1
|
Daoud S, Abdelkefi O, Sellami A, Bensalem A, Chakroun N, Rebai T. Association between hypo-osmotic swelling test-induced tail swelling patterns and sperm quality. Future Sci OA 2024; 10:2410696. [PMID: 39417346 PMCID: PMC11487947 DOI: 10.1080/20565623.2024.2410696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aim: The current sperm selection procedure for intracytoplasmic sperm injection has limited ability to detect structural and functional abnormalities of the spermatozoa. The aim of this study was to investigate whether the degree of sperm tail swelling observed during hypo-osmotic swelling test (HOST) may predict sperm quality.Materials & methods: Sixty semen samples were collected from men investigated for couple infertility. For each sample, sperm parameters, HOST and sperm chromatin status were evaluated. The relationship between the different HOST-induced tail swelling patterns ('a' to 'g') and sperm quality was evaluated.Results: The HOST significantly correlated with higher sperm motility and vitality, and with better morphology and nuclear quality. The HOST grades 'b' and 'c' were associated with better motility (p < 0.05 and p < 0.01, respectively) and morphology (grade 'b', p < 0.001). While grade 'd' was associated with better motility and count (p < 0.05).Conclusion: Our results show that the pattern of sperm tail swelling is linked to sperm functional integrity. HOST grades 'b' and 'd' were associated with better sperm quality, suggesting their preferential use during routine sperm selection for intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Salima Daoud
- Department of Reproductive Biology, Hedi Chaker University Hospital, University of Sfax, Tunisia
- Research Laboratory “Developmental & Induced Diseases” (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Olfa Abdelkefi
- Department of Reproductive Biology, Hedi Chaker University Hospital, University of Sfax, Tunisia
- Research Laboratory “Developmental & Induced Diseases” (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Afifa Sellami
- Department of Reproductive Biology, Hedi Chaker University Hospital, University of Sfax, Tunisia
- Research Laboratory “Developmental & Induced Diseases” (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Azza Bensalem
- Research Laboratory “Developmental & Induced Diseases” (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Nozha Chakroun
- Department of Reproductive Biology, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Tarek Rebai
- Research Laboratory “Developmental & Induced Diseases” (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Hwang JY. Sperm hyperactivation and the CatSper channel: current understanding and future contribution of domestic animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:443-456. [PMID: 38975583 PMCID: PMC11222122 DOI: 10.5187/jast.2023.e133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 07/09/2024]
Abstract
In female tract, mammalian sperm develop hyperactivated motility which is a key physiological event for sperm to fertilize eggs. This motility change is triggered by Ca2+ influx via the sperm-specific Ca2+ channel, CatSper. Although previous studies in human and mice largely contributed to understanding CatSper and Ca2+ signaling for sperm hyperactivation, the differences on their activation mechanisms are not well understood yet. There are several studies to examine expression and significance of the CatSper channel in non-human and non-mouse models, such as domestic animals. In this review, I summarize key knowledge for the CatSper channel from previous studies and propose future aspects for CatSper study using sperm from domestic animals.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
3
|
Lee KH, Hwang JY. Ca 2+ homeostasis and male fertility: a target for a new male contraceptive system. Anim Cells Syst (Seoul) 2024; 28:171-183. [PMID: 38686363 PMCID: PMC11057403 DOI: 10.1080/19768354.2024.2345647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Ca2+ is a key secondary messenger that determines sperm motility patterns. Mammalian sperm undergo capacitation, a process to acquire fertilizing ability, in the female reproductive tract. Capacitated sperm change their flagellar waveform to develop hyperactivated motility, which is crucial for successful sperm navigation to the eggs and fertilization. The sperm-specific channel, CATSPER, and an ATPase transporter, PMCA4, serve as major paths for Ca2+ influx and efflux, respectively, in sperm. The ionic paths coordinate Ca2+ homeostasis in the sperm, and their loss-of-function impairs sperm motility, to cause male infertility. In this review, we summarize the physiological significance of these two Ca2+ gates and suggest their potential applications in novel male contraceptives.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| |
Collapse
|
4
|
Young S, Schiffer C, Wagner A, Patz J, Potapenko A, Herrmann L, Nordhoff V, Pock T, Krallmann C, Stallmeyer B, Röpke A, Kierzek M, Biagioni C, Wang T, Haalck L, Deuster D, Hansen JN, Wachten D, Risse B, Behre HM, Schlatt S, Kliesch S, Tüttelmann F, Brenker C, Strünker T. Human fertilization in vivo and in vitro requires the CatSper channel to initiate sperm hyperactivation. J Clin Invest 2024; 134:e173564. [PMID: 38165034 PMCID: PMC10760960 DOI: 10.1172/jci173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.
Collapse
Affiliation(s)
- Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alice Wagner
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Institute of Reproductive Genetics
| | - Jannika Patz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anton Potapenko
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Leonie Herrmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | | | - Michelina Kierzek
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- CiM-IMPRS Graduate School
| | - Cristina Biagioni
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Lars Haalck
- Institute of Geoinformatics, Computer Vision and Machine Learning Systems, University of Münster, Münster, Germany
| | - Dirk Deuster
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N. Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Risse
- Institute of Geoinformatics, Computer Vision and Machine Learning Systems, University of Münster, Münster, Germany
- Computer Science Department, University of Münster, Münster, Germany
| | - Hermann M. Behre
- UKM Fertility Centre, University Hospital Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Kijima T, Kurokawa D, Sasakura Y, Ogasawara M, Aratake S, Yoshida K, Yoshida M. CatSper mediates not only chemotactic behavior but also the motility of ascidian sperm. Front Cell Dev Biol 2023; 11:1136537. [PMID: 38020915 PMCID: PMC10652287 DOI: 10.3389/fcell.2023.1136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Sperm motility, including chemotactic behavior, is regulated by changes in the intracellular Ca2+ concentration, and the sperm-specific Ca2+ channel CatSper has been shown to play an important role in the regulation of intracellular Ca2+. In particular, in mammals, CatSper is the only functional Ca2+ channel in the sperm, and mice deficient in the genes comprising the pore region of the Ca2+ channel are infertile due to the inhibition of sperm hyperactivation. CatSper is also thought to be involved in sea urchin chemotaxis. In contrast, in ascidian Ciona intestinalis, SAAF, a sperm attractant, interacts with Ca2+/ATPase, a Ca2+ pump. Although the existence of CatSper genes has been reported, it is not clear whether CatSper is a functional Ca2+ channel in sperm. Results: We showed that CatSper is present in the sperm flagella of C. intestinalis as in mammalian species, although a small level of gene expression was found in other tissues. The spermatozoa of CatSper3 KO animals were significantly less motile, and some motile sperms did not show any chemotactic behavior. These results suggest that CatSper plays an important role in ascidians and mammals, and is involved in spermatogenesis and basic motility mechanisms.
Collapse
Affiliation(s)
- Taiga Kijima
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoe Aratake
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
6
|
Soltani M, Rahmati M, Nikravesh MR, Saeedi Nejat S, Jalali M. Inhibition of Autophagy in Heat-Stressed Sperm of Adult Mice: A Possible Role of Catsper1, 2 Channel Proteins. J Trop Med 2023; 2023:6890815. [PMID: 37850157 PMCID: PMC10578978 DOI: 10.1155/2023/6890815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Objective Various phenomena guarantee gamete maturation and formation at all stages of evolution, one of which is autophagy playing a critical role in the final morphology of gametes, particularly sperms. Autophagy is influenced by oxidative stress, disturbances of calcium homeostasis, and hyperthermia conditions. The current study aimed to assess the autophagy-related proteins along with the activity of sperm calcium channel (CatSper) proteins following the induction of heat stress (HS). Methods The study sample includes two groups of adult mice: sham and HS groups. In the HS group, the right testis was transferred to the abdominal cavity for 120 hours and then returned to the scrotum where it remained for 7 days. After 7 days, the testis and epididymis were removed to conduct real-time, immunohistochemical studies, sperm parameter evaluation, and seminiferous tubule assessment. In this study, the expression and distribution of autophagy proteins were measured. Plus, CatSper1 and CatSper2 were evaluated as proteins of calcium channels. Results The results of the present study demonstrated that the expression intensity of autophagy indices in seminiferous tubules decreased significantly after HS induction, which was associated with a decrease in the distribution of CatSper proteins in the sperms. HS led to morphological changes in sperm, reduced motility and viability of sperm, and decreased spermatogenesis indices. Conclusion In this study, following heat stress, the decrease in CatSper protein distribution may lead to the structural disorder of CatSper channels, which could strongly affect autophagic activity. Also, disruption of spermatogenesis and sperm parameters may be the consequence of decreased autophagy activity.
Collapse
Affiliation(s)
- Malihe Soltani
- Department of Anatomy, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, IR, Iran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, IR, Iran
| | - Mohammad Reza Nikravesh
- Departments of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Shahin Saeedi Nejat
- Schools of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Mahdi Jalali
- Departments of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| |
Collapse
|
7
|
Huang X, Miyata H, Wang H, Mori G, Iida-Norita R, Ikawa M, Percudani R, Chung JJ. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. Proc Natl Acad Sci U S A 2023; 120:e2304409120. [PMID: 37725640 PMCID: PMC10523455 DOI: 10.1073/pnas.2304409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249-encoded transmembrane (TM) domain-containing protein, CATSPERθ is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore-forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper TM subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might act as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.
Collapse
Affiliation(s)
- Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Giulia Mori
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Riccardo Percudani
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT06510
| |
Collapse
|
8
|
Vicente-Carrillo A, Álvarez-Rodríguez M, Rodriguez-Martinez H. The Cation/Calcium Channel of Sperm (CatSper): A Common Role Played Despite Inter-Species Variation? Int J Mol Sci 2023; 24:13750. [PMID: 37762052 PMCID: PMC10531172 DOI: 10.3390/ijms241813750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The main cation/calcium channel of spermatozoa (CatSper), first identified in 2001, has been thoroughly studied to elucidate its composition and function, while its distribution among species and sperm sources is yet incomplete. CatSper is composed of several subunits that build a pore-forming calcium channel, mainly activated in vivo in ejaculated sperm cells by intracellular alkalinization and progesterone, as suggested by the in vitro examinations. The CatSper channel relevance is dual: to maintain sperm homeostasis (alongside the plethora of membrane channels present) as well as being involved in pre-fertilization events, such as sperm capacitation, hyperactivation of sperm motility and the acrosome reaction, with remarkable species differences. Interestingly, the observed variations in CatSper localization in the plasma membrane seem to depend on the source of the sperm cells explored (i.e., epididymal or ejaculated, immature or mature, processed or not), the method used for examination and, particularly, on the specificity of the antibodies employed. In addition, despite multiple findings showing the relevance of CatSper in fertilization, few studies have studied CatSper as a biomarker to fine-tune diagnosis of sub-fertility in livestock or even consider its potential to control fertilization in plague animals, a more ethically defensible strategy than implicating CatSper to pharmacologically modify male-related fertility control in humans, pets or wild animals. This review describes inter- and intra-species differences in the localization, structure and function of the CatSper channel, calling for caution when considering its potential manipulation for fertility control or improvement.
Collapse
Affiliation(s)
- Alejandro Vicente-Carrillo
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Álvarez-Rodríguez
- Department Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | | |
Collapse
|
9
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
10
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
11
|
Hwang JY, Chung JJ. CatSper Calcium Channels: 20 Years On. Physiology (Bethesda) 2023; 38:0. [PMID: 36512352 PMCID: PMC10085559 DOI: 10.1152/physiol.00028.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The flagellar-specific Ca2+ channel CatSper is the predominant Ca2+ entry site in mammalian sperm. CatSper-mediated Ca2+ signaling affects nearly every event that regulates sperm to acquire fertilizing capability. In this review, we summarize some of the main findings from 20 years of CatSper research and highlight recent progress and prospects.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
- Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
13
|
Huang X, Miyata H, Wang H, Mori G, Iida-Norita R, Ikawa M, Percudani R, Chung JJ. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.532952. [PMID: 36993167 PMCID: PMC10055175 DOI: 10.1101/2023.03.17.532952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249 -encoded transmembrane domain containing protein, CATSPERθ, is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper transmembrane subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might acts as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.
Collapse
Affiliation(s)
- Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita 5650871, Japan
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Giulia Mori
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita 5650871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita 5650871, Japan
| | - Riccardo Percudani
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, 06510
| |
Collapse
|
14
|
Luque GM, Schiavi-Ehrenhaus LJ, Jabloñski M, Balestrini PA, Novero AG, Torres NI, Osycka-Salut CE, Darszon A, Krapf D, Buffone MG. High-throughput screening method for discovering CatSper inhibitors using membrane depolarization caused by external calcium chelation and fluorescent cell barcoding. Front Cell Dev Biol 2023; 11:1010306. [PMID: 36743410 PMCID: PMC9892719 DOI: 10.3389/fcell.2023.1010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.
Collapse
Affiliation(s)
- Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| | | | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Analia G. Novero
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás I. Torres
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Claudia E. Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM-CONICET), Buenos Aires, Argentina
| | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| |
Collapse
|
15
|
Identification of Circular RNAs of Testis and Caput Epididymis and Prediction of Their Potential Functional Roles in Donkeys. Genes (Basel) 2022; 14:genes14010066. [PMID: 36672807 PMCID: PMC9858477 DOI: 10.3390/genes14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop. Studies have demonstrated that circRNA can function as microRNA (miRNA) sponges or competing endogenous RNAs. Although circRNA has been explored in some species and tissues, the genetic basis of testis development and spermatogenesis in donkeys remain unknown. We performed RNA-seq to detect circRNA expression profiles of adult donkey testes. Length distribution and other characteristics were shown a total of 1971 circRNAs were differentially expressed and 12,648 and 6261 circRNAs were detected from the testis and caput epididymis, respectively. Among these circRNAs, 1472 circRNAs were downregulated and 499 circRNAs were upregulated in the testis. Moreover, KEGG pathway analyses and Gene Ontology were performed for host genes of circRNAs. A total of 39 upregulated circRNA host genes were annotated in spermatogenesis terms, including PIWIL2, CATSPERD, CATSPERB, SPATA6, and SYCP1. Other host genes were annotated in the focal adhesion, Rap1 signaling pathway. Downregulated expressed circRNA host genes participated in the TGF-β signaling pathway, GnRH signaling pathway, estrogen signaling pathway, and calcium signaling pathway. Our discoveries provide a solid foundation for identifying and characterizing critical circRNAs involved in testis development or spermatogenesis.
Collapse
|
16
|
Contreras‐Marciales ADP, López‐Guzmán SF, Benítez‐Hess ML, Oviedo N, Hernández‐Sánchez J. Characterization of the promoter region of the murine Catsper2 gene. FEBS Open Bio 2022; 12:2236-2249. [PMID: 36345591 PMCID: PMC9714369 DOI: 10.1002/2211-5463.13518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
CATSPER2 (Cation channel sperm-associated protein 2) protein, which is part of the calcium CATSPER channel located in the membrane of the flagellar principal piece of the sperm cell, is only expressed in the testis during spermatogenesis. Deletions or mutations in the Catsper2 gene are associated with the deafness-infertility syndrome (DIS) and non-syndromic male infertility. However, the mechanisms by which Catsper2 is regulated are unknown. Here, we report the characterization of the promoter region of murine Catsper2 and the role of CTCF and CREMτ in its transcription. We report that the promoter region has transcriptional activity in both directions, as determined by observing luciferase activity in mouse Sertoli and GC-1 spg transfected cells. WGBS data analysis indicated that a CpG island identified in silico is non-methylated; Chromatin immunoprecipitation (ChIP)-seq data analysis revealed that histone marks H3K4me3 and H3K36me3 are present in the promoter and body of the Catsper2 gene respectively, indicating that Catsper2 is subject to epigenetic regulation. In addition, the murine Catsper2 core promoter was delimited to a region between -54/+189 relative to the transcription start site (TSS), where three CTCF and one CRE binding site were predicted. The functionality of these sites was determined by mutation of the CTCF sites and deletion of the CRE site. Finally, ChIP assays confirmed that CREMτ and CTCF bind to the Catsper2 minimal promoter region. This study represents the first functional analysis of the murine Catsper2 promoter region and the mechanisms that regulate its expression.
Collapse
Affiliation(s)
- Andrea del Pilar Contreras‐Marciales
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - Sergio Federico López‐Guzmán
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - María Luisa Benítez‐Hess
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La RazaInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
| | - Javier Hernández‐Sánchez
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| |
Collapse
|
17
|
Forero-Forero A, López-Ramírez S, Felix R, Hernández-Sánchez J, Tesoro-Cruz E, Orozco-Suárez S, Murbartián J, Soria-Castro E, Olivares A, Bekker-Méndez C, Paredes-Cervantes V, Oviedo N. Down Regulation of Catsper1 Expression by Calmodulin Inhibitor (Calmidazolium): Possible Implications for Fertility. Int J Mol Sci 2022; 23:ijms23158070. [PMID: 35897646 PMCID: PMC9331981 DOI: 10.3390/ijms23158070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The CatSper channel localizes exclusively in the flagella of sperm cells. The Catsper1 protein, together with three pore units, is essential for the CatSper Channel formation, which produces flagellum hyperactivation and confers sperm fertility. Catsper1 expression is dependent on Sox transcription factors, which can recognize in vitro at least three Sox binding sites on the promoter. Sox transcription factors have calmodulin-binding domains for nuclear importation. Calmodulin (CaM) is affected by the specific inhibitor calmidazolium (CMZ), which prevents the nuclear transport of Sox factors. In this work, we assess the regulation of the Catsper1 promoter in vivo by Sox factors in the murine testis and evaluate the effects of the inhibitor calmidazolium on the expression of the Casper genes, and the motility and fertility of the sperm. Catsper1 promoter has significant transcriptional activity in vivo; on the contrary, three Sox site mutants in the Catsper1 promoter reduced transcriptional activity in the testis. CaM inhibition affects Sox factor nuclear transport and has notable implications in the expression and production of Catsper1, as well as in the motility and fertility capability of sperm. The molecular mechanism described here might conform to the basis of a male contraceptive strategy acting at the transcriptional level by affecting the production of the CatSper channel, a fundamental piece of male fertility.
Collapse
Affiliation(s)
- Angela Forero-Forero
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Biología Celular, Ciudad de México 07360, Mexico; (A.F.-F.); (R.F.)
| | - Stephany López-Ramírez
- Instituto Mexicano del Seguro Social (IMSS), Hospital General de Zona Núm. 68, Ecatepec 55400, Mexico;
| | - Ricardo Felix
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Biología Celular, Ciudad de México 07360, Mexico; (A.F.-F.); (R.F.)
| | - Javier Hernández-Sánchez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Genética y Biología Molecular, Ciudad de México 07360, Mexico;
| | - Emiliano Tesoro-Cruz
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
| | - Sandra Orozco-Suárez
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Enfermedades Neurológicas, Ciudad de México 06720, Mexico;
| | - Janet Murbartián
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Sede sur, Departamento de Farmacobiología, Ciudad de México 14330, Mexico;
| | - Elizabeth Soria-Castro
- Instituto Nacional de Cardiología “Ignacio Chavéz”, Departamento de Biomedicina Cardiovascular, Ciudad de México 14080, Mexico;
| | - Aleida Olivares
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Gineco Obstetricia No. 4 Luis Castelazo Ayala, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México 01090, Mexico;
| | - Carolina Bekker-Méndez
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
| | - Vladimir Paredes-Cervantes
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
| | - Norma Oviedo
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología del Centro Médico Nacional La Raza, Unidad de Investigación Médica en Inmunología e Infectología, Ciudad de México 02990, Mexico; (E.T.-C.); (C.B.-M.); (V.P.-C.)
- Correspondence: ; Tel.: +52-5557821088 (ext. 24315)
| |
Collapse
|
18
|
Zhao Y, Wang H, Wiesehoefer C, Shah NB, Reetz E, Hwang JY, Huang X, Wang TE, Lishko PV, Davies KM, Wennemuth G, Nicastro D, Chung JJ. 3D structure and in situ arrangements of CatSper channel in the sperm flagellum. Nat Commun 2022; 13:3439. [PMID: 35715406 PMCID: PMC9205950 DOI: 10.1038/s41467-022-31050-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
The sperm calcium channel CatSper plays a central role in successful fertilization as a primary Ca2+ gateway. Here, we applied cryo-electron tomography to visualize the higher-order organization of the native CatSper complex in intact mammalian sperm. The repeating CatSper units form long zigzag-rows along mouse and human sperm flagella. Above each tetrameric channel pore, most of the extracellular domains form a canopy that interconnects to a zigzag-shaped roof. Murine CatSper contains an additional wing-structure connected to the tetrameric channel. The intracellular domains link two neighboring channels to a diagonal array, suggesting a dimer formation. Fitting of an atomic model of isolated monomeric CatSper to the in situ map reveals supramolecular interactions and assembly of the CatSper complex. Loss of EFCAB9-CATSPERζ alters the architecture and interactions of the channels, resulting in fragmentation and misalignment of the zigzag-rows and disruption of flagellar movement in Efcab9-/- sperm. This work offers unique insights into the structural basis for understanding CatSper regulation of sperm motility.
Collapse
Affiliation(s)
- Yanhe Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Caroline Wiesehoefer
- Department of Anatomy, University of Duisburg-Essen, Medical Faculty, 45147, Essen, Germany
| | - Naman B Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bioimaging division, Bioscience Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Tse-En Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- The Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Karen M Davies
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bioimaging division, Bioscience Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gunther Wennemuth
- Department of Anatomy, University of Duisburg-Essen, Medical Faculty, 45147, Essen, Germany
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
19
|
Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Sci Rep 2022; 12:6446. [PMID: 35440797 PMCID: PMC9019019 DOI: 10.1038/s41598-022-10390-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Fertilizing sperm are retained by adhesion to specific glycans on the epithelium of the oviduct forming a reservoir before sperm are released from the reservoir so fertilization can ensue. Capacitated sperm lose affinity for the oviduct epithelium but the components of capacitation that are important for sperm release are uncertain. One important correlate of capacitation is the development of hyperactivated motility. Hyperactivation is characterized by asymmetrical flagellar beating with high beat amplitude. We tested whether the development of full-type asymmetrical motility was sufficient to release sperm from immobilized oviduct glycans. Sperm hyperactivation was induced by four different compounds, a cell-permeable cAMP analog (cBiMPS), CatSper activators (4-aminopyridine and procaine), and an endogenous steroid (progesterone). Using standard analysis (CASA) and direct visualization with high-speed video microscopy, we first confirmed that all four compounds induced hyperactivation. Subsequently, sperm were allowed to bind to immobilized oviduct glycans, and compounds or vehicle controls were added. All compounds caused sperm release from immobilized glycans, demonstrating that hyperactivation was sufficient to release sperm from oviduct cells and immobilized glycans. Pharmacological inhibition of the non-genomic progesterone receptor and CatSper diminished sperm release from oviduct glycans. Inhibition of the proteolytic activities of the ubiquitin-proteasome system (UPS), implicated in the regulation of sperm capacitation, diminished sperm release in response to all hyperactivation inducers. In summary, induction of sperm hyperactivation was sufficient to induce sperm release from immobilized oviduct glycans and release was dependent on CatSper and the UPS.
Collapse
|
20
|
Yang F, Gracia Gervasi M, Orta G, Tourzani DA, De la Vega-Beltrán JL, Ruthel G, Darszon A, Visconti PE, Wang PJ. C2CD6 regulates targeting and organization of the CatSper calcium channel complex in sperm flagella. Development 2022; 149:dev199988. [PMID: 34919125 PMCID: PMC8774747 DOI: 10.1242/dev.199988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
The CatSper cation channel is essential for sperm capacitation and male fertility. The multi-subunit CatSper complexes form highly organized calcium signaling nanodomains on flagellar membranes. Here, we report identification of an uncharacterized protein, C2CD6, as a subunit of the mouse CatSper complex. C2CD6 contains a calcium-dependent, membrane-targeting C2 domain. C2CD6 associates with the CatSper calcium-selective, core-forming subunits. Deficiency of C2CD6 depletes the CatSper nanodomains from the flagellum and results in male sterility. C2CD6-deficient sperm are defective in hyperactivation and fail to fertilize oocytes both in vitro and in vivo. CatSper currents are present but at a significantly lower level in C2CD6-deficient sperm. Transient treatments with either Ca2+ ionophore, starvation, or a combination of both restore the fertilization capacity of C2CD6-deficient sperm. C2CD6 interacts with EFCAB9, a pH-dependent calcium sensor in the CatSper complex. We postulate that C2CD6 facilitates incorporation of the CatSper complex into the flagellar plasma membrane and may function as a calcium sensor. The identification of C2CD6 may enable the long-sought reconstitution of the CatSper ion channel complex in a heterologous system for male contraceptive development.
Collapse
Affiliation(s)
- Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Darya A. Tourzani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jose Luis De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Carlson EJ, Georg GI, Hawkinson JE. Steroidal Antagonists of Progesterone- and Prostaglandin E 1-Induced Activation of the Cation Channel of Sperm. Mol Pharmacol 2021; 101:56-67. [PMID: 34718225 PMCID: PMC8969127 DOI: 10.1124/molpharm.121.000349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
The cation channel of sperm (CatSper) is the principal entry point for calcium in human spermatozoa and its proper function is essential for successful fertilization. As CatSper is potently activated by progesterone, we evaluated a range of steroids to define the structure-activity relationships for channel activation and found that CatSper is activated by a broad range of steroids with diverse structural modifications. By testing steroids that failed to elicit calcium influx as inhibitors of channel activation, we discovered that medroxyprogesterone acetate, levonorgestrel, and aldosterone inhibited calcium influx produced by progesterone, prostaglandin E1, and the fungal natural product l-sirenin, but these steroidal inhibitors failed to prevent calcium influx in response to elevated K+ and pH. In contrast to these steroid antagonists, we demonstrated for the first time that the T-type calcium channel blocker ML218 acts similarly to mibefradil, blocking CatSper channels activated by both ligands and alkalinization/depolarization. These T-type calcium channel blockers produced an insurmountable blockade of CatSper, whereas the three steroids produced antagonism that was surmountable by increasing concentrations of each activator, indicating that the steroids selectively antagonize ligand-induced activation of CatSper rather than blocking channel function. Both the channel blockers and the steroid antagonists markedly reduced hyperactivated motility of human sperm assessed by computer-aided sperm analysis, consistent with inhibition of CatSper activation. Unlike the channel blockers mibefradil and ML218, which reduced total and progressive motility, medroxyprogesterone acetate, levonorgestrel, and aldosterone had little effect on these motility parameters, indicating that these steroids are selective inhibitors of hyperactivated sperm motility. SIGNIFICANCE STATEMENT: The steroids medroxyprogesterone acetate, levonorgestrel, and aldosterone selectively antagonize progesterone- and prostaglandin E1-induced calcium influx through the CatSper cation channel in human sperm. In contrast to T-type calcium channel blockers that prevent all modes of CatSper activation, these steroid CatSper antagonists preferentially reduce hyperactivated sperm motility, which is required for fertilization. The discovery of competitive antagonists of ligand-induced CatSper activation provides starting points for future discovery of male contraceptive agents acting by this unique mechanism.
Collapse
Affiliation(s)
- Erick J Carlson
- Department of Medicinal Chemistry (E.J.C., G.I.G., J.E.H.) and Institute for Therapeutics Discovery and Development (G.I.G., J.E.H.), University of Minnesota, Minneapolis, Minnesota
| | - Gunda I Georg
- Department of Medicinal Chemistry (E.J.C., G.I.G., J.E.H.) and Institute for Therapeutics Discovery and Development (G.I.G., J.E.H.), University of Minnesota, Minneapolis, Minnesota
| | - Jon E Hawkinson
- Department of Medicinal Chemistry (E.J.C., G.I.G., J.E.H.) and Institute for Therapeutics Discovery and Development (G.I.G., J.E.H.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
22
|
Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, Montoya F, Hernandez-Herrera P, Buffone MG, Balestrini PA, Darszon A. Role of calcium oscillations in sperm physiology. Biosystems 2021; 209:104524. [PMID: 34453988 DOI: 10.1016/j.biosystems.2021.104524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM) Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, IBT, UNAM, Mexico.
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| | - Gabriel Corkidi
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Fernando Montoya
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Paul Hernandez-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por Computadora, IBT, UNAM, Mexico.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
23
|
Luque GM, Xu X, Romarowski A, Gervasi MG, Orta G, De la Vega-Beltrán JL, Stival C, Gilio N, Dalotto-Moreno T, Krapf D, Visconti PE, Krapf D, Darszon A, Buffone MG. Cdc42 localized in the CatSper signaling complex regulates cAMP-dependent pathways in mouse sperm. FASEB J 2021; 35:e21723. [PMID: 34224609 DOI: 10.1096/fj.202002773rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.
Collapse
Affiliation(s)
- Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Xinran Xu
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - María G Gervasi
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Gerardo Orta
- Instituto de Biotecnología, UNAM, Cuernavaca, México
| | | | - Cintia Stival
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás Gilio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Curci L, Carvajal G, Sulzyk V, Gonzalez SN, Cuasnicú PS. Pharmacological Inactivation of CatSper Blocks Sperm Fertilizing Ability Independently of the Capacitation Status of the Cells: Implications for Non-hormonal Contraception. Front Cell Dev Biol 2021; 9:686461. [PMID: 34295893 PMCID: PMC8290173 DOI: 10.3389/fcell.2021.686461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Cation channel of sperm (CatSper), the main sperm-specific Ca2+ channel, plays a key role in mammalian fertilization, and it is essential for male fertility, becoming an attractive target for contraception. Based on this, in the present work, we investigated the effects of CatSper inactivation on in vitro and in vivo sperm fertilizing ability and the mechanisms underlying such effects. Exposure of cauda epididymal mouse sperm to different concentrations (1-20 μM) of the potent CatSper inhibitor HC-056456 (HC) during in vitro capacitation showed no effects on sperm viability but significantly affected Ca2+ entry into the cells, progressive motility, protein tyrosine phosphorylation, induced acrosome reaction, and hyperactivation, as well as the sperm's ability to in vitro fertilize cumulus oocyte complexes and zona-free eggs. Whereas the presence of HC during gamete coincubation did not affect in vitro fertilization, exposure of either non-capacitating or already capacitated sperm to HC prior to gamete coincubation severely reduced fertilization, indicating that sperm function is affected by HC when the cells are incubated with the drug before sperm-egg interaction. Of note, insemination of HC-treated sperm into the uterus significantly or completely reduced the percentage of oviductal fertilized eggs showing, for the first time, the effects of a CatSper inhibitor on in vivo fertilization. These observations, together with the finding that HC affects sperm fertilizing ability independently of the sperm capacitation status, provide further insights on how CatSper regulates sperm function and represent a solid proof of concept for developing a male/female non-hormonal contraceptive based on the pharmacological blockage of CatSper activity.
Collapse
Affiliation(s)
- Ludmila Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Soledad Natalia Gonzalez
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Lin S, Ke M, Zhang Y, Yan Z, Wu J. Structure of a mammalian sperm cation channel complex. Nature 2021; 595:746-750. [PMID: 34225353 DOI: 10.1038/s41586-021-03742-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023]
Abstract
The cation channel of sperm (CatSper) is essential for sperm motility and fertility1,2. CatSper comprises the pore-forming proteins CATSPER1-4 and multiple auxiliary subunits, including CATSPERβ, γ, δ, ε, ζ, and EFCAB91,3-9. Here we report the cryo-electron microscopy (cryo-EM) structure of the CatSper complex isolated from mouse sperm. In the extracellular view, CATSPER1-4 conform to the conventional domain-swapped voltage-gated ion channel fold10, following a counterclockwise arrangement. The auxiliary subunits CATSPERβ, γ, δ and ε-each of which contains a single transmembrane segment and a large extracellular domain-constitute a pavilion-like structure that stabilizes the entire complex through interactions with CATSPER4, 1, 3 and 2, respectively. Our EM map reveals several previously uncharacterized components, exemplified by the organic anion transporter SLCO6C1. We name this channel-transporter ultracomplex the CatSpermasome. The assembly and organization details of the CatSpermasome presented here lay the foundation for the development of CatSpermasome-related treatments for male infertility and non-hormonal contraceptives.
Collapse
Affiliation(s)
- Shiyi Lin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Meng Ke
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
26
|
Patankar A, Gajbhiye R, Surve S, Parte P. Epigenetic landscape of testis specific histone H2B variant and its influence on sperm function. Clin Epigenetics 2021; 13:101. [PMID: 33933143 PMCID: PMC8088685 DOI: 10.1186/s13148-021-01088-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Biological relevance of the major testis specific histone H2B variant (TH2B) in sperm is not fully understood. Studies in TH2A/TH2B double knockout male mice indicate its role in chromatin compaction and male fertility. Additionally, the presence of TH2B and TH2A reportedly generates more dynamic nucleosomes, leading to an open chromatin structure characteristic of transcriptionally active genome. Given that mature human sperm are transcriptionally and translationally inactive, the presence of TH2B in mature sperm is intriguing. To address its role in sperm, we investigated the genome-wide localization of TH2B in sperm of fertile men. RESULTS We have identified the genomic loci associated with TH2B in fertile human sperm by ChIP-seq analysis. Bioinformatic analysis revealed ~ 5% sperm genome and 5527 genes to be associated with TH2B. Out of these 105 (1.9%) and 144 (2.6%) genes showed direct involvement in sperm function and early embryogenesis, respectively. Chromosome wide analysis for TH2B distribution indicated its least distribution on X and Y chromosomes and varied distribution on autosomes. TH2B showed relatively higher percentage of gene association on chromosome 4, 18, 3 and 2. TH2B enrichment was more in promoter and gene body region. Gene Ontology (GO) analysis revealed signal transduction and associated kinase activity as the most enriched biological and molecular function, respectively. We also observed the enrichment of TH2B at developmentally important loci, such as HOXA and HOXD and on genes required for normal sperm function, few of which were validated by ChIP-qPCR. The relative expression of these genes was altered in particular subgroup of infertile men showing abnormal chromatin packaging. Chromatin compaction positively correlated with sperm- motility, concentration, viability and with transcript levels of PRKAG2 and CATSPER B. CONCLUSION ChIP-seq analysis of TH2B revealed a putative role of TH2B in sperm function and embryo development. Altered expression of TH2B associated genes in infertile individuals with sperm chromatin compaction defects indicates involvement of TH2B in transcriptional regulation of these genes in post meiotic male germ cells. This altered transcriptome may be a consequence or cause of abnormal nuclear remodeling during spermiogenesis.
Collapse
Affiliation(s)
- Aniket Patankar
- Department of Gamete Immunobiology, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Rahul Gajbhiye
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Suchitra Surve
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
27
|
Linn E, Ghanem L, Bhakta H, Greer C, Avella M. Genes Regulating Spermatogenesis and Sperm Function Associated With Rare Disorders. Front Cell Dev Biol 2021; 9:634536. [PMID: 33665191 PMCID: PMC7921155 DOI: 10.3389/fcell.2021.634536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Spermatogenesis is a cell differentiation process that ensures the production of fertilizing sperm, which ultimately fuse with an egg to form a zygote. Normal spermatogenesis relies on Sertoli cells, which preserve cell junctions while providing nutrients for mitosis and meiosis of male germ cells. Several genes regulate normal spermatogenesis, some of which are not exclusively expressed in the testis and control multiple physiological processes in an organism. Loss-of-function mutations in some of these genes result in spermatogenesis and sperm functionality defects, potentially leading to the insurgence of rare genetic disorders. To identify genetic intersections between spermatogenesis and rare diseases, we screened public archives of human genetic conditions available on the Genetic and Rare Diseases Information Center (GARD), the Online Mendelian Inheritance in Man (OMIM), and the Clinical Variant (ClinVar), and after an extensive literature search, we identified 22 distinct genes associated with 21 rare genetic conditions and defective spermatogenesis or sperm function. These protein-coding genes regulate Sertoli cell development and function during spermatogenesis, checkpoint signaling pathways at meiosis, cellular organization and shape definition during spermiogenesis, sperm motility, and capacitation at fertilization. A number of these genes regulate folliculogenesis and oogenesis as well. For each gene, we review the genotype–phenotype association together with associative or causative polymorphisms in humans, and provide a description of the shared molecular mechanisms that regulate gametogenesis and fertilization obtained in transgenic animal models.
Collapse
Affiliation(s)
- Emma Linn
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Lillian Ghanem
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Hanisha Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Cory Greer
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Matteo Avella
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
28
|
Karimi K, Farid AH, Myles S, Miar Y. Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Sci Rep 2021; 11:2944. [PMID: 33536540 PMCID: PMC7859209 DOI: 10.1038/s41598-021-82522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Aleutian disease (AD) is the most significant health issue for farmed American mink. The objective of this study was to identify the genomic regions subjected to selection for response to infection with Aleutian mink disease virus (AMDV) in American mink using genotyping by sequencing (GBS) data. A total of 225 black mink were inoculated with AMDV and genotyped using a GBS assay based on the sequencing of ApeKI-digested libraries. Five AD-characterized phenotypes were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (FST) and nucleotide diversity (θπ), that were validated by haplotype-based (hap-FLK) test. The total of 99 putatively selected regions harbouring 63 genes were detected in different groups. The gene ontology revealed numerous genes related to immune response (e.g. TRAF3IP2, WDR7, SWAP70, CBFB, and GPR65), liver development (e.g. SULF2, SRSF5) and reproduction process (e.g. FBXO5, CatSperβ, CATSPER4, and IGF2R). The hapFLK test supported two strongly selected regions that contained five candidate genes related to immune response, virus–host interaction, reproduction and liver regeneration. This study provided the first map of putative selection signals of response to AMDV infection in American mink, bringing new insights into genomic regions controlling the AD phenotypes.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
29
|
Xu J, Ou X, Li J, Cai Q, Sun K, Ye J, Peng J. Overexpression of TC2N is associated with poor prognosis in gastric cancer. J Cancer 2021; 12:807-817. [PMID: 33403038 PMCID: PMC7778556 DOI: 10.7150/jca.50653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Tac2-N (TC2N) is a tandem C2 domain-containing protein, acting as a novel oncogene or suppressor in different kinds of cancers. However, the status of TC2N expression and its significance in gastric cancer (GC) is still unclear. The present study is aimed to elucidate the clinicopathological significance and prognostic value of TC2N level in GC. Methods: We used sequencing data from the Cancer Genome Atlas (TCGA) database to analyze TC2N expression in GC by UALCAN database and Gene Expression Profiling Interactive Analysis tools (GEPIA). TC2N expression level in 12 pairs of fresh GC tissues and adjacent nontumorous tissues was detected by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot (WB) assays. Immunohistochemical (IHC) staining was used to detect TC2N protein expression in Paraffin-embedded tissues in our center. In vitro proliferation, migration and invasion assays were used to evaluate the effect of TC2N on functional capability of gastric cancer cells. LinkedOmics was used to identify gene expressions associated with TC2N. Results: The mRNA and protein expression of TC2N in gastric cancer were both significantly higher than normal gastric mucosa. It was also elevated in gastric cancer cells compared with normal gastric epithelium cell. In vitro assays suggested that TC2N facilitated proliferation, migration and invasion of gastric cancer cells. Bioinformatic analysis showed a widespread impact of TC2N on the transcriptome and a strong interaction with tumor associated genes. We also found that TC2N was an independent prognostic factor for long-term survival in GC patients and its high expression was evidently associated with poor overall survival and recurrence-free survival. Conclusions: Our results show that high level of TC2N correlates with poor prognosis in patients with gastric cancer and promotes the development of gastric cancer. Thus, TC2N expression can serve as a prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Jianbo Xu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xinde Ou
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jin Li
- Digestive Disease Center, the Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qinbo Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.,Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jingning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China
| |
Collapse
|
30
|
Rahban R, Nef S. CatSper: The complex main gate of calcium entry in mammalian spermatozoa. Mol Cell Endocrinol 2020; 518:110951. [PMID: 32712386 DOI: 10.1016/j.mce.2020.110951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium ions (Ca2+) are involved in nearly every aspect of cellular life. They are one of the most abundant elements in mammals and play a vital role in physiological and biochemical processes acting mainly as intracellular messengers. In spermatozoa, several key functions are regulated by cytoplasmic Ca2+ concentration such as sperm capacitation, chemotaxis, hyperactive motility, and acrosome reaction. The sperm-specific ion channel CatSper is the principal calcium channel in sperm mediating the calcium influx into the sperm flagellum and acting as an essential modulator of downstream mechanisms involved in fertilization. This review aims to provide insights into the structure, localization, and function of the mammalian CatSper channel, primarily human and mice. The activation of CatSper by progesterone and prostaglandins, as well as the ligand-independent regulation of the channel by a change in the membrane voltage and intracellular pH are going to be addressed. Finally, major questions, challenges, and perspectives are discussed.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
31
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
32
|
Bertolotti AC, Layer RM, Gundappa MK, Gallagher MD, Pehlivanoglu E, Nome T, Robledo D, Kent MP, Røsæg LL, Holen MM, Mulugeta TD, Ashton TJ, Hindar K, Sægrov H, Florø-Larsen B, Erkinaro J, Primmer CR, Bernatchez L, Martin SAM, Johnston IA, Sandve SR, Lien S, Macqueen DJ. The structural variation landscape in 492 Atlantic salmon genomes. Nat Commun 2020; 11:5176. [PMID: 33056985 PMCID: PMC7560756 DOI: 10.1038/s41467-020-18972-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species. This study presents and validates a novel approach to reliably identify structural variations (SVs) in non-model genomes using whole genome sequencing, which was used to detect 15,483 SVs in 492 Atlantic salmon, shedding light on their roles in genome evolution and the genetic architecture of domestication.
Collapse
Affiliation(s)
- Alicia C Bertolotti
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Michael D Gallagher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ege Pehlivanoglu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Torfinn Nome
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L Røsæg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matilde M Holen
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Teshome D Mulugeta
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | | | - Bjørn Florø-Larsen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Jaakko Erkinaro
- Natural Resources Institute Finland (Luke), P.O. Box 413, FI-90014, Oulu, Finland
| | - Craig R Primmer
- Institute for Biotechnology, University of Helsinki, Helsinki, Finland
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS) Pavillon Charles-Eugène Marchand, Université Laval Québec, Québec, QC, Canada
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK
| | | | - Simen R Sandve
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Finkelstein M, Etkovitz N, Breitbart H. Ca 2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol 2020; 516:110953. [PMID: 32712383 DOI: 10.1016/j.mce.2020.110953] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium is an essential ion which regulates sperm motility, capacitation and the acrosome reaction (AR), three processes necessary for successful fertilization. The AR enables the spermatozoon to penetrate into the egg. In order to undergo the AR, the spermatozoon must reside in the female reproductive tract for several hours, during which a series of biochemical transformations takes place, collectively called capacitation. An early event in capacitation is relatively small elevation of intracellular Ca2+ (in the nM range) and bicarbonate, which collectively activate the soluble adenylyl cyclase to produce cyclic-AMP; c-AMP activates protein kinase A (PKA), leading to indirect tyrosine phosphorylation of proteins. During capacitation, there is an increase in the membrane-bound phospholipase C (PLC) which is activated prior to the AR by relatively high increase in intracellular Ca2+ (in the μM range). PLC catalyzes the hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to diacylglycerol and inositol-trisphosphate (IP3), leading to activation of protein kinase C (PKC) and the IP3-receptor. PKC activates a Ca2+- channel in the plasma membrane, and IP3 activates the Ca2+- channel in the outer acrosomal membrane, leading to Ca2+ depletion from the acrosome. As a result, the plasma-membrane store-operated Ca2+ channel (SOCC) is activated to increase cytosolic Ca2+ concentration, enabling completion of the acrosome reaction. The hydrolysis of PIP2 by PLC results in the release and activation of PIP2-bound gelsolin, leading to F-actin dispersion, an essential step prior to the AR. Ca2+ is also involved in the regulation of sperm motility. During capacitation, the sperm develops a unique motility pattern called hyper-activated motility (HAM) which is essential for successful fertilization. The main Ca2+-channel that mediates HAM is the sperm-specific CatSper located in the sperm tail.
Collapse
Affiliation(s)
| | - Nir Etkovitz
- Sperm Bank, Sheba Hospital, Tel-Hashomer, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
34
|
A noncanonical role of NOD-like receptor NLRP14 in PGCLC differentiation and spermatogenesis. Proc Natl Acad Sci U S A 2020; 117:22237-22248. [PMID: 32839316 PMCID: PMC7486727 DOI: 10.1073/pnas.2005533117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NOD-like receptors (NLRs) are traditionally recognized as key surveillance pattern recognition receptors (PRRs) during innate immune regulation. Several NLRs exhibit highly restricted expression in mammalian germline, where their physiological functions are largely unknown. Here we report that Nlrp14, an NLR specifically expressed in testis and ovary, plays a critical role in regulating germ cell differentiation and reproduction. Nlrp14 deficiency led to decreased primordial germ cell-like cell (PGCLC) differentiation in vitro and reproduction failure in both male and female mice in vivo. In the male mice, Nlrp14 knockout strongly compromised differentiation of spermatogonial stem cells and meiosis. Mechanistically, NLRP14 protected HSPA2 from proteasome-mediated degradation by recruiting BAG2, loss of which was further confirmed in a human mutation associated with male sterility. NOD-like receptors (NLRs) are traditionally recognized as major inflammasome components. The role of NLRs in germ cell differentiation and reproduction is not known. Here, we identified the gonad-specific Nlrp14 as a pivotal regulator in primordial germ cell-like cell (PGCLC) differentiation in vitro. Physiologically, knock out of Nlrp14 resulted in reproductive failure in both female and male mice. In adult male mice, Nlrp14 knockout (KO) inhibited differentiation of spermatogonial stem cells (SSCs) and meiosis, resulting in trapped SSCs in early stages, severe oligozoospermia, and sperm abnormality. Mechanistically, NLRP14 promoted spermatogenesis by recruiting a chaperone cofactor, BAG2, to bind with HSPA2 and form the NLRP14−HSPA2−BAG2 complex, which strongly inhibited ChIP-mediated HSPA2 polyubiquitination and promoted its nuclear translocation. Finally, loss of HSPA2 protection and BAG2 recruitment by NLRP14 was confirmed in a human nonsense germline variant associated with male sterility. Together, our data highlight a unique proteasome-mediated, noncanonical function of NLRP14 in PGCLC differentiation and spermatogenesis, providing mechanistic insights of gonad-specific NLRs in mammalian germline development.
Collapse
|
35
|
Darszon A, Nishigaki T, López-González I, Visconti PE, Treviño CL. Differences and Similarities: The Richness of Comparative Sperm Physiology. Physiology (Bethesda) 2020; 35:196-208. [PMID: 32293232 DOI: 10.1152/physiol.00033.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species preservation depends on the success of fertilization. Sperm are uniquely equipped to fulfill this task, and, although several mechanisms are conserved among species, striking functional differences have evolved to contend with particular sperm-egg environmental characteristics. This review highlights similarities and differences in sperm strategies, with examples within internal and external fertilizers, pointing out unresolved issues.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
36
|
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory Pig Oviduct Rule Sperm Capacitation In Vivo Mediating Transcriptomics of Catsper Channels? Int J Mol Sci 2020; 21:ijms21051840. [PMID: 32155986 PMCID: PMC7084628 DOI: 10.3390/ijms21051840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
- Correspondence: ; Tel.: +34-678077708
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, SE-58183 Linköping, Sweden;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| |
Collapse
|
37
|
Trötschel C, Hamzeh H, Alvarez L, Pascal R, Lavryk F, Bönigk W, Körschen HG, Müller A, Poetsch A, Rennhack A, Gui L, Nicastro D, Strünker T, Seifert R, Kaupp UB. Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 2020; 39:e102723. [PMID: 31880004 PMCID: PMC7024835 DOI: 10.15252/embj.2019102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.
Collapse
Affiliation(s)
- Christian Trötschel
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Fedir Lavryk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Astrid Müller
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Ansgar Poetsch
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
- Present address:
Center for Marine and Molecular BiotechnologyQNLMQindaoChina
- Present address:
College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Andreas Rennhack
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Long Gui
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Timo Strünker
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Center of Reproductive Medicine and AndrologyUniversity Hospital MünsterMünsterGermany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Life& Medical Sciences Institute (LIMES)University of BonnBonnGermany
| |
Collapse
|
38
|
Schiffer C, Rieger S, Brenker C, Young S, Hamzeh H, Wachten D, Tüttelmann F, Röpke A, Kaupp UB, Wang T, Wagner A, Krallmann C, Kliesch S, Fallnich C, Strünker T. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca 2+ signaling. EMBO J 2020; 39:e102363. [PMID: 31957048 PMCID: PMC7024840 DOI: 10.15252/embj.2019102363] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 12/23/2022] Open
Abstract
Navigation of sperm in fluid flow, called rheotaxis, provides long‐range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+) influx via the sperm‐specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark‐field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper‐deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+‐signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux.
Collapse
Affiliation(s)
- Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Steffen Rieger
- Optical Technologies Group, Institute of Applied Physics, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Hussein Hamzeh
- Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - U Benjamin Kaupp
- Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Alice Wagner
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Institute of Human Genetics, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Carsten Fallnich
- Optical Technologies Group, Institute of Applied Physics, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), Münster, Germany
| |
Collapse
|
39
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
40
|
Sánchez-Cárdenas C, Montoya F, Navarrete FA, Hernández-Cruz A, Corkidi G, Visconti PE, Darszon A. Intracellular Ca2+ threshold reversibly switches flagellar beat off and on. Biol Reprod 2019; 99:1010-1021. [PMID: 29893793 DOI: 10.1093/biolre/ioy132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Sperm motility is essential for fertilization. The asymmetry of flagellar beat in spermatozoa is finely regulated by intracellular calcium concentration ([Ca2+]i). Recently, we demonstrated that the application of high concentrations (10-20 μM) of the Ca2+ ionophore A23187 promotes sperm immobilization after 10 min, and its removal thereafter allows motility recovery, hyperactivation, and fertilization. In addition, the same ionophore treatment overcomes infertility observed in sperm from Catsper1-/-, Slo3-/-, and Adcy10-/-, but not PMCA4-/-, which strongly suggest that regulation of [Ca2+]i is mandatory for sperm motility and hyperactivation. In this study, we found that prior to inducing sperm immobilization, high A23187 concentrations (10 μM) increase flagellar beat. While 5-10 μM A23187 substantially elevates [Ca2+]i and rapidly immobilizes sperm in a few minutes, smaller concentrations (0.5 and 1 μM) provoke smaller [Ca2+]i increases and sperm hyperactivation, confirming that [Ca2+]i increases act as a motility switch. Until now, the [Ca2+]i thresholds that switch motility on and off were not fully understood. To study the relationship between [Ca2+]i and flagellar beating, we developed an automatic tool that allows the simultaneous measurement of these two parameters. Individual spermatozoa were treated with A23187, which is then washed to evaluate [Ca2+]i and flagellar beat recovery using the implemented method. We observe that [Ca2+]i must decrease below a threshold concentration range to facilitate subsequent flagellar beat recovery and sperm motility.
Collapse
Affiliation(s)
- C Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Mor., México
| | - F Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Mor., México
| | - F A Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - A Hernández-Cruz
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, México DF, México
| | - G Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Mor., México
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Mor., México
| |
Collapse
|
41
|
Alshawa E, Laqqan M, Montenarh M, Hammadeh ME. Influence of cryopreservation on the CATSPER2 and TEKT2 expression levels and protein levels in human spermatozoa. Toxicol Rep 2019; 6:819-824. [PMID: 31463202 PMCID: PMC6706526 DOI: 10.1016/j.toxrep.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
The cryopreservation process could lead to a reduction in the expression levels of the CATSPER2 and TEKT2 gene in human spermatozoa. The cryopreservation process could lead to a down-regulation in the expression of CATSPER2 and TEKT2 gene in human spermatozoa. The cryopreservation process could lead to a reduction in the level of CatSper 2 and Tektin 2 protein in human spermatozoa. The CatSper 2 and Tektin 2 may be used as markers to explain the causes of motility loss in the spermatozoa after the cryopreservation process.
This study designed to assess the expression level of CATSPER2 and TEKT2 and to evaluate the levels of CatSper2 and Tektin2 proteins in human spermatozoa before and after cryopreservation. One hundred and twenty semen samples were included in this study. All the samples were subjected to qPCR and Western blot analysis. The results showed a significant reduction in the expression levels of CATSPER2 and TEKT2 in the cryopreserved compared to the fresh samples (P = 0.0039 and P = 0.0166, respectively), and the results showed down-regulation in the expression level of CATSPER2 and TEKT2 genes between the study groups. Moreover, the protein levels of the CatSper2 and Tektin2 were lower in cryopreserved samples compared to fresh samples (P = 0.0001). In conclusion, the reduction in the proteins level and expression level of the CATSPER2 and TEKT2 in cryopreserved samples could be used as an indicator of sperm motility loss.
Collapse
Affiliation(s)
- Eiman Alshawa
- Department of Obstetrics, Gynecology & Assisted Reproduction Laboratory, Saarland University, Homburg, Germany
| | - Mohammed Laqqan
- Department of Obstetrics, Gynecology & Assisted Reproduction Laboratory, Saarland University, Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Mohamad Eid Hammadeh
- Department of Obstetrics, Gynecology & Assisted Reproduction Laboratory, Saarland University, Homburg, Germany
| |
Collapse
|
42
|
Romero F, Nishigaki T. Comparative genomic analysis suggests that the sperm-specific sodium/proton exchanger and soluble adenylyl cyclase are key regulators of CatSper among the Metazoa. ZOOLOGICAL LETTERS 2019; 5:25. [PMID: 31372239 PMCID: PMC6660944 DOI: 10.1186/s40851-019-0141-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND CatSper is a sperm-specific calcium ion (Ca2+) channel, which regulates sperm flagellar beating by tuning cytoplasmic Ca2+ concentrations. Although this Ca2+ channel is essential for mammalian fertilization, recent bioinformatics analyses have revealed that genes encoding CatSper are heterogeneously distributed throughout the eukaryotes, including vertebrates. As this channel is activated by cytoplasmic alkalization in mammals and sea urchins, it has been proposed that the sperm-specific Na+/H+ exchanger (sNHE, a product of the SLC9C gene family) positively regulates its activity. In mouse, sNHE is functionally coupled to soluble adenylyl cyclase (sAC). CatSper, sNHE, and sAC have thus been considered functionally interconnected in the control of sperm motility, at least in mouse and sea urchin. RESULTS We carried out a comparative genomic analysis to explore phylogenetic relationships among CatSper, sNHE and sAC in eukaryotes. We found that sNHE occurs only in Metazoa, although sAC occurs widely across eukaryotes. In animals, we found correlated and restricted distribution patterns of the three proteins, suggesting coevolution among them in the Metazoa. Namely, nearly all species in which CatSper is conserved also preserve sNHE and sAC. In contrast, in species without sAC, neither CatSper nor sNHE is conserved. On the other hand, the distribution of another testis-specific NHE (NHA, a product of the SLC9B gene family) does not show any apparent association with that of CatSper. CONCLUSIONS Our results suggest that CatSper, sNHE and sAC form prototypical machinery that functions in regulating sperm flagellar beating in Metazoa. In non-metazoan species, CatSper may be regulated by other H+ transporters, or its activity might be independent of cytoplasmic pH.
Collapse
Affiliation(s)
- Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México (IBT-UNAM). Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México (IBT-UNAM). Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
43
|
Dual Sensing of Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility. Cell 2019; 177:1480-1494.e19. [PMID: 31056283 PMCID: PMC8808721 DOI: 10.1016/j.cell.2019.03.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022]
Abstract
Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility.
Collapse
|
44
|
Brown SG, Miller MR, Lishko PV, Lester DH, Publicover SJ, Barratt CLR, Martins Da Silva S. Homozygous in-frame deletion in CATSPERE in a man producing spermatozoa with loss of CatSper function and compromised fertilizing capacity. Hum Reprod 2019; 33:1812-1816. [PMID: 30239785 PMCID: PMC6295793 DOI: 10.1093/humrep/dey278] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does a man (patient 1) with a previously described deficiency in principle cation channel of sperm (CatSper) function have a mutation in the CatSper-epsilon (CATSPERE) and/or CatSper-zeta (CATSPERZ) gene? SUMMARY ANSWER Patient 1 has a homozygous in-frame 6-bp deletion in exon 18 (c.2393_2398delCTATGG, rs761237686) of CATSPERE. WHAT IS KNOWN ALREADY CatSper is the principal calcium channel of mammalian spermatozoa. Spermatozoa from patient 1 had a specific loss of CatSper function and were unable to fertilize at IVF. Loss of CatSper function could not be attributed to genetic abnormalities in coding regions of seven CatSper subunits. Two additional subunits (CatSper-epsilon (CATPSERE) and CatSper-zeta (CATSPERZ)) were recently identified, and are now proposed to contribute to the formation of the mature channel complex. STUDY DESIGN, SIZE, DURATION This was a basic medical research study analysing genomic data from a single patient (patient 1) for defects in CATSPERE and CATSPERZ. PARTICIPANTS/MATERIALS, SETTING, METHODS The original exome sequencing data for patient 1 were analysed for mutations in CATSPERE and CATSPERZ. Sanger sequencing was conducted to confirm the presence of a rare variant. MAIN RESULTS AND THE ROLE OF CHANCE Patient 1 is homozygous for an in-frame 6-bp deletion in exon 18 (c.2393_2398delCTATGG, rs761237686) of CATSPERE that is predicted to be highly deleterious. LIMITATIONS, REASONS FOR CAUTION The nature of the molecular deficit caused by the rs761237686 variant and whether it is exclusively responsible for the loss of CatSper function remain to be elucidated. WIDER IMPLICATIONS OF THE FINDINGS Population genetics are available for a significant number of predicted deleterious variants of CatSper subunits. The consequence of homozygous and compound heterozygous forms on sperm fertilization potential could be significant. Selective targeting of CatSper subunit expression maybe a feasible strategy for the development of novel contraceptives. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by project grants from the MRC (MR/K013343/1 and MR/012492/1), Chief Scientist Office/NHS research Scotland. This work was also supported by NIH R01GM111802, Pew Biomedical Scholars Award 00028642 and Packer Wentz Endowment Will to P.V.L. C.L.R.B is the editor-in-chief of Molecular Human Reproduction, has received lecturing fees from Merck and Ferring, and is on the Scientific Advisory Panel for Ohana BioSciences. C.L.R.B was chair of the World Health Organization Expert Synthesis Group on Diagnosis of Male infertility (2012–2016).
Collapse
Affiliation(s)
- Sean G Brown
- School of Science, Engineering & Technology, Abertay University, Dundee, UK
| | - Melissa R Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Douglas H Lester
- School of Science, Engineering & Technology, Abertay University, Dundee, UK
| | | | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.,Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.,Assisted Conception Unit, Ninewells Hospital, Dundee, UK
| |
Collapse
|
45
|
Regulation of CATSPER1 expression by the testis-determining gene SRY. PLoS One 2018; 13:e0205744. [PMID: 30379860 PMCID: PMC6209213 DOI: 10.1371/journal.pone.0205744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/03/2018] [Indexed: 11/19/2022] Open
Abstract
CATSPER1 gene encodes a pore-forming and pH-sensing subunit of the CatSper Ca2+- permeable channel, a protein in the flagellum essential for sperm hyperactivation. Previous studies have shown that the murine Catsper1 gene promoter is regulated by different Sox proteins. Likewise, it is acknowledged that the human CATSPER1 gene promoter sequence is enriched in potential interaction sites for the sex-determining region Y gene (SRY), which suggest a novel regulatory transcriptional mechanism for CatSper1 channel expression. Therefore, in this work, we sought to determine whether the human CATSPER1 gene expression is regulated by the SRY transcription factor. To this end, a series of deletions and mutations were introduced in the wild- type CATSPER1 gene promoter to eliminate the SRY sites, and the different constructs were tested for their ability to activate transcription in human embryonic kidney and murine spermatogonial germ cell lines (HEK-293 and GC1-spg, respectively) using luciferase assays. In addition, by using a strategy that combines electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) we investigated whether the CATSPER1 gene expression is regulated by the SRY transcription factor both in vitro and in vivo. Our results show that the transcriptional factor SRY specifically binds to different sites in the promoter sequence and has the ability to control CATSPER1 gene transcription.
Collapse
|
46
|
Orta G, de la Vega-Beltran JL, Martín-Hidalgo D, Santi CM, Visconti PE, Darszon A. CatSper channels are regulated by protein kinase A. J Biol Chem 2018; 293:16830-16841. [PMID: 30213858 DOI: 10.1074/jbc.ra117.001566] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Indexed: 11/06/2022] Open
Abstract
Mammalian sperm must undergo capacitation as a preparation for entering into hyperactivated motility, undergoing the acrosome reaction, and acquiring fertilizing ability. One of the initial capacitation events occurs when sperm encounter an elevated HCO3 - concentration. This anion activates the atypical adenylyl cyclase Adcy10, increases intracellular cAMP, and stimulates protein kinase A (PKA). Moreover, an increase in intracellular Ca2+ concentration ([Ca2+] i ) is essential for sperm capacitation. Although a cross-talk between cAMP-dependent pathways and Ca2+ clearly plays an essential role in sperm capacitation, the connection between these signaling events is incompletely understood. Here, using three different approaches, we found that CatSper, the main sperm Ca2+ channel characterized to date, is up-regulated by a cAMP-dependent activation of PKA in mouse sperm. First, HCO3 - and the PKA-activating permeable compound 8-Br-cAMP induced an increase in [Ca2+] i , which was blocked by the PKA peptide inhibitor PKI, and H89, another PKA inhibitor, also abrogated the 8-Br-cAMP response. Second, HCO3 - increased the membrane depolarization induced upon divalent cation removal by promoting influx of monovalent cations through CatSper channels, which was inhibited by PKI, H89, and the CatSper blocker HC-056456. Third, electrophysiological patch clamp, whole-cell recordings revealed that CatSper activity is up-regulated by HCO3 - and by direct cAMP injection through the patch-clamp pipette. The activation by HCO3 - and cAMP was also blocked by PKI, H89, Rp-cAMPS, and HC-056456, and electrophysiological recordings in sperm from CatSper-KO mice confirmed CatSper's role in these activation modes. Our results strongly suggest that PKA-dependent phosphorylation regulates [Ca2+] i homeostasis by activating CatSper channel complexes.
Collapse
Affiliation(s)
- Gerardo Orta
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - José Luis de la Vega-Beltran
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Celia M Santi
- Department of Obstetrics and Gynecology and.,Department of Neurosciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Alberto Darszon
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México,
| |
Collapse
|
47
|
Ritagliati C, Luque GM, Stival C, Baro Graf C, Buffone MG, Krapf D. Lysine acetylation modulates mouse sperm capacitation. Sci Rep 2018; 8:13334. [PMID: 30190490 PMCID: PMC6127136 DOI: 10.1038/s41598-018-31557-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. To gain fertilization competence, they need to undergo a series of modifications inside the female reproductive tract, known as capacitation. Capacitation involves several molecular events such as phosphorylation cascades, hyperpolarization of the plasma membrane and intracellular Ca2+ changes, which prepare the sperm to develop two essential features for fertilization competence: hyperactivation and acrosome reaction. Since sperm cells lack new protein biosynthesis, post-translational modification of existing proteins plays a crucial role to obtain full functionality. Here, we show the presence of acetylated proteins in murine sperm, which increase during capacitation. Pharmacological hyperacetylation of lysine residues in non-capacitated sperm induces activation of PKA, hyperpolarization of the sperm plasma membrane, CatSper opening and Ca2+ influx, all capacitation-associated molecular events. Furthermore, hyperacetylation of non-capacitated sperm promotes hyperactivation and prepares the sperm to undergo acrosome reaction. Together, these results indicate that acetylation could be involved in the acquisition of fertilization competence of mammalian sperm.
Collapse
Affiliation(s)
- Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina
| | - Guillermina M Luque
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, C1428ADN, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina
| | - Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina
| | - Mariano G Buffone
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, C1428ADN, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina.
| |
Collapse
|
48
|
Rennhack A, Schiffer C, Brenker C, Fridman D, Nitao ET, Cheng Y, Tamburrino L, Balbach M, Stölting G, Berger TK, Kierzek M, Alvarez L, Wachten D, Zeng X, Baldi E, Publicover SJ, Benjamin Kaupp U, Strünker T. A novel cross-species inhibitor to study the function of CatSper Ca 2+ channels in sperm. Br J Pharmacol 2018; 175:3144-3161. [PMID: 29723408 PMCID: PMC6031884 DOI: 10.1111/bph.14355] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Christian Schiffer
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Christoph Brenker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Dmitry Fridman
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Elis T Nitao
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Yi‐Min Cheng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | - Melanie Balbach
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Gabriel Stölting
- Institute of Complex Systems – Zelluläre Biophysik 4, Forschungszentrum JülichJülichGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Michelina Kierzek
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Luis Alvarez
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Dagmar Wachten
- Max‐Planck Research Group of Molecular Physiology, Center of Advanced European Studies and ResearchBonnGermany
- Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
| | - Xu‐Hui Zeng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | | | - U Benjamin Kaupp
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Timo Strünker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| |
Collapse
|
49
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
50
|
Human CATSPER1 Promoter Is Regulated by CREB1 and CREMτ Transcriptional Factors In Vitro. Arch Med Res 2018; 49:135-146. [PMID: 30017233 DOI: 10.1016/j.arcmed.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The CATSPER1 gene encodes a CATSPER channel protein that selectively permeates Ca2+ ions, and CATSPER expression in sperm is essential for flagellum hyperactivation and, thus, male fertility. Little is known regarding the transcriptional regulation of CATSPER1, but previous studies have performed in silico analyses of transcription factor binding sites, including three CRE sites designated 0-2, in which CRE0 is located near the transcription start site. OBJETIVES We investigate if overexpression of CREB-A and CREMτ transcription factors might regulate CATSPER1 expression. MATERIAL AND METHODS In this study, the transcriptional regulation of the CATSPER1 gene by CREB-A and CREMτ transcriptions factors was determined by dual-luciferase assays in HEK293 and GC1-spg cells, and important CRE sites were mutated and analyzed for transcriptional regulation. RESULTS The deletion of the CRE1 site dramatically increased the transcriptional activity of the CATSPER1 promoter in HEK293 and GC1-spg cells. In HEK293 cells, the CREB-A transcription factor positively regulated CATSPER1 gene expression, while the presence of CREB-A and CREMτ factors synergistically enhanced promoter activity in these cells. In contrast, deletion of CRE0 prevented any transcriptional activity of the CATSPER1 promoter in GC1-spg spermatogonial cells, but expression of either CREB-A or CREMτ restored such transcriptional activity. CONCLUSIONS The human CATSPER1 promoter is positively regulated in vitro by CREB-A in HEK293 and GC1-spg cells. Both lines showed differential transcriptional regulation, which was defined by the factors and coactivators present in each cell line as well as the context in which the CRE sites were found in the promoter.
Collapse
|