1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Guo Z, Wang L, Rao D, Liu W, Xue M, Fu Q, Lu M, Su L, Chen S, Wang B, Wu J. Conformational Switch of the 250s Loop Enables the Efficient Transglycosylation in GH Family 77. J Chem Inf Model 2023; 63:6118-6128. [PMID: 37768640 DOI: 10.1021/acs.jcim.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/29/2023]
Abstract
Amylomaltases (AMs) play important roles in glycogen and maltose metabolism. However, the molecular mechanism is elusive. Here, we investigated the conformational dynamics of the 250s loop and catalytic mechanism of Thermus aquaticus TaAM using path-metadynamics and QM/MM MD simulations. The results demonstrate that the transition of the 250s loop from an open to closed conformation promotes polysaccharide sliding, leading to the ideal positioning of the acid/base. Furthermore, the conformational dynamics can also modulate the selectivity of hydrolysis and transglycosylation. The closed conformation of the 250s loop enables the tight packing of the active site for transglycosylation, reducing the energy penalty and efficiently preventing the penetration of water into the active site. Conversely, the partially closed conformation for hydrolysis results in a loosely packed active site, destabilizing the transition state. These computational findings guide mutation experiments and enable the identification of mutants with an improved disproportionation/hydrolysis ratio. The present mechanism is in line with experimental data, highlighting the critical role of conformational dynamics in regulating the catalytic reactivity of GHs.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Miaomiao Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qisheng Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
3
|
Li X, Wang Y, Wu J, Jin Z, Dijkhuizen L, Svensson B, Bai Y. Designing starch derivatives with desired structures and functional properties via rearrangements of glycosidic linkages by starch-active transglycosylases. Crit Rev Food Sci Nutr 2023; 64:8265-8278. [PMID: 37051937 DOI: 10.1080/10408398.2023.2198604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/14/2023]
Abstract
Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V, Groningen, The Netherlands
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS. Enzymatic potato starch modification and structure-function analysis of six diverse GH77 4-alpha-glucanotransferases. Int J Biol Macromol 2022; 224:105-114. [DOI: 10.1016/j.ijbiomac.2022.10.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
5
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|
6
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M. Amylomaltases in Extremophilic Microorganisms. Biomolecules 2021; 11:biom11091335. [PMID: 34572549 PMCID: PMC8465469 DOI: 10.3390/biom11091335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Bruno A. R. Gattulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| | - Mariateresa Volpicella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| |
Collapse
|
8
|
Te Poele EM, van der Hoek SE, Chatziioannou AC, Gerwig GJ, Duisterwinkel WJ, Oudhuis LAACM, Gangoiti J, Dijkhuizen L, Leemhuis H. GtfC Enzyme of Geobacillus sp. 12AMOR1 Represents a Novel Thermostable Type of GH70 4,6-α-Glucanotransferase That Synthesizes a Linear Alternating (α1 → 6)/(α1 → 4) α-Glucan and Delays Bread Staling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9859-9868. [PMID: 34427087 DOI: 10.1021/acs.jafc.1c03475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Starch-acting α-glucanotransferase enzymes are of great interest for applications in the food industry. In previous work, we have characterized various 4,6- and 4,3-α-glucanotransferases of the glycosyl hydrolase (GH) family 70 (subfamily GtfB), synthesizing linear or branched α-glucans. Thus far, GtfB enzymes have only been identified in mesophilic Lactobacilli. Database searches showed that related GtfC enzymes occur in Gram-positive bacteria of the genera Exiguobacterium, Bacillus, and Geobacillus, adapted to growth at more extreme temperatures. Here, we report characteristics of the Geobacillus sp. 12AMOR1 GtfC enzyme, with an optimal reaction temperature of 60 °C and a melting temperature of 68 °C, allowing starch conversions at relatively high temperatures. This thermostable 4,6-α-glucanotransferase has a novel product specificity, cleaving off predominantly maltose units from amylose, attaching them with an (α1 → 6)-linkage to acceptor substrates. In fact, this GtfC represents a novel maltogenic α-amylase. Detailed structural characterization of its starch-derived α-glucan products revealed that it yielded a unique polymer with alternating (α1 → 6)/(α1 → 4)-linked glucose units but without branches. Notably, this Geobacillus sp. 12AMOR1 GtfC enzyme showed clear antistaling effects in bread bakery products.
Collapse
Affiliation(s)
- Evelien M Te Poele
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | | | | | - Gerrit J Gerwig
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | | | | | - Joana Gangoiti
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V., Zernikepark 12, 9747 AN Groningen, The Netherlands
| | - Hans Leemhuis
- Royal Avebe, Innovation Center, 9747 AW Groningen, Netherlands
| |
Collapse
|
9
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
10
|
Effect of Leu 277 on Disproportionation and Hydrolysis Activity in Bacillus stearothermophilus NO2 Cyclodextrin Glucosyltransferase. Appl Environ Microbiol 2021; 87:e0315120. [PMID: 33837009 DOI: 10.1128/aem.03151-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
The disproportionation activity of cyclodextrin glucosyltransferase (CGTase; EC 2.4.1.19) can be used to convert small molecules into glycosides, thereby enhancing their solubility and stability. However, CGTases also exhibit a competing hydrolysis activity. The +2 subsite of the substrate binding cleft plays an important role in both the disproportionation and hydrolysis activities, but almost all known mutations at this site decrease disproportionation activity. In this study, Leu277 of the CGTase from Bacillus stearothermophilus NO2, located near both the +2 subsite and the catalytic acid/base Glu253, was modified to assess the effect of side chain size at this position on disproportionation and hydrolysis activities. The best mutant, L277M, exhibited a reduced Km for the acceptor substrate maltose (0.48 mM versus 0.945 mM) and an increased kcat/Km (1,175 s-1 mM-1 versus 686.1 s-1 mM-1), compared with those of the wild-type enzyme. The disproportionation-to-hydrolysis ratio of L277M was 2.4-fold greater than that of the wild type. Existing structural data were combined with a multiple-sequence alignment and Gly282 mutations to examine the mechanism behind the effects of the Leu277mutations. The Gly282 mutations were included to aid a molecular dynamics (MD) analysis and the comparison of crystal structures. They reveal that changes to a hydrophobic cluster near Glu253 and the hydrophobicity of the +2 subsite combine to produce the observed effects. IMPORTANCE In this study, mutations that enhance the disproportionation to hydrolysis ratio of a CGTase have been discovered. For example, the disproportionation-to-hydrolysis ratio of the L277M mutant of Bacillus stearothermophilus NO2 CGTase was 2.4-fold greater than that of the wild type. The mechanism behind the effects of these mutations is explained. This paper opens up other avenues for future research into the disproportionation and hydrolysis activities of CGTases. Productive mutations are no longer limited to the acceptor subsite, since mutations that indirectly affect the acceptor subsite also enhance enzymatic activity.
Collapse
|
11
|
A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech 2021; 11:229. [PMID: 33968573 DOI: 10.1007/s13205-021-02787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The family GH77 contains 4-α-glucanotransferase acting on α-1,4-glucans, known as amylomaltase in prokaryotes and disproportionating enzyme in plants. A group of bacterial GH77 members, represented by amylomaltases from Escherichia coli and Corynebacterium glutamicum, possesses an N-terminal extension that forms a distinct immunoglobulin-like fold domain, of which no function has been identified. Here, in silico analysis of 100 selected sequences of N-terminal domain homologues disclosed several well-conserved residues, among which Tyr108 (E. coli amylomaltase numbering) may be involved in α-glucan binding. These N-terminal domains, therefore, may represent a new type of starch-binding domain and define a new CBM family. This hypothesis is supported by docking of maltooligosaccharides to the N-terminal domain in amylomaltases, representing the four clusters of the phylogenetic tree. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02787-8.
Collapse
|
12
|
Tumhom S, Nimpiboon P, Wangkanont K, Pongsawasdi P. Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases. Sci Rep 2021; 11:6740. [PMID: 33762620 PMCID: PMC7990933 DOI: 10.1038/s41598-021-85769-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
Amylomaltase (AM) catalyzes transglycosylation of starch to form linear or cyclic oligosaccharides with potential applications in biotechnology and industry. In the present work, a novel AM from the mesophilic bacterium Streptococcus agalactiae (SaAM), with 18–49% sequence identity to previously reported AMs, was characterized. Cyclization and disproportionation activities were observed with the optimum temperature of 30 °C and 40 °C, respectively. Structural determination of SaAM, the first crystal structure of small AMs from the mesophiles, revealed a glycosyl-enzyme intermediate derived from acarbose and a second acarbose molecule attacking the intermediate. This pre-transglycosylation conformation has never been before observed in AMs. Structural analysis suggests that thermostability in AMs might be mainly caused by an increase in salt bridges since SaAM has a lower number of salt bridges compared with AMs from the thermophiles. Increase in thermostability by mutation was performed. C446 was substituted with A/S/P. C446A showed higher activities and higher kcat/Km values for starch in comparison to the WT enzyme. C446S exhibited a 5 °C increase in optimum temperature and the threefold increase in half-life time at 45 °C, most likely resulting from H-bonding interactions. For all enzymes, the main large-ring cyclodextrin (LR-CD) products were CD24-CD26 with CD22 as the smallest. C446S produced more CD35-CD42, especially at a longer incubation time.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Imamura K, Matsuura T, Nakagawa A, Kitamura S, Kusunoki M, Takaha T, Unno H. Structural analysis and reaction mechanism of the disproportionating enzyme (D-enzyme) from potato. Protein Sci 2020; 29:2085-2100. [PMID: 32808707 PMCID: PMC7513719 DOI: 10.1002/pro.3932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/06/2022]
Abstract
Starch produced by plants is a stored form of energy and is an important dietary source of calories for humans and domestic animals. Disproportionating enzyme (D-enzyme) catalyzes intramolecular and intermolecular transglycosylation reactions of α-1, 4-glucan. D-enzyme is essential in starch metabolism in the potato. We present the crystal structures of potato D-enzyme, including two different types of complex structures: a primary Michaelis complex (substrate binding mode) for 26-meric cycloamylose (CA26) and a covalent intermediate for acarbose. Our study revealed that the acarbose and CA26 reactions catalyzed by potato D-enzyme involve the formation of a covalent intermediate with the donor substrate. HPAEC of reaction substrates and products revealed the activity of the potato D-enzyme on acarbose and CA26 as donor substrates. The structural and chromatography analyses provide insight into the mechanism of the coupling reaction of CA and glucose catalyzed by the potato D-enzyme. The enzymatic reaction mechanism does not involve residual hydrolysis. This could be particularly useful in preventing unnecessary starch degradation leading to reduced crop productivity. Optimization of this mechanism would be important for improvements of starch storage and productivity in crops.
Collapse
Affiliation(s)
- Kayo Imamura
- Laboratory of Enzyme Chemistry, Graduate School of Agriculture and Biological ScienceOsaka Prefecture UniversityOsakaJapan
| | | | | | - Shinichi Kitamura
- Laboratory of Biophysical Chemistry, Graduate School of Agriculture and Biological ScienceOsaka Prefecture UniversityOsakaJapan
- Present address:
Laboratory of Advanced Food Process EngineeringOsaka Prefecture University, 1‐2, Gakuen‐cho, Nakaku, Osaka, Sakai 599‐8570Japan
| | | | - Takeshi Takaha
- Biochemical Research LaboratoriesEzaki Glico Co., LtdOsakaJapan
- Present address:
Sanawa Starch Co., Ltd. 594 Unate, Kashihara, Nara 634‐8585Japan
| | - Hideaki Unno
- Graduate School of EngineeringNagasaki UniversityNagasakiJapan
- Organization for Marine Science and TechnologyNagasaki UniversityNagasakiJapan
| |
Collapse
|
14
|
Wang Y, Li X, Ji H, Zheng D, Jin Z, Bai Y, Svensson B. Thermophilic 4-α-Glucanotransferase from Thermoproteus Uzoniensis Retards the Long-Term Retrogradation but Maintains the Short-Term Gelation Strength of Tapioca Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5658-5667. [PMID: 32352781 DOI: 10.1021/acs.jafc.0c00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Gelation of starch is a process during short-term retrogradation. However, long-term retrogradation always leads to the quality deterioration of starch-based food. In this work, a new type of modified tapioca starch (MTS) gel with maintained short-term gelation strength and retarded long-term retrogradation was prepared using a novel recombinantly produced and characterized 4-α-glucanotransferase (TuαGT). In the resulting MTS, the exterior chains of the amylopectin part were elongated and the content of amylose was reduced because of the disproportionation activity of TuαGT. The retrogradation analysis demonstrated that the MTS possessed highly weakened long-term retrogradation characteristics as compared to the native starch. Most importantly, the strength of the gel formed by regelatinized MTS is very close to that of gelatinized native tapioca starch when storing below 30 °C. These findings provide a starting point for developing a novel method for the enzymatic modification of the starch-based gels.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Danni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Structural and Functional Characterization of Three Novel Fungal Amylases with Enhanced Stability and pH Tolerance. Int J Mol Sci 2019; 20:ijms20194902. [PMID: 31623309 PMCID: PMC6801514 DOI: 10.3390/ijms20194902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Amylases are probably the best studied glycoside hydrolases and have a huge biotechnological value for industrial processes on starch. Multiple amylases from fungi and microbes are currently in use. Whereas bacterial amylases are well suited for many industrial processes due to their high stability, fungal amylases are recognized as safe and are preferred in the food industry, although they lack the pH tolerance and stability of their bacterial counterparts. Here, we describe three amylases, two of which have a broad pH spectrum extending to pH 8 and higher stability well suited for a broad set of industrial applications. These enzymes have the characteristic GH13 α-amylase fold with a central (β/α)8-domain, an insertion domain with the canonical calcium binding site and a C-terminal β-sandwich domain. The active site was identified based on the binding of the inhibitor acarbose in form of a transglycosylation product, in the amylases from Thamnidium elegans and Cordyceps farinosa. The three amylases have shortened loops flanking the nonreducing end of the substrate binding cleft, creating a more open crevice. Moreover, a potential novel binding site in the C-terminal domain of the Cordyceps enzyme was identified, which might be part of a starch interaction site. In addition, Cordyceps farinosa amylase presented a successful example of using the microseed matrix screening technique to significantly speed-up crystallization.
Collapse
|
16
|
Structural basis of glycogen metabolism in bacteria. Biochem J 2019; 476:2059-2092. [PMID: 31366571 DOI: 10.1042/bcj20170558] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.
Collapse
|
17
|
Zhoukun L, Wenwen Z, Lei Z, Yanxin W, Yajuan Z, Yan Q, Xue L, Yan H, Zhongli C. Gene Expression and Biochemical Characterization of a GH77 4‐α‐Glucanotransferase CcGtase FromCorallococcussp. EGB. STARCH-STARKE 2019. [DOI: 10.1002/star.201800254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Zhoukun
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Zheng Wenwen
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Zhang Lei
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Wang Yanxin
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Zhang Yajuan
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Qiao Yan
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Luo Xue
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Huang Yan
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| |
Collapse
|
18
|
Tumhom S, Krusong K, Kidokoro SI, Katoh E, Pongsawasdi P. Significance of H461 at subsite +1 in substrate binding and transglucosylation activity of amylomaltase from Corynebacterium glutamicum. Arch Biochem Biophys 2018; 652:3-8. [PMID: 29885290 DOI: 10.1016/j.abb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Amylomaltase (AM) catalyzes inter- and intra-molecular transglycosylation reactions of glucan to yield linear and cyclic oligosaccharide products. The functional roles of the conserved histidine at position 461 in the active site of AM from Corynebacterium glutamicum (CgAM) was investigated. H461 A/S/D/R/W were constructed, their catalytic properties were compared to the wild-type (WT). A significant decrease in transglucosylation activities was observed, especially in H461A mutant, while hydrolysis activity was barely affected. The transglucosylation factor of the H461A-CgAM was decreased by 8.6 folds. WT preferred maltotriose (G3) as substrate for disproportionation reaction, but all H461 mutants showed higher preference for maltose (G2). Using G3 substrate, kcat/Km values of H461 mutated CgAMs were 40-64 folds lower, while the Km values were twice higher than those of WT. All mutants could not produce large-ring cyclodextrin (LR-CD) product. The heat capacity profile indicated that WT had higher thermal stability than H461A. The X-ray structure of WT showed two H-bonds between H461 and heptasaccharide analog at subsite +1, while no such bonding was observed from the model structure of H461A. The importance of H461 on substrate binding with CgAM was evidenced. We are the first to mutate an active site histidine in AM to explore its function.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Etsuko Katoh
- Structural Biology Research Unit, Advanced Analysis Center, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, 305-8617, Ibaraki, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Görl J, Possiel C, Sotriffer C, Seibel J. Extending the Scope of GTFR Glucosylation Reactions with Tosylated Substrates for Rare Sugars Synthesis. Chembiochem 2017; 18:2012-2015. [PMID: 28796424 DOI: 10.1002/cbic.201700320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2017] [Indexed: 11/06/2022]
Abstract
Functionalized rare sugars were synthesized with 2-, 3-, and 6-tosylated glucose derivatives as acceptor substrates by transglucosylation with sucrose and the glucansucrase GTFR from Streptococcus oralis. The 2- and 3-tosylated glucose derivatives yielded the corresponding 1,6-linked disaccharides (isomaltose analogues), whereas the 6-tosylated glucose derivatives resulted in 1,3-linked disaccharides (nigerose analogue) with high regioselectivity in up to 95 % yield. Docking studies provided insight into the binding mode of the acceptors and suggested two different orientations that were responsible for the change in regioselectivity.
Collapse
Affiliation(s)
- Julian Görl
- Department of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christian Possiel
- Department of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Sotriffer
- Department of Pharmacy and Food Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jürgen Seibel
- Department of Organic Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
20
|
Tumhom S, Krusong K, Pongsawasdi P. Y418 in 410s loop is required for high transglucosylation activity and large-ring cyclodextrin production of amylomaltase from Corynebacterium glutamicum. Biochem Biophys Res Commun 2017; 488:516-521. [PMID: 28522291 DOI: 10.1016/j.bbrc.2017.05.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 01/10/2023]
Abstract
Amylomaltase catalyzes α-1,4 glucosyl transfer reaction to yield linear or cyclic oligosaccharide products. The aim of this work is to investigate functional roles of 410s loop unique to amylomaltase from Corynebacterium glutamicum (CgAM). Site-directed mutagenesis of Y418, the residue at the loop tip, was performed. Y418A/S/D/R/W/F - CgAMs were characterized and compared to the wild-type (WT). A significant decrease in starch transglucosylation, disproportionation and cyclization activities was observed. Specificity for G3 substrate in disproportionation reaction was not changed; however, Y418F showed an increase in preference for longer oligosaccharides G5 to G7. The catalytic efficiency of Y418 mutated CgAMs, except for Y418F, was significantly lower (up to 8- and 12- fold for the W and R mutants, respectively) than that of WT. The change was in the kcat, not the Km values which were around 16-20 mM. The profile of large-ring cyclodextrin (LR-CD) product was different; the principal product of Y418A/D/S was shifted to the larger size (CD36-CD40) while that of the WT and Y418F peaked at CD29-CD33. The product yield was reduced especially in W and R mutants. Hence Y418 in 410s loop of CgAM not only contributes to transglucosylation activities but also controls the amount and size of LR-CD products through the proposed hydrophobic stacking interaction and the suitable distance of loop channel for substrate entering. This is the first report to show the effect of the loop tip residue on LR-CD product formation.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci Rep 2017; 7:39761. [PMID: 28059108 PMCID: PMC5216370 DOI: 10.1038/srep39761] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes, inactive on sucrose but using maltodextrins/starch as substrates, have been established (e.g. GtfB of Lactobacillus reuteri 121). Compared to the broad linkage specificity found in GSs, all GH70 starch-acting enzymes characterized so far possess 4,6-α-glucanotransferase activity, cleaving (α1 → 4)-linkages and synthesizing new (α1 → 6)-linkages. In this work a gene encoding a putative GH70 family enzyme was identified in the genome of Lactobacillus fermentum NCC 2970, displaying high sequence identity with L. reuteri 121 GtfB 4,6-α-glucanotransferase, but also with unique variations in some substrate-binding residues of GSs. Characterization of this L. fermentum GtfB and its products revealed that it acts as a 4,3-α-glucanotransferase, converting amylose into a new type of α-glucan with alternating (α1 → 3)/(α 1 → 4)-linkages and with (α1 → 3,4) branching points. The discovery of this novel reaction specificity in GH70 family and clan GH-H expands the range of α-glucans that can be synthesized and allows the identification of key positions governing the linkage specificity within the active site of the GtfB-like GH70 subfamily of enzymes.
Collapse
|
22
|
Roth C, Weizenmann N, Bexten N, Saenger W, Zimmermann W, Maier T, Sträter N. Amylose recognition and ring-size determination of amylomaltase. SCIENCE ADVANCES 2017; 3:e1601386. [PMID: 28097217 PMCID: PMC5235332 DOI: 10.1126/sciadv.1601386] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/19/2016] [Accepted: 11/28/2016] [Indexed: 05/25/2023]
Abstract
Starch is a major carbon and energy source throughout all kingdoms of life. It consists of two carbohydrate polymers, branched amylopectin and linear amylose, which are sparingly soluble in water. Hence, the enzymatic breakdown by glycoside hydrolases (GHs) is of great biological and societal importance. Amylomaltases (AMs) are GHs specialized in the hydrolysis of α-1,4-linked sugar chains such as amylose. They are able to catalyze an intramolecular transglycosylation of a bound sugar chain yielding polymeric sugar rings, the cycloamyloses (CAs), consisting of 20 to 100 glucose units. Despite a wealth of data on short oligosaccharide binding to GHs, no structural evidence is available for their interaction with polymeric substrates that better represent the natural polysaccharide. We have determined the crystal structure of Thermus aquaticus AM in complex with a 34-meric CA-one of the largest carbohydrates resolved by x-ray crystallography and a mimic of the natural polymeric amylose substrate. In total, 15 glucose residues interact with the protein in an extended crevice with a length of more than 40 Å. A modified succinimide, derived from aspartate, mediates protein-sugar interactions, suggesting a biological role for this nonstandard amino acid. The structure, together with functional assays, provides unique insights into the interaction of GHs with their polymeric substrate and reveals a molecular ruler mechanism for minimal ring-size determination of CA products.
Collapse
Affiliation(s)
- Christian Roth
- Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Nicole Weizenmann
- Institut für Biochemie, Universität Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Nicola Bexten
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Wolfgang Zimmermann
- Institut für Biochemie, Universität Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Timm Maier
- Biozentrum, Universität Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Norbert Sträter
- Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
23
|
Kumar S, Prakash S, Gupta K, Dongre A, Balaram P, Balaram H. Unexpected functional implication of a stable succinimide in the structural stability of Methanocaldococcus jannaschii glutaminase. Nat Commun 2016; 7:12798. [PMID: 27677693 PMCID: PMC5052720 DOI: 10.1038/ncomms12798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Protein ageing is often mediated by the formation of succinimide intermediates. These short-lived intermediates derive from asparaginyl deamidation and aspartyl dehydration and are rapidly converted into β-aspartyl or D-aspartyl residues. Here we report the presence of a highly stable succinimide intermediate in the glutaminase subunit of GMP synthetase from the hyperthermophile Methanocaldoccocus jannaschii. By comparing the biophysical properties of the wild-type protein and of several mutants, we show that the presence of succinimide increases the structural stability of the glutaminase subunit. The protein bearing this modification in fact remains folded at 100 °C and in 8 M guanidinium chloride. Mutation of the residue following the reactive asparagine provides insight into the factors that contribute to the hydrolytic stability of the succinimide. Our findings suggest that sequences that stabilize succinimides from hydrolysis may be evolutionarily selected to confer extreme thermal stability. Succinimide is a post-translational modification susceptible to rapid hydrolysis and generally associated with protein destabilisation. Here, the authors use mass spectroscopy to identify a stable succinimide intermediate that is responsible for the high thermostability of a thermophilic enzyme.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aparna Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
24
|
Lundemo P, Karlsson EN, Adlercreutz P. Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl Microbiol Biotechnol 2016; 101:1121-1131. [PMID: 27678115 PMCID: PMC5247548 DOI: 10.1007/s00253-016-7833-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
Abstract
Unveiling the determinants for transferase and hydrolase activity in glycoside hydrolases would allow using their vast diversity for creating novel transglycosylases, thereby unlocking an extensive toolbox for carbohydrate chemists. Three different amino acid substitutions at position 220 of a GH1 β-glucosidase from Thermotoga neapolitana caused an increase of the ratio of transglycosylation to hydrolysis (rs/rh) from 0.33 to 1.45–2.71. Further increase in rs/rh was achieved by modulation of pH of the reaction medium. The wild-type enzyme had a pH optimum for both hydrolysis and transglycosylation around 6 and reduced activity at higher pH. Interestingly, the mutants had constant transglycosylation activity over a broad pH range (5–10), while the hydrolytic activity was largely eliminated at pH 10. The results demonstrate that a combination of protein engineering and medium engineering can be used to eliminate the hydrolytic activity without affecting the transglycosylation activity of a glycoside hydrolase. The underlying factors for this success are pursued, and perturbations of the catalytic acid/base in combination with flexibility are shown to be important factors.
Collapse
Affiliation(s)
- Pontus Lundemo
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Eva Nordberg Karlsson
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Patrick Adlercreutz
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
25
|
Joo S, Kim S, Seo H, Kim KJ. Crystal Structure of Amylomaltase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5662-5670. [PMID: 27366969 DOI: 10.1021/acs.jafc.6b02296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Amylomaltase is an essential enzyme in maltose utilization and maltodextrin metabolism, and it has been industrially used for the production of cyclodextrin and modification of starch. We determined the crystal structure of amylomaltase from Corynebacterium glutamicum (CgAM) at a resolution of 1.7 Å. Although CgAM forms a dimer without NaCl, it exists as a monomer in physiological concentration of NaCl. CgAM is composed of N- and C-terminal domains, which can be further divided into two and four subdomains, respectively. It exhibits a unique structural feature at the functionally unknown N-domain and also shows two striking differences at the C-domain compared to other amylomaltases. These differences at extended edge of the substrate-binding site might affect substrate specificity for large cyclodextrin formation. The bis-tris methane and sulfate molecules bound at the substrate-binding site of our current structure mimic the binding of the hydroxyl groups of glucose bound at subsites -1 and -2, respectively.
Collapse
Affiliation(s)
- Seongjoon Joo
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Sangwoo Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Republic of Korea
| | - Hogyun Seo
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
26
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
27
|
Gangoiti J, van Leeuwen SS, Vafiadi C, Dijkhuizen L. The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochim Biophys Acta Gen Subj 2016; 1860:1224-36. [DOI: 10.1016/j.bbagen.2016.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
28
|
Ahmad N, Mehboob S, Rashid N. Starch-processing enzymes — emphasis on thermostable 4-α-glucanotransferases. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
29
|
O'Neill EC, Stevenson CEM, Tantanarat K, Latousakis D, Donaldson MI, Rejzek M, Nepogodiev SA, Limpaseni T, Field RA, Lawson DM. Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1). J Biol Chem 2015; 290:29834-53. [PMID: 26504082 PMCID: PMC4705983 DOI: 10.1074/jbc.m115.682245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The "gate" is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms.
Collapse
Affiliation(s)
- Ellis C O'Neill
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Clare E M Stevenson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Krit Tantanarat
- the Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dimitrios Latousakis
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Matthew I Donaldson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Martin Rejzek
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Sergey A Nepogodiev
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Tipaporn Limpaseni
- the Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Robert A Field
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - David M Lawson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| |
Collapse
|
30
|
Abstract
The last years have seen a steady increase in our understanding of legumain biology that is driven from two largely uncoupled research arenas, the mammalian and the plant legumain field. Research on legumain, which is also referred to as asparaginyl endopeptidase (AEP) or vacuolar processing enzyme (VPE), is slivered, however. Here we summarise recent important findings and put them into a common perspective. Legumain is usually associated with its cysteine endopeptidase activity in lysosomes where it contributes to antigen processing for class II MHC presentation. However, newly recognized functions disperse previously assumed boundaries with respect to their cellular compartmentalisation and enzymatic activities. Legumain is also found extracellularly and even translocates to the cytosol and the nucleus, with seemingly incompatible pH and redox potential. These different milieus translate into changes of legumain's molecular properties, including its (auto-)activation, conformational stability and enzymatic functions. Contrasting its endopeptidase activity, legumain can develop a carboxypeptidase activity which remains stable at neutral pH. Moreover, legumain features a peptide ligase activity, with intriguing mechanistic peculiarities in plant and human isoforms. In pathological settings, such as cancer or Alzheimer's disease, the proper association of legumain activities with the corresponding cellular compartments is breached. Legumain's increasingly recognized physiological and pathological roles also indicate future research opportunities in this vibrant field.
Collapse
|
31
|
Weiss SC, Skerra A, Schiefner A. Structural Basis for the Interconversion of Maltodextrins by MalQ, the Amylomaltase of Escherichia coli. J Biol Chem 2015; 290:21352-64. [PMID: 26139606 DOI: 10.1074/jbc.m115.667337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Amylomaltase MalQ is essential for the metabolism of maltose and maltodextrins in Escherichia coli. It catalyzes transglycosylation/disproportionation reactions in which glycosyl or dextrinyl units are transferred among linear maltodextrins of various lengths. To elucidate the molecular basis of transglycosylation by MalQ, we have determined three crystal structures of this enzyme, i.e. the apo-form, its complex with maltose, and an inhibitor complex with the transition state analog acarviosine-glucose-acarbose, at resolutions down to 2.1 Å. MalQ represents the first example of a mesophilic bacterial amylomaltase with known structure and exhibits an N-terminal extension of about 140 residues, in contrast with previously described thermophilic enzymes. This moiety seems unique to amylomaltases from Enterobacteriaceae and folds into two distinct subdomains that associate with different parts of the catalytic core. Intriguingly, the three MalQ crystal structures appear to correspond to distinct states of this enzyme, revealing considerable conformational changes during the catalytic cycle. In particular, the inhibitor complex highlights the requirement of both a 3-OH group and a 4-OH group (or α1-4-glycosidic bond) at the acceptor subsite +1 for the catalytically competent orientation of the acid/base catalyst Glu-496. Using an HPLC-based MalQ enzyme assay, we could demonstrate that the equilibrium concentration of maltodextrin products depends on the length of the initial substrate; with increasing numbers of glycosidic bonds, less glucose is formed. Thus, both structural and enzymatic data are consistent with the extremely low hydrolysis rates observed for amylomaltases and underline the importance of MalQ for the metabolism of maltodextrins in E. coli.
Collapse
Affiliation(s)
- Simon C Weiss
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - Arne Skerra
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - André Schiefner
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
32
|
In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1260-8. [PMID: 26006747 DOI: 10.1016/j.bbapap.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The CAZy glycoside hydrolase (GH) family GH77 is a monospecific family containing 4-α-glucanotransferases that if from prokaryotes are known as amylomaltases and if from plants including algae are known as disproportionating enzymes (DPE). The family GH77 is a member of the α-amylase clan GH-H. The main difference discriminating a GH77 4-α-glucanotransferase from the main GH13 α-amylase family members is the lack of domain C succeeding the catalytic (β/α)8-barrel. Of more than 2400 GH77 members, bacterial amylomaltases clearly dominate with more than 2300 sequences; the rest being approximately equally represented by Archaea and Eucarya. The main goal of the present study was to deliver a detailed bioinformatics study of family GH77 (416 collected sequences) focused on amylomaltases from borreliae (containing unique sequence substitutions in functionally important positions) and plant DPE2 representatives (possessing an insert of ~140 residues between catalytic nucleophile and proton donor). The in silico analysis reveals that within the genus of Borrelia a gradual evolutionary transition from typical bacterial Thermus-like amylomaltases may exist to family-GH77 amylomaltase versions that currently possess progressively mutated the most important and otherwise invariantly conserved positions. With regard to plant DPE2, a large group of bacterial amylomaltases represented by the amylomaltase from Escherichia coli with a longer N-terminus was identified as a probable intermediary connection between Thermus-like and DPE2-like (existing also among bacteria) family GH77 members. The presented results concerning both groups, i.e. amylomaltases from borreliae and plant DPE2 representatives (with their bacterial counterpart), may thus indicate the direction for future experimental studies.
Collapse
|
33
|
Rachadech W, Nimpiboon P, Naumthong W, Nakapong S, Krusong K, Pongsawasdi P. Identification of essential tryptophan in amylomaltase from Corynebacterium glutamicum. Int J Biol Macromol 2015; 76:230-5. [PMID: 25748841 DOI: 10.1016/j.ijbiomac.2015.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
Abstract
This work aims to identify essential tryptophan residue(s) of amylomaltase from Corynebacterium glutamicum (CgAM) through chemical modification and site-directed mutagenesis techniques. The recombinant enzyme expressed by Escherichia coli was purified and treated with N-bromosuccinimide (NBS), a modifying agent for tryptophan. A significant decrease in enzyme activity was observed indicating that tryptophan is important for catalysis. Inactivation kinetics with NBS resulted in pseudo first-order rate constant (kinact) of 2.31 min(-1). Substrate protection experiment confirmed the active site localization of the NBS-modified tryptophan residue(s) in CgAM. Site-directed mutagenesis was performed on W330, W425 and W673 to localize essential tryptophan residues. Substitution by alanine resulted in the loss of intra- and intermolecular transglucosylation activities for all mutated CgAMs. Analysis of circular dichroism spectra showed no change in the secondary structure of W425A but a significant change for W330A and W673A from that of the WT. From these results in combination with X-ray structural data and interpretation from the binding interactions in the active site region, W425 was confirmed to be essential for catalytic activity of CgAM. The hydrophobicity of this tryptophan was thought to be critical for substrate binding and supporting catalytic action of the three carboxylate residues at the active site.
Collapse
Affiliation(s)
- Wanitcha Rachadech
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachiraporn Naumthong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Santhana Nakapong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
34
|
A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Appl Microbiol Biotechnol 2015; 99:7101-13. [DOI: 10.1007/s00253-015-6435-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
|
35
|
Kobayashi M, Saburi W, Nakatsuka D, Hondoh H, Kato K, Okuyama M, Mori H, Kimura A, Yao M. Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrate-binding site in GH13 dextran glucosidase. FEBS Lett 2015; 589:484-9. [PMID: 25595454 DOI: 10.1016/j.febslet.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/16/2022]
Abstract
Streptococcus mutans dextran glucosidase (SmDG) belongs to glycoside hydrolase family 13, and catalyzes both the hydrolysis of substrates such as isomaltooligosaccharides and subsequent transglucosylation to form α-(1→6)-glucosidic linkage at the substrate non-reducing ends. Here, we report the 2.4Å resolution crystal structure of glucosyl-enzyme intermediate of SmDG. In the obtained structure, the Trp238 side-chain that constitutes the substrate-binding site turned away from the active pocket, concurrently with conformational changes of the nucleophile and the acid/base residues. Different conformations of Trp238 in each reaction stage indicated its flexibility. Considering the results of kinetic analyses, such flexibility may reflect a requirement for the reaction mechanism of SmDG.
Collapse
Affiliation(s)
- Momoko Kobayashi
- Graduate School of Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Daichi Nakatsuka
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Hironori Hondoh
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
36
|
Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2014; 71:1149-70. [PMID: 23807207 PMCID: PMC11114072 DOI: 10.1007/s00018-013-1388-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia,
| | | | | |
Collapse
|
37
|
Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, Suzuki S, Kitamura S, Kobayashi M, Kimura A, Funane K. Structural elucidation of the cyclization mechanism of α-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J Biol Chem 2014; 289:12040-12051. [PMID: 24616103 DOI: 10.1074/jbc.m114.547992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase belongs to the glycoside hydrolase family 66 and catalyzes an intramolecular transglucosylation reaction that produces cycloisomaltooligosaccharides from dextran. The crystal structure of the core fragment from Ser-39 to Met-738 of B. circulans T-3040 cycloisomaltooligosaccharide glucanotransferase, devoid of its N-terminal signal peptide and C-terminal nonconserved regions, was determined. The structural model contained one catalytic (β/α)8-barrel domain and three β-domains. Domain N with an immunoglobulin-like β-sandwich fold was attached to the N terminus; domain C with a Greek key β-sandwich fold was located at the C terminus, and a carbohydrate-binding module family 35 (CBM35) β-jellyroll domain B was inserted between the 7th β-strand and the 7th α-helix of the catalytic domain A. The structures of the inactive catalytic nucleophile mutant enzyme complexed with isomaltohexaose, isomaltoheptaose, isomaltooctaose, and cycloisomaltooctaose revealed that the ligands bound in the catalytic cleft and the sugar-binding site of CBM35. Of these, isomaltooctaose bound in the catalytic site extended to the second sugar-binding site of CBM35, which acted as subsite -8, representing the enzyme·substrate complex when the enzyme produces cycloisomaltooctaose. The isomaltoheptaose and cycloisomaltooctaose bound in the catalytic cleft with a circular structure around Met-310, representing the enzyme·product complex. These structures collectively indicated that CBM35 functions in determining the size of the product, causing the predominant production of cycloisomaltooctaose by the enzyme. The canonical sugar-binding site of CBM35 bound the mid-part of isomaltooligosaccharides, indicating that the original function involved substrate binding required for efficient catalysis.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602.
| | - Young-Min Kim
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602; Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Naomi Kishine
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Ryuichiro Suzuki
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642
| | - Shiho Suzuki
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai 599-8531
| | - Shinichi Kitamura
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai 599-8531
| | - Mikihiko Kobayashi
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602; Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642; Department of Food and Health Science, Jissen Women's University, Hino 191-8510, Japan
| | - Atsuo Kimura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589
| | - Kazumi Funane
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642.
| |
Collapse
|
38
|
Srisimarat W, Murakami S, Pongsawasdi P, Krusong K. Crystallization and preliminary X-ray crystallographic analysis of the amylomaltase from Corynebacterium glutamicum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1004-6. [PMID: 23989149 PMCID: PMC3758149 DOI: 10.1107/s1744309113020319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022]
Abstract
Amylomaltase (AM; EC 2.4.1.25) belongs to the 4-α-glucanotransferase group of the α-amylase family. The enzyme can produce cycloamylose or large-ring cyclodextrin through intramolecular transglycosylation or cyclization reactions of α-1,4-glucan. Amylomaltase from the mesophilic bacterium Corynebacterium glutamicum (CgAM) contains extra residues at the N-terminus for which the three-dimensional structure is not yet known. In this study, CgAM was overexpressed and purified to homogeneity using DEAE FF and Phenyl FF columns. The purified CgAM was crystallized by the vapour-diffusion method. Preliminary X-ray data showed that the CgAM crystal diffracted to 1.7 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 73.28, b = 82.61, c = 118.64 Å. To obtain the initial phases, crystals of selenomethionyl-substituted amylomaltase were produced, and multiple-wavelength anomalous dispersion phasing and structure refinement are now in progress.
Collapse
Affiliation(s)
- Wiraya Srisimarat
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Shuichiro Murakami
- Department of Agricultural Chemistry, Faculty of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T. A novel transition-state analogue for lysozyme, 4-O-β-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate. J Biol Chem 2013; 288:6072-82. [PMID: 23303182 DOI: 10.1074/jbc.m112.439281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
4-O-β-Di-N-acetylchitobiosyl moranoline (2) and 4-O-β-tri-N-acetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 × 10(-5) and 1.84 × 10(-6) m, respectively. From ITC analysis, the binding of 3 was found to be driven by favorable enthalpy change (ΔHr°), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (-TΔSr°) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thus the binding of 3 was found to be more favorable than those of the others. Judging from the Kd value of 3 (760 nm), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWL in a complex with 3 showed that compound 3 binds to subsites -4 to -1 and the moranoline moiety adopts an undistorted (4)C1 chair conformation almost overlapping with the -1 sugar covalently bound to Asp-52 of HEWL (Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835-838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.
Collapse
Affiliation(s)
- Makoto Ogata
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Enzymatic Synthesis of Acarviosyl-maltooligosaccharides Using Disproportionating Enzyme 1. Biosci Biotechnol Biochem 2013; 77:312-9. [DOI: 10.1271/bbb.120732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
41
|
Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J Biol Chem 2012; 287:43288-99. [PMID: 23132856 PMCID: PMC3527916 DOI: 10.1074/jbc.m112.416511] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2012] [Revised: 11/05/2012] [Indexed: 01/06/2023] Open
Abstract
The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-β-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme.
Collapse
Affiliation(s)
- Johan Larsbrink
- From the Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Atsushi Izumi
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Glyn R. Hemsworth
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Harry Brumer
- From the Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
42
|
Møller MS, Abou Hachem M, Svensson B, Henriksen A. Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1008-12. [PMID: 22949184 PMCID: PMC3433187 DOI: 10.1107/s1744309112031004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022]
Abstract
Barley limit dextrinase (HvLD) is a debranching enzyme from glycoside hydrolase family 13 subfamily 13 (GH13_13) that hydrolyses α-1,6-glucosidic linkages in limit dextrins derived from amylopectin. The structure of HvLD was solved and refined to 1.9 Å resolution. The structure has a glycerol molecule in the active site and is virtually identical to the structures of HvLD in complex with the competitive inhibitors α-cyclodextrin and β-cyclodextrin solved to 2.5 and 2.1 Å resolution, respectively. However, three loops in the N-terminal domain that are shown here to resemble carbohydrate-binding module family 21 were traceable and were included in the present HvLD structure but were too flexible to be traced and included in the structures of the two HvLD-inhibitor complexes.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
- Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500 Valby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| | - Anette Henriksen
- Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500 Valby, Denmark
| |
Collapse
|
43
|
Altered large-ring cyclodextrin product profile due to a mutation at Tyr-172 in the amylomaltase of Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:7223-8. [PMID: 22865069 DOI: 10.1128/aem.01366-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum amylomaltase (CgAM) catalyzes the formation of large-ring cyclodextrins (LR-CDs) with a degree of polymerization of 19 and higher. The cloned CgAM gene was ligated into the pET-17b vector and used to transform Escherichia coli BL21(DE3). Site-directed mutagenesis of Tyr-172 in CgAM to alanine (Y172A) was performed to determine its role in the control of LR-CD production. Both the recombinant wild-type (WT) and Y172A enzymes were purified to apparent homogeneity and characterized. The Y172A enzyme exhibited lower disproportionation, cyclization, and hydrolysis activities than the WT. The k(cat)/K(m) of the disproportionation reaction of the Y172A enzyme was 2.8-fold lower than that of the WT enzyme. The LR-CD product profile from enzyme catalysis depended on the incubation time and the enzyme concentration. Interestingly, the Y172A enzyme showed a product pattern different from that of the WT CgAM at a long incubation time. The principal LR-CD products of the Y172A mutated enzyme were a cycloamylose mixture with a degree of polymerization of 28 or 29 (CD28 or CD29), while the principal LR-CD product of the WT enzyme was CD25 at 0.05 U of amylomaltase. These results suggest that Tyr-172 plays an important role in determining the LR-CD product profile of this novel CgAM.
Collapse
|
44
|
Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 2012; 163:250-72. [PMID: 22796091 DOI: 10.1016/j.jbiotec.2012.06.037] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/26/2022]
Abstract
Glucansucrases are extracellular enzymes that synthesize a wide variety of α-glucan polymers and oligosaccharides, such as dextran. These carbohydrates have found numerous applications in food and health industries, and can be used as pure compounds or even be produced in situ by generally regarded as safe (GRAS) lactic acid bacteria in food applications. Research in the recent years has resulted in big steps forward in the understanding and exploitation of the biocatalytic potential of glucansucrases. This paper provides an overview of glucansucrase enzymes, their recently elucidated crystal structures, their reaction and product specificity, and the structural analysis and applications of α-glucan polymers. Furthermore, we discuss key developments in the understanding of α-glucan polymer formation based on the recently elucidated three-dimensional structures of glucansucrase proteins. Finally we discuss the (potential) applications of α-glucans produced by lactic acid bacteria in food and health related industries.
Collapse
Affiliation(s)
- Hans Leemhuis
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute-GBB, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Leemhuis H, Pijning T, Dobruchowska JM, Dijkstra BW, Dijkhuizen L. Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.676301] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
46
|
Kartal O, Mahlow S, Skupin A, Ebenhöh O. Carbohydrate-active enzymes exemplify entropic principles in metabolism. Mol Syst Biol 2011; 7:542. [PMID: 22027553 PMCID: PMC3261701 DOI: 10.1038/msb.2011.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2011] [Accepted: 09/09/2011] [Indexed: 12/23/2022] Open
Abstract
Statistical thermodynamics and in vitro experimentation demonstrate that metabolic enzymes can be driven by an increase in the entropy of a reaction system, and point to a role for entropy gradients in the emergence of robust metabolic functions in vivo. By analyzing the equilibrium distributions of glycans in vitro, we demonstrate that several carbohydrate-active enzymes are driven by an increase in mixing entropy of the reaction system. We present a novel formalism for these 'entropic enzymes' that allows biochemical processes in glycobiology to be described by concepts from statistical thermodynamics, thereby establishing a sound theoretical framework for polymer-active enzymes in general. Our interdisciplinary study reveals a new role of entropy in metabolism and promotes a novel view of metabolism as an intricate interplay between energy- and entropy-driven processes. We demonstrate by stochastic modeling how the concerted action of entropic enzymes in vivo results in a robust and adaptive buffering function needed to ensure a constant provision of carbohydrates for downstream processes.
Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse mixtures. The myriad different structures are generated by a limited number of carbohydrate-active enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively unspecific with respect to substrate size. Existing experimental and theoretical descriptions of CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor suggest biological functions of polydisperse pools in metabolism. Here, we overcome these limitations with a novel theoretical description of this important class of biological systems in which the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of three CAZymes essential for central carbon metabolism confirm the power of our approach to predict equilibrium distributions and non-equilibrium dynamics. A computational study of the turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this interplay between energy- and entropy-driven processes represents an important regulatory design principle of metabolic systems.
Collapse
Affiliation(s)
- Onder Kartal
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | |
Collapse
|
47
|
4,6-α-glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Appl Environ Microbiol 2011; 77:8154-63. [PMID: 21948833 DOI: 10.1128/aem.05735-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus reuteri 121 uses the glucosyltransferase A (GTFA) enzyme to convert sucrose into large amounts of the α-D-glucan reuteran, an exopolysaccharide. Upstream of gtfA lies another putative glucansucrase gene, designated gtfB. Previously, we have shown that the purified recombinant GTFB protein/enzyme is inactive with sucrose. Various homologs of gtfB are present in other Lactobacillus strains, including the L. reuteri type strain, DSM 20016, the genome sequence of which is available. Here we report that GTFB is a novel α-glucanotransferase enzyme with disproportionating (cleaving α1→4 and synthesizing α1→6 and α1→4 glycosidic linkages) and α1→6 polymerizing types of activity on maltotetraose and larger maltooligosaccharide substrates (in short, it is a 4,6-α-glucanotransferase). Characterization of the types of compounds synthesized from maltoheptaose by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), methylation analysis, and 1-dimensional ¹H nuclear magnetic resonance (NMR) spectroscopy revealed that only linear products were made and that with increasing degrees of polymerization (DP), more α1→6 glycosidic linkages were introduced into the final products, ranging from 18% in the incubation mixture to 33% in an enriched fraction. In view of its primary structure, GTFB clearly is a member of the glycoside hydrolase 70 (GH70) family, comprising enzymes with a permuted (β/α)₈ barrel that use sucrose to synthesize α-D-glucan polymers. The GTFB enzyme reaction and product specificities, however, are novel for the GH70 family, resembling those of the GH13 α-amylase type of enzymes in using maltooligosaccharides as substrates but differing in introducing a series of α1→6 glycosidic linkages into linear oligosaccharide products. We conclude that GTFB represents a novel evolutionary intermediate between the GH13 and GH70 enzyme families, and we speculate about its origin.
Collapse
|
48
|
Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots. Biochem J 2011; 437:223-30. [PMID: 21557724 DOI: 10.1042/bj20110292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
A hyperthermophilic membrane-related β-1,4-endoglucanase (family 5, cellulase) of the archaeon Pyrococcus horikoshii was found to be capable of hydrolysing cellulose at high temperatures. The hyperthermophilic cellulase has promise for applications in biomass utilization. To clarify its detailed function, we determined the crystal structures of mutants of the enzyme in complex with either the substrate or product ligands. We were able to resolve different kinds of complex structures at 1.65–2.01 Å (1 Å=0.1 nm). The structural analysis of various mutant enzymes yielded a sequence of crystallographic snapshots, which could be used to explain the catalytic process of the enzyme. The substrate position is fixed by the alignment of one cellobiose unit between the two aromatic amino acid residues at subsites +1 and +2. During the enzyme reaction, the glucose structure of cellulose substrates is distorted at subsite −1, and the β-1,4-glucoside bond between glucose moieties is twisted between subsites −1 and +1. Subsite −2 specifically recognizes the glucose residue, but recognition by subsites +1 and +2 is loose during the enzyme reaction. This type of recognition is important for creation of the distorted boat form of the substrate at subsite −1. A rare enzyme–substrate complex was observed within the low-activity mutant Y299F, which suggested the existence of a trapped ligand structure before the formation by covalent bonding of the proposed intermediate structure. Analysis of the enzyme–substrate structure suggested that an incoming water molecule, essential for hydrolysis during the retention process, might be introduced to the cleavage position after the cellobiose product at subsites +1 and +2 was released from the active site.
Collapse
|
49
|
Jung JH, Jung TY, Seo DH, Yoon SM, Choi HC, Park BC, Park CS, Woo EJ. Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus. Proteins 2011; 79:633-44. [PMID: 21117235 DOI: 10.1002/prot.22911] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Amylomaltase, or 4-α-glucanotransferase (EC 2.4.1.25), is involved in glycogen and maltooligosaccharide metabolism in microorganisms, catalyzing both the hydrolysis and transfer of an α-1,4-oligosacchraride to other sugar molecules. In this study, we determined the crystal structure of amylomaltase from Thermus brockianus at a resolution of 2.3 Å and conducted a biochemical study to understand the detailed mechanism for its activity. Careful comparison with previous amylomaltase structures showed a pattern of conformational flexibility in the 250s loop with higher B-factor. Amylomaltase from T. brockianus exhibited a high transglycosylation factor for glucose and a lower value for maltose. Mutation of Gln256 resulted in increased K(m) for maltotriose and a sharp decrease of the transglycosylation factor for maltose, suggesting the involvement of Gln 256 in substrate binding between subsites +1 and +2. Mutation of Phe251 resulted in significantly lower glucose production but increased maltose production from maltopentose substrates, showing an altered substrate-binding affinity. The mutational data suggest the conformational flexibility of the loop may be involved in substrate binding in the GH77 family. Here, we present an action model of the 250s loop providing the molecular basis for the involvement of residues Phe251, Gln256, and Trp258 in the hydrolysis and transglycosylation activities in amylomaltase.
Collapse
Affiliation(s)
- Jong-Hyun Jung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci U S A 2010; 107:21406-11. [PMID: 21118988 DOI: 10.1073/pnas.1007531107] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Glucansucrases are large enzymes belonging to glycoside hydrolase family 70, which catalyze the cleavage of sucrose into fructose and glucose, with the concomitant transfer of the glucose residue to a growing α-glucan polymer. Among others, plaque-forming oral bacteria secrete these enzymes to produce α-glucans, which facilitate the adhesion of the bacteria to the tooth enamel. We determined the crystal structure of a fully active, 1,031-residue fragment encompassing the catalytic and C-terminal domains of GTF180 from Lactobacillus reuteri 180, both in the native state, and in complexes with sucrose and maltose. These structures show that the enzyme has an α-amylase-like (β/α)(8)-barrel catalytic domain that is circularly permuted compared to the catalytic domains of members of glycoside hydrolase families 13 and 77, which belong to the same GH-H superfamily. In contrast to previous suggestions, the enzyme has only one active site and one nucleophilic residue. Surprisingly, in GTF180 the peptide chain follows a "U"-path, such that four of the five domains are made up from discontiguous N- and C-terminal stretches of the peptide chain. Finally, the structures give insight into the factors that determine the different linkage types in the polymeric product.
Collapse
|