids, membranes and DNA, and plays a key role in the development of cancer. Reactive oxygen species disrupt redox homeostasis and promote tumor formation by initiating aberrant activation of signaling pathways that lead to tumorigenesis. We used shotgun proteomics to identify proteins containing oxidation-sensitive cysteines in tissue specimens from colorectal cancer patients. We then compared the patterns of cysteine oxidation in the membrane fractions between the tumor and non-tumor tissues. Using nano-UPLC-MS(E) proteomics, we identified 31 proteins containing 37 oxidation-sensitive cysteines. These proteins were observed with IAM-binding cysteines in non-tumoral region more than tumoral region of CRC patients. Then using the Ingenuity pathway program, we evaluated the cellular canonical networks connecting those proteins. Within the networks, proteins with multiple connections were related with organ morphology, cellular metabolism, and various disorders. We have thus identified networks of proteins whose redox status is altered by oxidative stress, perhaps leading to changes in cellular functionality that promotes tumorigenesis.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute and the Brain Korea 21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University
| | - Kee-Oh Chay
- Department of Biochemistry, Chonnam National University Medical School
| | - Joseph Kwon
- Korea Basic Science Institute, Gwangju 500-757,
Korea
| | - Sang-Oh Kwon
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-806,
Korea
| | - Young-Kyu Park
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun 519-763,
Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute and the Brain Korea 21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University
| |
Collapse
|
10
|
|
11
|
Ménoret A, Drew DA, Miyamoto S, Nakanishi M, Vella AT, Rosenberg DW. Differential proteomics identifies PDIA3 as a novel chemoprevention target in human colon cancer cells. Mol Carcinog 2012; 53 Suppl 1:E11-22. [PMID: 23255428 DOI: 10.1002/mc.21986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/24/2012] [Accepted: 11/05/2012] [Indexed: 11/06/2022]
Abstract
Chemoprevention offers a promising strategy to prevent or delay the development of various cancers. Critical to this approach is the identification of molecular targets that may track with chemopreventive efficacy. To address this issue, we screened a panel of chemoprevention agents, including resveratrol, epigallocatechin-3-gallate, ursodeoxycholic acid, and sulindac sulfide for their effects on human colon cancer cell viability. Resveratrol elicited the most potent effect in HCT116 cells and was selected for further study. Proteomic PF 2D maps were generated from HCT116 cells treated with resveratrol versus vehicle alone. Analysis of proteomic maps using tandem mass spectrometry (MS) identified a panel of differentially modified proteins. Two proteins, actin and Hsp60, were previously shown in other cell culture systems to be affected by resveratrol, validating our approach. PDIA3, RPL19, histone H2B and TCP1β were uniquely identified by our proteomic discovery platform. PDIA3 was of particular interest given its potential role in regulating chemosensitivity of cancer cells. Total levels of PDIA3 in HCT116 cells were unchanged following 24 h of resveratrol treatment, confirmed by Western blot analysis. Immunoprecipitation of PDIA3 revealed a new set of client proteins following resveratrol treatment, including α, β, and δ-catenins, and cellular fractionation identified decreased nuclear localization of α-catenin by resveratrol. These data establish differential proteomic mapping as a powerful tool for identifying novel molecular targets of chemopreventive agents.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, Colorectal Cancer Prevention Program University of Connecticut Health Center, Farmington, Connecticut
| | | | | | | | | | | |
Collapse
|
12
|
Brymora A, Duggin IG, Berven LA, van Dam EM, Roufogalis BD, Robinson PJ. Identification and characterisation of the RalA-ERp57 interaction: evidence for GDI activity of ERp57. PLoS One 2012; 7:e50879. [PMID: 23226417 PMCID: PMC3511393 DOI: 10.1371/journal.pone.0050879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/25/2012] [Indexed: 01/03/2023] Open
Abstract
RalA is a membrane-associated small GTPase that regulates vesicle trafficking. Here we identify a specific interaction between RalA and ERp57, an oxidoreductase and signalling protein. ERp57 bound specifically to the GDP-bound form of RalA, but not the GTP-bound form, and inhibited the dissociation of GDP from RalA in vitro. These activities were inhibited by reducing agents, but no disulphide bonds were detected between RalA and ERp57. Mutation of all four of ERp57’s active site cysteine residues blocked sensitivity to reducing agents, suggesting that redox-dependent conformational changes in ERp57 affect binding to RalA. Mutations in the switch II region of the GTPase domain of RalA specifically reduced or abolished binding to ERp57, but did not block GTP-specific binding to known RalA effectors, the exocyst and RalBP1. Oxidative treatment of A431 cells with H2O2 inhibited cellular RalA activity, and the effect was exacerbated by expression of recombinant ERp57. The oxidative treatment significantly increased the amount of RalA localised to the cytosol. These findings suggest that ERp57 regulates RalA signalling by acting as a redox-sensitive guanine-nucleotide dissociation inhibitor (RalGDI).
Collapse
Affiliation(s)
- Adam Brymora
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Iain G. Duggin
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Leise A. Berven
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Ellen M. van Dam
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, Australia
| | | | - Phillip J. Robinson
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
13
|
ERp57/GRP58: a protein with multiple functions. Cell Mol Biol Lett 2011; 16:539-63. [PMID: 21837552 PMCID: PMC6275603 DOI: 10.2478/s11658-011-0022-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.
Collapse
|
14
|
Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFκB in differentiating NB4 leukemia cells. Exp Cell Res 2010; 316:1101-8. [DOI: 10.1016/j.yexcr.2010.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 11/23/2022]
|
15
|
Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S. Mitochondrial calpain system: an overview. Arch Biochem Biophys 2009; 495:1-7. [PMID: 20035707 DOI: 10.1016/j.abb.2009.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/13/2022]
Abstract
Calpain system is generally known to be comprised of three molecules: two Ca2+-dependent proteases: mu- and m-calpains, and their endogenous inhibitor, calpastatin. While calpains have previously been considered as the cytoplasmic enzymes, research in the recent past demonstrated that mu-calpain, m-calpain and calpain 10 are present in mitochondria, which play important roles in a variety of pathophysiological conditions including necrotic and apoptotic cell death phenomena. Although a number of original research articles on mitochondrial calpain system are available, yet to the best of our knowledge, a precise review article on mitochondrial calpain system has, however, not been available. This review outlines the key features of the mitochondrial calpain system, and its roles in several cellular and biochemical events under normal and some pathophysiological conditions.
Collapse
Affiliation(s)
- Pulak Kar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | | | | | |
Collapse
|
16
|
Cicchillitti L, Di Michele M, Urbani A, Ferlini C, Donat MB, Scambia G, Rotilio D. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res 2009; 8:1902-12. [PMID: 19714814 DOI: 10.1021/pr800856b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epithelial ovarian cancer is the leading cause of gynecological cancer mortality. Despite good response to surgery and initial chemotherapy, chemoresistance occurrence represents a major obstacle to a successful therapy. To better understand biological mechanisms at the basis of paclitaxel resistance, a comparative proteomic approach based on DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS) was applied to the human epithelial ovarian cancer cell lines A2780 and its paclitaxel resistant counterpart A2780TC1. Most of the differentially expressed proteins between the two cell lines belong to the class of stress response (29%), metabolism (21%), and cell cycle and apoptosis (17%). We focused on proteins which were most strongly modulated by paclitaxel resistance and in particular on the disulphide isomerase ERp57, which may represent a chemoresistance biomarker. ERp57 was found to interact with class III beta-tubulin (TUBB3), involved in paclitaxel resistance in ovarian and other cancers. Moreover, we demonstrated a novel localization of this protein in cytoskeleton and described that ERp57/TUBB3 interaction occurs also in the nuclear compartment and in association with a multimeric complex formed by nucleolin, nucleophosmin, hnRNPK, and mortalin. Our data suggest that ERp57 plays an important role in chemoresistance mechanisms in ovarian cancer by modulating the attachment of microtubules to chromosomes following paclitaxel treatment through its interaction with TUBB3.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Oncology, "RE ARTU" Laboratory of Analytical Techniques and Proteomics, "John Paul II" Center for High Technology Research and Education in Biomedical Sciences, Catholic University, Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Tian G, Kober FX, Lewandrowski U, Sickmann A, Lennarz WJ, Schindelin H. The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J Biol Chem 2008; 283:33630-40. [PMID: 18815132 PMCID: PMC2586259 DOI: 10.1074/jbc.m806026200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase (PDI) catalyzes the formation of the correct pattern of disulfide bonds in secretory proteins. A low resolution crystal structure of yeast PDI described here reveals large scale conformational changes compared with the initially reported structure, indicating that PDI is a highly flexible molecule with its catalytic domains, a and a', representing two mobile arms connected to a more rigid core composed of the b and b' domains. Limited proteolysis revealed that the linker between the a domain and the core is more susceptible to degradation than that connecting the a' domain to the core. By restricting the two arms with inter-domain disulfide bonds, the molecular flexibility of PDI, especially that of its a domain, was demonstrated to be essential for the enzymatic activity in vitro and in vivo. The crystal structure also featured a PDI dimer, and a propensity to dimerize in solution and in the ER was confirmed by cross-linking experiments and the split green fluorescent protein system. Although sedimentation studies suggested that the self-association of PDI is weak, we hypothesize that PDI exists as an interconvertible mixture of monomers and dimers in the endoplasmic reticulum due to its high abundance in this compartment.
Collapse
Affiliation(s)
- Geng Tian
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ozaki T, Yamashita T, Ishiguro SI. ERp57-associated mitochondrial μ-calpain truncates apoptosis-inducing factor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1955-63. [DOI: 10.1016/j.bbamcr.2008.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 01/11/2023]
|
19
|
Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone G, Lindfors M, Jänis J, Valjakka J, Pastoreková S, Pastorek J, Kulomaa MS, Nordlund HR, Supuran CT, Parkkila S. Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008; 283:27799-27809. [PMID: 18703501 DOI: 10.1074/jbc.m800938200] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) is an exceptional member of the CA protein family; in addition to its classical role in pH regulation, it has also been proposed to participate in cell proliferation, cell adhesion, and tumorigenic processes. To characterize the biochemical properties of this membrane protein, two soluble recombinant forms were produced using the baculovirus-insect cell expression system. The recombinant proteins consisted of either the CA IX catalytic domain only (CA form) or the extracellular domain, which included both the proteoglycan and catalytic domains (PG + CA form). The produced proteins lacked the small transmembrane and intracytoplasmic regions of CA IX. Stopped-flow spectrophotometry experiments on both proteins demonstrated that in the excess of certain metal ions the PG + CA form exhibited the highest catalytic activity ever measured for any CA isozyme. Investigations on the oligomerization and stability of the enzymes revealed that both recombinant proteins form dimers that are stabilized by intermolecular disulfide bond(s). Mass spectrometry experiments showed that CA IX contains an intramolecular disulfide bridge (Cys(119)-Cys(299)) and a unique N-linked glycosylation site (Asn(309)) that bears high mannose-type glycan structures. Parallel experiments on a recombinant protein obtained by a mammalian cell expression system demonstrated the occurrence of an additional O-linked glycosylation site (Thr(78)) and characterized the nature of the oligosaccharide structures. This study provides novel information on the biochemical properties of CA IX and may help characterize the various cellular and pathophysiological processes in which this unique enzyme is involved.
Collapse
Affiliation(s)
- Mika Hilvo
- Institute of Medical Technology, FI-33014 Tampere, Finland.
| | - Lina Baranauskiene
- Laboratory of Biothermodynamics and Drug Design, Institute of Biotechnology, LT-02241 Vilnius, Lithuania
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Daumantas Matulis
- Laboratory of Biothermodynamics and Drug Design, Institute of Biotechnology, LT-02241 Vilnius, Lithuania
| | - Alessio Innocenti
- Bioinorganic Chemistry Laboratory, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Scozzafava
- Bioinorganic Chemistry Laboratory, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages, National Research Council, 80134 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimages, National Research Council, 80134 Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages, National Research Council, 80134 Naples, Italy
| | | | - Janne Jänis
- Department of Chemistry, University of Joensuu, FI-80101 Joensuu, Finland
| | | | - Silvia Pastoreková
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovak Republic
| | | | | | - Claudiu T Supuran
- Bioinorganic Chemistry Laboratory, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Seppo Parkkila
- Institute of Medical Technology, FI-33014 Tampere, Finland; School of Medicine, University of Tampere and Tampere University Hospital, FI-33014 Tampere, Finland
| |
Collapse
|
20
|
Adikesavan AK, Jaiswal AK. Thioredoxin-like domains required for glucose regulatory protein 58 mediated reductive activation of mitomycin C leading to DNA cross-linking. Mol Cancer Ther 2008; 6:2719-27. [PMID: 17938265 DOI: 10.1158/1535-7163.mct-07-0160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucose regulatory protein (GRP58) is known to mediate mitomycin C (MMC)-induced DNA cross-linking. However, the mechanism remains elusive. We hypothesized that thioredoxin-like domains, one at NH2 terminus and another at COOH terminus, are required for GRP58-mediated MMC reductive activation leading to DNA cross-linking. Site-directed mutagenesis mutated cysteines in thioredoxin domains to serines. Wild-type (WT) and mutant GRP58 were cloned in pcDNA to produce GRP58 V5-tagged WT and mutant proteins on transfection in mammalian cells. Human colon carcinoma (HCT116) cells transiently expressing and Chinese hamster ovary cells stably expressing WT and mutant GRP58 were analyzed for MMC-induced DNA cross-linking. WT GRP58 was highly efficient in MMC-induced DNA cross-linking. However, both NH2- and COOH-terminal thioredoxin mutants showed significant reduction in MMC-induced DNA cross-linking. The coexpression of GRP58 with thioredoxin reductase 1 and/or treatment of cells with NADPH increased MMC-induced DNA cross-linking from the WT GRP58. In similar experiments, siRNA inhibition of thioredoxin reductase 1 led to decreased MMC-induced DNA cross-linking. Further experiments revealed that mutations in thioredoxin domains led to significant decrease in metabolic reductive activation of MMC. These results led to conclusion that GRP58, through its two thioredoxin-like domains, functions as a reductase leading to bioreductive drug MMC activation and DNA cross-linking.
Collapse
|