1
|
Kadhim I, Begum N, King W, Xu L, Tang F. Up-regulation of Osh6 boosts an anti-aging membrane trafficking pathway toward vacuoles. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:145-157. [PMID: 35974810 PMCID: PMC9344199 DOI: 10.15698/mic2022.08.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Members of the family of oxysterol-binding proteins mediate non-vesicular lipid transport between membranes and contribute to longevity in different manners. We previously found that a 2-fold up-regulation of Osh6, one of seven yeast oxysterol-binding proteins, remedies vacuolar morphology defects in mid-aged cells, partly down-regulates the target of rapamycin complex 1 (TORC1), and increases the replicative lifespan. At the molecular level, Osh6 transports phosphatidylserine (PS) and phosphatidylinositol-4-phosphate (PI4P) between the endoplasmic reticulum (ER) and the plasma membrane (PM). To decipher how an ER-PM working protein controls vacuolar morphology, we tested genetic interactions between OSH6 and DRS2, whose protein flips PS from the lumen to the cytosolic side of the Golgi, the organelle between ER and vacuoles in many pathways. Up-regulated OSH6 complemented vacuolar morphology of drs2Δ and enriched PI4P on the Golgi, indicating that Osh6 also works on the Golgi. This altered PI4P-enrichment led to a delay in the secretion of the proton ATPase Pma1 to the PM and a rerouting of Pma1 to vacuoles in a manner dependent on the trans-Golgi network (TGN) to late endosome (LE) trafficking pathway. Since the TGN-LE pathway controls endosomal and vacuolar TORC1, it may be the anti-aging pathway boosted by up-regulated Osh6.
Collapse
Affiliation(s)
- Ilham Kadhim
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Nazneen Begum
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - William King
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Licheng Xu
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Fusheng Tang
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| |
Collapse
|
2
|
Zhang B, Peng L, Zhu N, Yu Q, Li M. Novel role of the phosphatidylinositol phosphatase Sac1 in membrane homeostasis and polarized growth in Candida albicans. Int J Med Microbiol 2020; 310:151418. [PMID: 32245626 DOI: 10.1016/j.ijmm.2020.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/16/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022] Open
Abstract
Phosphoinositides (PIPs) are one kind of membrane components functioning in many intracellular processes, especially in signaling transduction and membrane transport. Phosphatidylinositide phosphatases (PIPases) are specifically important for the PIP homeostasis in cell. In our previous study, we have identified the actin-related protein CaSac1 in Candida albicans, while its functional mechanisms in regulating membrane homeostasis has not been identified. Here, we show that the PIPase CaSac1 is a main membrane-related protein and regulates hyphal polarization by governing phosphoinositide dynamic and plasma membrane (PM) electrostatic field. Deletion of CaSAC1 resulted in large-scale abnormal redistribution of phosphatidylinositide 4-phosphate (PI4P) from the endomembrane to the PM. This abnormality further led to disturbance of the PM's negative electrostatic field and abnormally spotted distribution of phosphatidylinositide 4,5-bisphosphate (PI(4,5)P2). These changes led to a severe defect in polarized hyphal growth, which could be diminished with recovery of the PM's negative electrostatic field by the anionic polymer polyacrylic acid (PAA). This study revealed that the PIPase CaSac1 plays an essential role in regulating membrane homeostasis and membrane traffic, contributing to establishment of polarized hyphal growth.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Dong R, Zhu T, Benedetti L, Gowrishankar S, Deng H, Cai Y, Wang X, Shen K, De Camilli P. The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J Cell Biol 2018; 217:3577-3592. [PMID: 30087126 PMCID: PMC6168264 DOI: 10.1083/jcb.201802125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
INPP5K (SKIP) is an inositol 5-phosphatase that localizes in part to the endoplasmic reticulum (ER). We show that recruitment of INPP5K to the ER is mediated by ARL6IP1, which shares features of ER-shaping proteins. Like ARL6IP1, INPP5K is preferentially localized in ER tubules and enriched, relative to other ER resident proteins (Sec61β, VAPB, and Sac1), in newly formed tubules that grow along microtubule tracks. Depletion of either INPP5K or ARL6IP1 results in the increase of ER sheets. In a convergent but independent study, a screen for mutations affecting the distribution of the ER network in dendrites of the PVD neurons of Caenorhabditis elegans led to the isolation of mutants in CIL-1, which encodes the INPP5K worm orthologue. The mutant phenotype was rescued by expression of wild type, but not of catalytically inactive CIL-1. Our results reveal an unexpected role of an ER localized polyphosphoinositide phosphatase in the fine control of ER network organization.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT
| | - Ting Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lorena Benedetti
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT
| | - Swetha Gowrishankar
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT
| | - Huichao Deng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiying Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT
| | - Xiangming Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kang Shen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Biology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT
- Kavli Institute for Neurosciences, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Ugalde JM, Rodriguez-Furlán C, Rycke RD, Norambuena L, Friml J, León G, Tejos R. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:10-19. [PMID: 27457979 DOI: 10.1016/j.plantsci.2016.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
The pollen grains arise after meiosis of pollen mother cells within the anthers. A series of complex structural changes follows, generating mature pollen grains capable of performing the double fertilization of the female megasporophyte. Several signaling molecules, including hormones and lipids, have been involved in the regulation and appropriate control of pollen development. Phosphatidylinositol 4-phophate 5-kinases (PIP5K), which catalyze the biosynthesis of the phosphoinositide PtdIns(4,5)P2, are important for tip polar growth of root hairs and pollen tubes, embryo development, vegetative plant growth, and responses to the environment. Here, we report a role of PIP5Ks during microgametogenesis. PIP5K1 and PIP5K2 are expressed during early stages of pollen development and their transcriptional activity respond to auxin in pollen grains. Early male gametophytic lethality to certain grade was observed in both pip5k1(-/-) and pip5k2(-/-) single mutants. The number of pip5k mutant alleles is directly related to the frequency of aborted pollen grains suggesting the two genes are involved in the same function. Indeed PIP5K1 and PIP5K2 are functionally redundant since homozygous double mutants did not render viable pollen grains. The loss of function of PIP5K1 and PIP5K2results in defects in vacuole morphology in pollen at the later stages and epidermal root cells. Our results show that PIP5K1, PIP5K2 and phosphoinositide signaling are important cues for early developmental stages and vacuole formation during microgametogenesis.
Collapse
Affiliation(s)
- José-Manuel Ugalde
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Cecilia Rodriguez-Furlán
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Riet De Rycke
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Lorena Norambuena
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Gabriel León
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Ricardo Tejos
- Centro de Biologia Molecular Vegetal, Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
PIP2Clustering: From model membranes to cells. Chem Phys Lipids 2015; 192:33-40. [DOI: 10.1016/j.chemphyslip.2015.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
|
6
|
Tyson GH, Halavaty AS, Kim H, Geissler B, Agard M, Satchell KJ, Cho W, Anderson WF, Hauser AR. A novel phosphatidylinositol 4,5-bisphosphate binding domain mediates plasma membrane localization of ExoU and other patatin-like phospholipases. J Biol Chem 2014; 290:2919-37. [PMID: 25505182 DOI: 10.1074/jbc.m114.611251] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains.
Collapse
Affiliation(s)
| | - Andrei S Halavaty
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Hyunjin Kim
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | | | | | | | - Wonhwa Cho
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Wayne F Anderson
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Alan R Hauser
- From the Departments of Microbiology-Immunology, Medicine, and
| |
Collapse
|
7
|
Abstract
The endolysosomal system and autophagy are essential components of macromolecular turnover in eukaryotic cells. The low-abundance signaling lipid PI(3,5)P2 is a key regulator of this pathway. Analysis of mouse models with defects in PI(3,5)P2 biosynthesis has revealed the unique dependence of the mammalian nervous system on this signaling pathway. This insight led to the discovery of the molecular basis for several human neurological disorders, including Charcot-Marie-Tooth disease and Yunis-Varon syndrome. Spontaneous mutants, conditional knockouts, transgenic lines, and gene-trap alleles of Fig4, Vac14, and Pikfyve (Fab1) in the mouse have provided novel information regarding the role of PI(3,5)P2in vivo. This review summarizes what has been learned from mouse models and highlights the utility of manipulating complex signaling pathways in vivo.
Collapse
Affiliation(s)
- Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Karunakaran S, Sasser T, Rajalekshmi S, Fratti RA. SNAREs, HOPS and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion in S. cerevisiae. J Cell Sci 2012; 125:1683-92. [PMID: 22357954 DOI: 10.1242/jcs.091900] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Homotypic vacuole fusion requires SNAREs, the Rab Ypt7p, the tethering complex HOPS, regulatory lipids and actin. In Saccharomyces cerevisiae, actin functions at two stages of vacuole fusion. Pre-existing actin filaments are depolymerized to allow docking and assembly of the vertex ring (a microdomain enriched in proteins and lipids that mediate fusion). Actin is then polymerized late in the pathway to aid fusion. Here, we report that the fusion machinery regulates the accumulation of actin at the vertex ring. Using Cy3-labeled yeast actin to track its dynamics, we found that its vertex enrichment was abolished when actin monomers were stabilized by latrunculin-B, independent of the extent of incorporation. By contrast, stabilization of filamentous actin with jasplakinolide markedly augmented actin vertex enrichment. Importantly, agents that inhibit SNAREs, Ypt7p and HOPS inhibited the vertex enrichment of actin, demonstrating that the cytoskeleton and the fusion machinery are interdependently regulated. Actin mobilization was also inhibited by ligating ergosterol and PtdIns(3)P, whereas the ligation or modification of PtdIns(4,5)P(2) augmented the vertex enrichment of actin. The proteins and lipids that regulated actin mobilization to the vertex did not affect the total incorporation of Cy3-actin, indicating that actin mobilization and polymerization activities can be dissociated during membrane fusion.
Collapse
Affiliation(s)
- Surya Karunakaran
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
9
|
Rous sarcoma virus gag has no specific requirement for phosphatidylinositol-(4,5)-bisphosphate for plasma membrane association in vivo or for liposome interaction in vitro. J Virol 2011; 85:10851-60. [PMID: 21813603 DOI: 10.1128/jvi.00760-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MA domain of the retroviral Gag protein mediates interactions with the plasma membrane, which is the site of productive virus release. HIV-1 MA has a phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P₂] binding pocket; depletion of this phospholipid from the plasma membrane compromises Gag membrane association and virus budding. We used multiple methods to examine the possible role of PI(4,5)P₂ in Gag-membrane interaction of the alpharetrovirus Rous sarcoma virus (RSV). In contrast to HIV-1, which was tested in parallel, neither membrane localization of RSV Gag-GFP nor release of virus-like particles was affected by phosphatase-mediated depletion of PI(4,5)P₂ in transfected avian cells. In liposome flotation experiments, RSV Gag required acidic lipids for binding but showed no specificity for PI(4,5)P₂. Mono-, di-, and triphosphorylated phosphatidylinositol phosphate (PIP) species as well as high concentrations of phosphatidylserine (PS) supported similar levels of flotation. A mutation that increases the overall charge of RSV MA also enhanced Gag membrane binding. Contrary to previous reports, we found that high concentrations of PS, in the absence of PIPs, also strongly promoted HIV-1 Gag flotation. Taken together, we interpret these results to mean that RSV Gag membrane association is driven by electrostatic interactions and not by any specific association with PI(4,5)P₂.
Collapse
|
10
|
Tani M, Kuge O. Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids. Mol Microbiol 2010; 78:395-413. [DOI: 10.1111/j.1365-2958.2010.07340.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
12
|
Abstract
Membrane fusion underlies many cellular events, including secretion, exocytosis, endocytosis, organelle reconstitution, transport from endoplasmic reticulum to Golgi and nuclear envelope formation. A large number of investigations into membrane fusion indicate various roles for individual members of the phosphoinositide class of membrane lipids. We first review the phosphoinositides as membrane recognition sites and their regulatory functions in membrane fusion. We then consider how modulation of phosphoinositides and their products may affect the structure and dynamics of natural membranes facilitating fusion. These diverse roles underscore the importance of these phospholipids in the fusion of biological membranes.
Collapse
|
13
|
Mellman DL, Anderson RA. A novel gene expression pathway regulated by nuclear phosphoinositides. ACTA ACUST UNITED AC 2009; 49:11-28. [DOI: 10.1016/j.advenzreg.2009.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|