1
|
Gestal-Mato U, Herhaus L. Autophagy-dependent regulation of MHC-I molecule presentation. J Cell Biochem 2024; 125:e30416. [PMID: 37126231 DOI: 10.1002/jcb.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
The major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8+ T lymphocytes to elicit an effective immune response. The conventional antigen-processing pathway for MHC-I presentation depends on proteasome-mediated peptide generation and peptide loading in the endoplasmic reticulum by members of the peptide loading complex. Recent discoveries in this field highlight the role of alternative MHC-I peptide loading and presentation pathways, one of them being autophagy. Autophagy is a cell-intrinsic degradative pathway that ensures cellular homoeostasis and plays critical roles in cellular immunity. In this review article, we discuss the role of autophagy in MHC class I-restricted antigen presentation, elucidating new findings on the crosstalk of autophagy and ER-mediated MHC-I peptide presentation, dendritic cell-mediated cross-presentation and also mechanisms governing immune evasion. A detailed molecular understanding of the key drivers of autophagy-mediated MHC-I modulation holds promising targets to devise effective measures to improve T cell immunotherapies.
Collapse
Affiliation(s)
- Uxia Gestal-Mato
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Lina Herhaus
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Amarajeewa AWP, Özcan A, Mukhtiar A, Ren X, Wang Q, Ozbek P, Garstka MA, Serçinoğlu O. Polymorphism in F pocket affects peptide selection and stability of type 1 diabetes-associated HLA-B39 allotypes. Eur J Immunol 2024; 54:e2350683. [PMID: 38549458 DOI: 10.1002/eji.202350683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 10/30/2024]
Abstract
HLA-B*39:06, HLA-B*39:01, and HLA-B*38:01 are closely related HLA allotypes differentially associated with type 1 diabetes (T1D) risk and progression. B*39:06 is highly predisposing, while B*39:01 and B*38:01 are weakly predisposing and protective allotypes, respectively. Here, we aimed to decipher molecular mechanisms underlying the differential association of these allotypes with T1D pathogenesis. We addressed peptide binding and conformational stability of HLA-B allotypes using computational and experimental approaches. Computationally, we found that B*39:06 and B*39:01 allotypes had more rigid peptide-binding grooves and were more promiscuous in binding peptides than B*38:01. Peptidomes of B*39:06 and B*39:01 contained fewer strong binders and were of lower affinity than that of B*38:01. Experimentally, we demonstrated that B*39:06 and B*39:01 had a higher capacity to bind peptides and exit to the cell surface but lower surface levels and were degraded faster than B*38:01. In summary, we propose that promiscuous B*39:06 and B*39:01 may bind suboptimal peptides and transport them the cell surface, where such unstable complexes may contribute to the pathogenesis of T1D.
Collapse
Affiliation(s)
- A W Peshala Amarajeewa
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aslihan Özcan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Alveena Mukhtiar
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Ren
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qianyu Wang
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Malgorzata A Garstka
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Türkiye
| |
Collapse
|
3
|
Ren X, Amarajeewa AWP, Jayasinghe MDT, Garstka MA. Differences in F pocket impact on HLA I genetic associations with autoimmune diabetes. Front Immunol 2024; 15:1342335. [PMID: 38596688 PMCID: PMC11003304 DOI: 10.3389/fimmu.2024.1342335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic β cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.
Collapse
Affiliation(s)
- Xu Ren
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Endocrinology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - A. W. Peshala Amarajeewa
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Malgorzata A. Garstka
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Endocrinology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Dirscherl C, Löchte S, Hein Z, Kopicki JD, Harders AR, Linden N, Karner A, Preiner J, Weghuber J, Garcia-Alai M, Uetrecht C, Zacharias M, Piehler J, Lanzerstorfer P, Springer S. Dissociation of β2m from MHC class I triggers formation of noncovalent transient heavy chain dimers. J Cell Sci 2022; 135:jcs259489. [PMID: 35393611 DOI: 10.1242/jcs.259498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (β2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for β2m.
Collapse
Affiliation(s)
- Cindy Dirscherl
- School of Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Sara Löchte
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - Zeynep Hein
- School of Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | | | - Noemi Linden
- School of Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, 22603 Hamburg, Germany
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | | | | |
Collapse
|
5
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
6
|
Zhu D, Roy S, Liu Z, Weller H, Parak WJ, Feliu N. Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Adv Drug Deliv Rev 2019; 138:117-132. [PMID: 30315833 DOI: 10.1016/j.addr.2018.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
Abstract
Tremendous efforts have been devoted to the development of future nanomedicines that can be specifically designed to incorporate responsive elements that undergo modification in structural properties upon external triggers. One potential use of such stimuli-responsive materials is to release encapsulated cargo upon excitation by an external trigger. Today, such stimuli-response materials allow for spatial and temporal tunability, which enables the controlled delivery of compounds in a specific and dose-dependent manner. This potentially is of great interest for medicine (e.g. allowing for remotely controlled drug delivery to cells, etc.). Among the different external exogenous and endogenous stimuli used to control the desired release, light and magnetic fields offer interesting possibilities, allowing defined, real time control of intracellular releases. In this review we highlight the use of stimuli-responsive controlled release systems that are able to respond to light and magnetic field triggers for controlling the release of encapsulated cargo inside cells. We discuss established approaches and technologies and describe prominent examples. Special attention is devoted towards polymer capsules and polymer vesicles as containers for encapsulated cargo molecules. The advantages and disadvantages of this methodology in both, in vitro and in vivo models are discussed. An overview of challenges associate with the successful translation of those stimuli-responsive materials towards future applications in the direction of potential clinical use is given.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Sathi Roy
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Horst Weller
- Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Experimental Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Ma W, Stroobant V, Heirman C, Sun Z, Thielemans K, Mulder A, van der Bruggen P, Van den Eynde BJ. The Vacuolar Pathway of Long Peptide Cross-Presentation Can Be TAP Dependent. THE JOURNAL OF IMMUNOLOGY 2018; 202:451-459. [PMID: 30559321 DOI: 10.4049/jimmunol.1800353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
Abstract
The intracellular pathway of cross-presentation, which allows MHC class I-restricted presentation of peptides derived from exogenous Ags, remains poorly defined and may vary with the nature of the exogenous Ag and the type of APC. It can be cytosolic, characterized by proteasome and TAP dependency, or vacuolar, usually believed to be proteasome and TAP independent. Cross-presentation is particularly effective with long synthetic peptides, and we previously reported that the HLA-A2-restricted cross-presentation of a long peptide derived from melanoma Ag gp100 by human monocyte-derived immature dendritic cells occurred in a vacuolar pathway, making use of newly synthesized HLA-A2 molecules that follow a nonclassical secretion route. In this article, we show that the HLA-A1-restricted cross-presentation of a long peptide derived from tumor Ag MAGE-A3 by human monocyte-derived immature dendritic cells also follows a vacuolar pathway. However, as opposed to the HLA-A2-restricted peptide, cross-presentation of the HLA-A1-restricted peptide is TAP dependent. We show that this paradoxical TAP-dependency is indirect and reflects the need for TAP to load HLA-A1 molecules with peptides in the endoplasmic reticulum, to allow them to escape the endoplasmic reticulum and reach the vacuole, where peptide exchange with the cross-presented peptide likely occurs. Our results confirm and extend the involvement of the vacuolar pathway in the cross-presentation of long peptides, and indicate that TAP-dependency can no longer be used as a key criterion to distinguish the cytosolic from the vacuolar pathway of cross-presentation. They also stress the existence of an alternative secretory route for MHC class I, which will be worthy of further studies.
Collapse
Affiliation(s)
- Wenbin Ma
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Zhaojun Sun
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Arend Mulder
- Laboratory for Transplantation Immunology, Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; .,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| |
Collapse
|
8
|
Hein Z, Borchert B, Tolba Abualrous E, Springer S. Distinct mechanisms survey the structural integrity of HLA-B*27:05 intracellularly and at the surface. PLoS One 2018; 13:e0200811. [PMID: 30071035 PMCID: PMC6071996 DOI: 10.1371/journal.pone.0200811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
HLA-B*27:05 is associated with the development of autoimmune spondyloarthropathies, but the precise causal relationship between the MHC haplotype and disease pathogenesis is yet to be elucidated. Studies focusing on the structure and cellular trafficking of HLA-B*27:05 implicate several links between the onset of inflammation and the unusual conformations of the molecule inside and at the surface of antigen presenting cells. Several lines of evidence emphasize the emergence of those unnatural protein conformations under conditions where peptide loading onto B*27:05 is impaired. To understand how cellular factors distinguish between poorly loaded molecules from the optimally loaded ones, we have investigated the intracellular transport, folding, and cell surface expression of this particular B27 subtype. Our findings show that B*27:05 is structurally unstable in the absence of peptide, and that an artificially introduced disulfide bond between residues 84 and 139 conferred enhanced conformational stability to the suboptimally loaded molecules. Empty or suboptimally loaded B*27:05 can escape intracellular retention and arrive at the cell surface leading to the appearance of increased number of β2m-free heavy chains. Our study reveals a general mechanism found in the early secretory pathways of murine and human cells that apply to the quality control of MHC class I molecules, and it highlights the allotype-specific structural features of HLA-B*27:05 that can be associated with aberrant antigen presentation and that might contribute to the etiology of disease.
Collapse
Affiliation(s)
- Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Britta Borchert
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Esam Tolba Abualrous
- Department of Mathematics and Computer Science, Freie Universität, Berlin, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
- * E-mail:
| |
Collapse
|
9
|
Sirkis DW, Aparicio RE, Schekman R. Neurodegeneration-associated mutant TREM2 proteins abortively cycle between the ER and ER-Golgi intermediate compartment. Mol Biol Cell 2017; 28:2723-2733. [PMID: 28768830 PMCID: PMC5620379 DOI: 10.1091/mbc.e17-06-0423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations in the microglial cell surface receptor TREM2 are associated with multiple forms of neurodegeneration. Several of these mutant forms of TREM2 were thought to be retained in the endoplasmic reticulum (ER), but careful analysis reveals that they engage in an abortive cycling pathway between the ER and ER–Golgi intermediate compartment. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein expressed on microglia within the brain. Several rare mutations in TREM2 cause an early-onset form of neurodegeneration when inherited homozygously. Here we investigate how these mutations affect the intracellular transport of TREM2. We find that most pathogenic TREM2 mutant proteins fail to undergo normal maturation in the Golgi complex and show markedly reduced cell-surface expression. Prior research has suggested that two such mutants are retained in the endoplasmic reticulum (ER), but we find, using a cell-free coat protein complex II (COPII) vesicle budding reaction, that mutant TREM2 is exported efficiently from the ER. In addition, mutant TREM2 becomes sensitive to cleavage by endoglycosidase D under conditions that inhibit recycling to the ER, indicating that it normally reaches a post-ER compartment. Maturation-defective TREM2 mutants are also efficiently bound by a lectin that recognizes O-glycans added in the ER–Golgi intermediate compartment (ERGIC) and cis-Golgi cisterna. Finally, mutant TREM2 accumulates in the ERGIC in cells depleted of COPI. These results indicate that efficient ER export is not sufficient to enable normal cell-surface expression of TREM2. Moreover, our findings suggest that the ERGIC may play an underappreciated role as a quality-control center for mutant and/or malformed membrane proteins.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Renan E Aparicio
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
10
|
Nguyen-Vu TB, Zhao GQ, Lahiri S, Kimpo RR, Lee H, Ganguli S, Shatz CJ, Raymond JL. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. eLife 2017; 6. [PMID: 28234229 PMCID: PMC5386593 DOI: 10.7554/elife.20147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/02/2017] [Indexed: 11/19/2022] Open
Abstract
Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI:http://dx.doi.org/10.7554/eLife.20147.001 All animals can learn from their experiences. One of the main ideas for how learning occurs is that it involves changes in the strength of the connections between neurons, known as synapses. The ability of synapses to become stronger or weaker is referred to as synaptic plasticity. High levels of synaptic plasticity are generally thought to be good for learning, while low levels of synaptic plasticity make learning more difficult. Nevertheless, studies have also reported that high levels of synaptic plasticity can sometimes impair learning. To explain these mixed results, Nguyen-Vu, Zhao, Lahiri et al. studied mice that had been genetically modified to show greater synaptic plasticity than normal mice. The same individual mutant animals were sometimes less able to learn an eye-movement task than unmodified mice, and at other times better able to learn exactly the same task. The main factor that determined how well the mice could learn was what the mice had experienced shortly before they began the training. Nguyen-Vu et al. propose that some experiences change the strength of synapses so much that they temporarily prevent those synapses from undergoing any further changes. Animals with these “saturated” synapses will struggle to learn a new task, even if their brains are normally capable of high levels of synaptic plasticity. Notably, even normal activity appears to be able to put the synapses of the mutant mice into a saturated state, whereas this saturation would only occur in normal mice under a restricted set of circumstances. Consistent with this idea, Nguyen-Vu et al. showed that a specific type of pre-training that desaturates synapses improved the ability of the modified mice to learn the eye-movement task. Conversely, a different procedure that is known to saturate synapses impaired the learning ability of the unmodified mice. A future challenge is to test these predictions experimentally by measuring changes in synaptic plasticity directly, both in brain slices and in living animals. The results could ultimately help to develop treatments that improve the ability to learn and so could provide benefits to a wide range of individuals, including people who have suffered a brain injury or stroke. DOI:http://dx.doi.org/10.7554/eLife.20147.002
Collapse
Affiliation(s)
- Td Barbara Nguyen-Vu
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford, United States
| | - Grace Q Zhao
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Subhaneil Lahiri
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Rhea R Kimpo
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Hanmi Lee
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Surya Ganguli
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Applied Physics, Stanford University, Stanford, United States
| | - Carla J Shatz
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
11
|
Nagarajan NA, de Verteuil DA, Sriranganadane D, Yahyaoui W, Thibault P, Perreault C, Shastri N. ERAAP Shapes the Peptidome Associated with Classical and Nonclassical MHC Class I Molecules. THE JOURNAL OF IMMUNOLOGY 2016; 197:1035-43. [PMID: 27371725 DOI: 10.4049/jimmunol.1500654] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022]
Abstract
The peptide repertoire presented by classical as well as nonclassical MHC class I (MHC I) molecules is altered in the absence of the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). To characterize the extent of these changes, peptides from cells lacking ERAAP were eluted from the cell surface and analyzed by high-throughput mass spectrometry. We found that most peptides found in wild-type (WT) cells were retained in the absence of ERAAP. In contrast, a subset of "ERAAP-edited" peptides was lost in WT cells, and ERAAP-deficient cells presented a unique "unedited" repertoire. A substantial fraction of MHC-associated peptides from ERAAP-deficient cells contained N-terminal extensions and had a different molecular composition than did those from WT cells. We found that the number and immunogenicity of peptides associated with nonclassical MHC I was increased in the absence of ERAAP. Conversely, only peptides presented by classical MHC I were immunogenic in ERAAP-sufficient cells. Finally, MHC I peptides were also derived from different intracellular sources in ERAAP-deficient cells.
Collapse
Affiliation(s)
- Niranjana A Nagarajan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| | - Danielle A de Verteuil
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Dev Sriranganadane
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Wafaa Yahyaoui
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| |
Collapse
|
12
|
Ghanem E, Al-Balushi M. Adopting the rapamycin trapping assay to track the trafficking of murine MHC class I alleles, H-2K(b). BMC Cell Biol 2015; 16:30. [PMID: 26714929 PMCID: PMC4696223 DOI: 10.1186/s12860-015-0077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background In mammalian cells, the quality control (QC) of properly folded proteins is monitored in the early secretory pathway, particularly in the endoplasmic reticulum (ER). Several proteins, including our protein of interest, major histocompatibility complex class I (MHC class I), can bypass the first line of ER-QC and reside in post-ER compartments in an unfolded form. Such forms entail both monomeric and dimeric structures that are devoid of peptides and thus cannot fulfill the immunological function of antigen presentation at the cell surface. MHC class I structures become mature and properly folded once loaded with the appropriate peptides in the framework of the peptide loading complex (PLC). Despite the flood of information on the diverse trafficking behavior of different MHC class I alleles, there is still controversy on the actual trajectory followed by improperly folded murine MHC class I alleles, namely H-2Kb. In this study, we employ an in vitro rapamycin trapping assay, live cell imaging, and a biochemical COPII budding approach to further investigate the trafficking of H-2Kb beyond the level of the ER. Results We confirm the egress of H-2Kb in an unfolded form to a post-ER compartment from where they can cycle back to the ER. Deciphering the exact identity of the post-ER compartment by laser scanning microscopy did not only point to the existence of the ERGIC and cis-Golgi compartments as residency areas for unfolded proteins, but also to the involvement of an addional compartment, that lies in close proximity and possesses high resemblance to the aforementioned compartments. Interestingly, we were capable of showing using the same rapamycin trapping assay that H-2Kb can undergo a potential maturation event during their cycling; this is attained upon addition of peptides and trapping of accumulated post-ER molecules at the cell surface. Conclusions Our findings deepen the understanding of H-2Kb trafficking outside the ER and pave the way to decipher the role and the trafficking of certain PLC chaperones, such as tapasin, throughout H-2Kb post-ER QC. Finally, we demonstrate the plausible usage of the rapamycin assay to assess the trafficking of defected proteins especially in diseases and under therapeutic studies.
Collapse
Affiliation(s)
- Esther Ghanem
- Department of Biology, Faculty of Natural and Applied Sciences, Notre Dame University, 72, Zouk Mosbeh, Keserwan district, Lebanon.
| | - Mohammed Al-Balushi
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
13
|
Hermann C, Trowsdale J, Boyle LH. TAPBPR: a new player in the MHC class I presentation pathway. ACTA ACUST UNITED AC 2015; 85:155-66. [PMID: 25720504 DOI: 10.1111/tan.12538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to provide specificity for T cell responses against pathogens and tumours, major histocompatibility complex (MHC) class I molecules present high-affinity peptides at the cell surface to T cells. A key player for peptide loading is the MHC class I-dedicated chaperone tapasin. Recently we discovered a second MHC class I-dedicated chaperone, the tapasin-related protein TAPBPR. Here, we review the major steps in the MHC class I pathway and the TAPBPR data. We discuss the potential function of TAPBPR in the MHC class I pathway and the involvement of this previously uncharacterised protein in human health and disease.
Collapse
Affiliation(s)
- C Hermann
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
14
|
Abualrous ET, Saini SK, Ramnarayan VR, Ilca FT, Zacharias M, Springer S. The Carboxy Terminus of the Ligand Peptide Determines the Stability of the MHC Class I Molecule H-2Kb: A Combined Molecular Dynamics and Experimental Study. PLoS One 2015; 10:e0135421. [PMID: 26270965 PMCID: PMC4535769 DOI: 10.1371/journal.pone.0135421] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules (proteins) bind peptides of eight to ten amino acids to present them at the cell surface to cytotoxic T cells. The class I binding groove binds the peptide via hydrogen bonds with the peptide termini and via diverse interactions with the anchor residue side chains of the peptide. To elucidate which of these interactions is most important for the thermodynamic and kinetic stability of the peptide-bound state, we have combined molecular dynamics simulations and experimental approaches in an investigation of the conformational dynamics and binding parameters of a murine class I molecule (H-2Kb) with optimal and truncated natural peptide epitopes. We show that the F pocket region dominates the conformational and thermodynamic properties of the binding groove, and that therefore the binding of the C terminus of the peptide to the F pocket region plays a crucial role in bringing about the peptide-bound state of MHC class I.
Collapse
Affiliation(s)
- Esam Tolba Abualrous
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sunil Kumar Saini
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Venkat Raman Ramnarayan
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Florin Tudor Ilca
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Sebastian Springer
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- * E-mail:
| |
Collapse
|
15
|
Cell surface expression level variation between two common Human Leukocyte Antigen alleles, HLA-A2 and HLA-B8, is dependent on the structure of the C terminal part of the alpha 2 and the alpha 3 domains. PLoS One 2015; 10:e0135385. [PMID: 26258424 PMCID: PMC4530957 DOI: 10.1371/journal.pone.0135385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Constitutive cell surface expression of Human Leukocyte Antigen (HLA) class I antigens vary extremely from tissue to tissue and individual antigens may differ widely in expression levels. Down-regulation of class I expression is a known immune evasive mechanism used by cancer cells and viruses. Moreover, recent observations suggest that even minor differences in expression levels may influence the course of viral infections and the frequency of complications to stem cell transplantation. We have shown that some human multipotent stem cells have high expression of HLA-A while HLA-B is only weakly expressed, and demonstrate here that this is also the case for the human embryonic kidney cell line HEK293T. Using quantitative flow cytometry and quantitative polymerase chain reaction we found expression levels of endogenous HLA-A3 (median 71,204 molecules per cell) 9.2-fold higher than the expression of-B7 (P = 0.002). Transfection experiments with full-length HLA-A2 and -B8 encoding plasmids confirmed this (54,031 molecules per cell vs. 2,466, respectively, P = 0.001) independently of transcript levels suggesting a post-transcriptional regulation. Using chimeric constructs we found that the cytoplasmic tail and the transmembrane region had no impact on the differential cell surface expression. In contrast, ~65% of the difference could be mapped to the six C-terminal amino acids of the alpha 2 domain and the alpha 3 domain (amino acids 176–284), i.e. amino acids not previously shown to be of importance for differential expression levels of HLA class I molecules. We suggest that the differential cell surface expression of two common HLA-A and–B alleles is regulated by a post-translational mechanism that may involve hitherto unrecognized molecules.
Collapse
|
16
|
Adiko AC, Babdor J, Gutiérrez-Martínez E, Guermonprez P, Saveanu L. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation. Front Immunol 2015; 6:335. [PMID: 26191062 PMCID: PMC4489332 DOI: 10.3389/fimmu.2015.00335] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/15/2015] [Indexed: 01/22/2023] Open
Abstract
Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization.
Collapse
Affiliation(s)
- Aimé Cézaire Adiko
- INSERM U1149, Faculté Bichat Medical School, ELR8252 CNRS, Center for Research on Inflammation , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Joel Babdor
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Imagine Institute , Paris , France
| | - Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, King's College London , London , UK
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, King's College London , London , UK
| | - Loredana Saveanu
- INSERM U1149, Faculté Bichat Medical School, ELR8252 CNRS, Center for Research on Inflammation , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
17
|
Fritzsche S, Abualrous ET, Borchert B, Momburg F, Springer S. Release from endoplasmic reticulum matrix proteins controls cell surface transport of MHC class I molecules. Traffic 2015; 16:591-603. [PMID: 25753898 DOI: 10.1111/tra.12279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/30/2015] [Indexed: 02/01/2023]
Abstract
The anterograde transport of secretory proteins from the endoplasmic reticulum (ER) to the plasma membrane is a multi-step process. Secretory proteins differ greatly in their transport rates to the cell surface, but the contribution of each individual step to this difference is poorly understood. Transport rates may be determined by protein folding, chaperone association in the ER, access to ER exit sites (ERES) and retrieval from the ER-Golgi intermediate compartment or the cis-Golgi to the ER. We have used a combination of folding and trafficking assays to identify the differential step in the cell surface transport of two natural allotypes of the murine major histocompatibility complex (MHC) class I peptide receptor, H-2D(b) and H-2K(b) . We find that a novel pre-ER exit process that acts on the folded lumenal part of MHC class I molecules and that drastically limits their access to ERES accounts for the transport difference of the two allotypes. Our observations support a model in which the cell surface transport of MHC class I molecules and other type I transmembrane proteins is governed by the affinity of all their folding and maturation states to the proteins of the ER matrix.
Collapse
Affiliation(s)
- Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Esam T Abualrous
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Britta Borchert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Frank Momburg
- Department of Translational Immunology, German Cancer Research Center/NCT, Heidelberg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
18
|
Transport and quality control of MHC class I molecules in the early secretory pathway. Curr Opin Immunol 2015; 34:83-90. [PMID: 25771183 DOI: 10.1016/j.coi.2015.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.
Collapse
|
19
|
Hein Z, Uchtenhagen H, Abualrous ET, Saini SK, Janßen L, Van Hateren A, Wiek C, Hanenberg H, Momburg F, Achour A, Elliott T, Springer S, Boulanger D. Peptide-independent stabilization of MHC class I molecules breaches cellular quality control. J Cell Sci 2014; 127:2885-97. [PMID: 24806963 DOI: 10.1242/jcs.145334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
The intracellular trafficking of major histocompatibility complex class I (MHC-I) proteins is directed by three quality control mechanisms that test for their structural integrity, which is correlated to the binding of high-affinity antigenic peptide ligands. To investigate which molecular features of MHC-I these quality control mechanisms detect, we have followed the hypothesis that suboptimally loaded MHC-I molecules are characterized by their conformational mobility in the F-pocket region of the peptide-binding site. We have created a novel variant of an MHC-I protein, K(b)-Y84C, in which two α-helices in this region are linked by a disulfide bond that mimics the conformational and dynamic effects of bound high-affinity peptide. K(b)-Y84C shows a remarkable increase in the binding affinity to its light chain, beta-2 microglobulin (β2m), and bypasses all three cellular quality control steps. Our data demonstrate (1) that coupling between peptide and β2m binding to the MHC-I heavy chain is mediated by conformational dynamics; (2) that the folded conformation of MHC-I, supported by β2m, plays a decisive role in passing the ER-to-cell-surface transport quality controls; and (3) that β2m association is also tested by the cell surface quality control that leads to MHC-I endocytosis.
Collapse
Affiliation(s)
- Zeynep Hein
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Sunil Kumar Saini
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Linda Janßen
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Andy Van Hateren
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Constanze Wiek
- Department of Otorhinolaryngology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Frank Momburg
- Division of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tim Elliott
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| | - Sebastian Springer
- Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Denise Boulanger
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hampshire SO16 6YD, UK
| |
Collapse
|
20
|
Nair-Gupta P, Blander JM. An updated view of the intracellular mechanisms regulating cross-presentation. Front Immunol 2013; 4:401. [PMID: 24319447 PMCID: PMC3837292 DOI: 10.3389/fimmu.2013.00401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/08/2013] [Indexed: 02/05/2023] Open
Abstract
Cross-presentation involves the presentation of peptides derived from internalized cargo on major histocompatibility complex class I molecules by dendritic cells, a process critical for tolerance and immunity. Detailed studies of the pathways mediating cross-presentation have revealed that this process takes place in a specialized subcellular compartment with a unique set of proteins. In this review, we focus on the recently appreciated role for intracellular vesicular traffic, which serves to equip compartments such as endosomes and phagosomes with the necessary apparatus for conducting the various steps of cross-presentation. We also consider how these pathways may integrate with inflammatory signals particularly from pattern recognition receptors that detect the presence of microbial components during infection. We discuss the consequences of such signals on initiating cross-presentation to stimulate adaptive CD8 T cell responses.
Collapse
Affiliation(s)
- Priyanka Nair-Gupta
- Department of Medicine, Immunology Institute, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | |
Collapse
|
21
|
The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci 2013; 38:412-20. [PMID: 23849087 DOI: 10.1016/j.tibs.2013.06.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
Abstract
Recognition and elimination of virally or malignantly transformed cells are pivotal tasks of the adaptive immune system. For efficient immune detection, snapshots of the cellular proteome are presented as epitopes on major histocompatibility complex class I (MHC I) molecules for recognition by cytotoxic T cells. Knowledge about the track from the equivocal protein to the presentation of antigenic peptides has greatly expanded, leading to an astonishingly elaborate understanding of the MHC I peptide loading pathway. Here, we summarize the current view on this complex process, which involves ABC transporters, proteases, chaperones, and endoplasmic reticulum (ER) quality control. The contribution of individual proteins and subcomplexes is discussed, with a focus on the architecture and dynamics of the key player in the pathway, the peptide-loading complex (PLC).
Collapse
|
22
|
Fritzsche S, Springer S. Investigating MHC class I folding and trafficking with pulse-chase experiments. Mol Immunol 2013; 55:126-30. [PMID: 23419773 DOI: 10.1016/j.molimm.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 11/16/2022]
Abstract
To understand peptide selection by MHC class I molecules on a molecular level, the folding, assembly, and peptide binding of class I molecules have been intensely investigated in recent years. In contrast, the placement of these events into the cellular architecture of the early secretory pathway and their timing in wild type cells are not sufficiently understood, especially with respect to the quality control steps that decide whether class I molecules should be returned to the ER, if bound to low-affinity peptides, or moved to the plasma membrane. In this review article, we focus on a long-established technique to investigate MHC class I cell surface transport: the radioactive pulse-chase assay. We describe the design of experiments and the evaluation of the data, and we point out its potential for future exploration of class I, as well as other methods that can complement and extend it.
Collapse
|
23
|
Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A 2013; 110:3465-70. [PMID: 23401559 DOI: 10.1073/pnas.1222342110] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tapasin is an integral component of the peptide-loading complex (PLC) important for efficient peptide loading onto MHC class I molecules. We investigated the function of the tapasin-related protein, TAPBPR. Like tapasin, TAPBPR is widely expressed, IFN-γ-inducible, and binds to MHC class I coupled with β2-microglobulin in the endoplasmic reticulum. In contrast to tapasin, TAPBPR does not bind ERp57 or calreticulin and is not an integral component of the PLC. β2-microglobulin is essential for the association between TAPBPR and MHC class I. However, the association between TAPBPR and MHC class I occurs in the absence of a functional PLC, suggesting peptide is not required. Expression of TAPBPR decreases the rate of MHC class I maturation through the secretory pathway and prolongs the association of MHC class I on the PLC. The TAPBPR:MHC class I complex trafficks through the Golgi apparatus, demonstrating a function of TAPBPR beyond the endoplasmic reticulum/cis-Golgi. The identification of TAPBPR as an additional component of the MHC class I antigen-presentation pathway demonstrates that mechanisms controlling MHC class I expression remain incompletely understood.
Collapse
|
24
|
Determining the activity of the transporter associated with antigen processing in the compartments of the secretory pathway. Methods Mol Biol 2013. [PMID: 23329484 DOI: 10.1007/978-1-62703-218-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide-receptive MHC class I molecules and the TAP (transporter associated with antigen processing) peptide transporter are known to leave the ER and cycle through the cis side of the Golgi apparatus. The amount, and the extent of the activity, of TAP in post-ER compartments is likely to vary between different cell types. Here we describe a convenient microscopic assay to determine it.
Collapse
|
25
|
Volodkin D, Skirtach A, Möhwald H. Bioapplications of light-sensitive polymer films and capsules assembled using the layer-by-layer technique. POLYM INT 2012. [DOI: 10.1002/pi.4182] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Simone LC, Tuli A, Simone PD, Wang X, Solheim JC. Analysis of major histocompatibility complex class I folding: novel insights into intermediate forms. ACTA ACUST UNITED AC 2012; 79:249-62. [PMID: 22329842 DOI: 10.1111/j.1399-0039.2012.01849.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule K(d) are found primarily in association with the 34-1-2(+) form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. To further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with L(d) . Recognition of the open and folded forms of L(d) by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2(+) L(d) molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we show that an L(d) -specific peptide induced folding of the 34-1-2(+) L(d) intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody.
Collapse
Affiliation(s)
- L C Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | |
Collapse
|
27
|
Skelton TS, Tejpal N, Gong Y, Kubiak JZ, Kloc M, Ghobrial RM. Allochimeric molecules and mechanisms in abrogation of cardiac allograft rejection. J Heart Lung Transplant 2012; 31:73-84. [DOI: 10.1016/j.healun.2011.01.715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022] Open
|
28
|
Simone LC, Georgesen CJ, Simone PD, Wang X, Solheim JC. Productive association between MHC class I and tapasin requires the tapasin transmembrane/cytosolic region and the tapasin C-terminal Ig-like domain. Mol Immunol 2012; 49:628-39. [PMID: 22169163 PMCID: PMC3249531 DOI: 10.1016/j.molimm.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 12/24/2022]
Abstract
The current model of antigen assembly with major histocompatibility complex (MHC) class I molecules posits that interactions between the tapasin N-terminal immunoglobulin (Ig)-like domain and the MHC class I peptide-binding groove permit tapasin to regulate antigen selection. Much less is known regarding interactions that might involve the tapasin C-terminal Ig-like domain. Additionally, the tapasin transmembrane/cytoplasmic region enables tapasin to bridge the MHC class I molecule to the transporter associated with antigen processing (TAP). In this investigation, we made use of two tapasin mutants to determine the relative contribution of the tapasin C-terminal Ig-like domain and the tapasin transmembrane/cytoplasmic region to the assembly of MHC class I molecules. Deletion of a loop within the tapasin C-terminal Ig-like domain (Δ334-342) prevented tapasin association with the MHC class I molecule K(d). Although tapasin Δ334-342 did not increase the efficiency of K(d) folding, K(d) surface expression was enhanced on cells expressing this mutant relative to tapasin-deficient cells. In contrast to tapasin Δ334-342, a soluble tapasin mutant lacking the transmembrane/cytoplasmic region retained the ability to bind to K(d) molecules, but did not facilitate K(d) surface expression. Furthermore, when soluble tapasin and tapasin Δ334-342 were co-expressed, soluble tapasin had a dominant negative effect on the folding and surface expression of not only K(d), but also D(b) and K(b). In addition, our molecular modeling of the MHC class I-tapasin interface revealed novel potential interactions involving tapasin residues 334-342. Together, these findings demonstrate that the tapasin C-terminal and transmembrane/cytoplasmic regions are critical to tapasin's capacity to associate effectively with the MHC class I molecule.
Collapse
Affiliation(s)
- Laura C. Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Corey J. Georgesen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Peter D. Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Xiaojian Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
29
|
Garstka MA, Fritzsche S, Lenart I, Hein Z, Jankevicius G, Boyle LH, Elliott T, Trowsdale J, Antoniou AN, Zacharias M, Springer S. Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility. FASEB J 2011; 25:3989-98. [PMID: 21836024 DOI: 10.1096/fj.11-190249] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules present cell internally derived peptides at the plasma membrane for surveillance by cytotoxic T lymphocytes. The surface expression of most class I molecules at least partially depends on the endoplasmic reticulum protein, tapasin, which helps them to bind peptides of the right length and sequence. To determine what makes a class I molecule dependent on support by tapasin, we have conducted in silico molecular dynamics (MD) studies and laboratory experiments to assess the conformational state of tapasin-dependent and -independent class I molecules. We find that in the absence of peptide, the region around the F pocket of the peptide binding groove of the tapasin-dependent molecule HLA-B*44:02 is in a disordered conformational state and that it is converted to a conformationally stable state by tapasin. This novel chaperone function of tapasin has not been described previously. We demonstrate that the disordered state of class I is caused by the presence of two adjacent acidic residues in the bottom of the F pocket of class I, and we suggest that conformational disorder is a common feature of tapasin-dependent class I molecules, making them essentially unable to bind peptides on their own. MD simulations are a useful tool to predict such conformational disorder of class I molecules.
Collapse
|
30
|
A peptide filtering relation quantifies MHC class I peptide optimization. PLoS Comput Biol 2011; 7:e1002144. [PMID: 22022238 PMCID: PMC3195949 DOI: 10.1371/journal.pcbi.1002144] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/18/2011] [Indexed: 12/11/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human Immunodeficiency Virus Gag-Pol polyprotein. Major Histocompatibility Complex (MHC) class I molecules bind to protein fragments (peptides) within the cell and present these fragments at the cell surface, thus providing a snapshot of the cell contents that can subsequently be used to trigger an immune response. Only a fraction of the potentially billions of peptides inside a cell are selected for presentation, and the process is optimized to select for peptides that form a stable complex with MHC class I. The mechanisms of the optimization process are important for predicting the efficacy of an immune response and for designing effective vaccines, yet are still not well-understood. In this article we present a dynamical systems model of peptide optimization by MHC class I. We show that peptide optimization can be quantified and mechanistically explained by a peptide filtering relation, which relates cell surface abundance to peptide supply, peptide unbinding and interactions with the chaperone molecule tapasin. The filtering relation also accounts for differences in optimization across MHC class I alleles. Finally, we show how the filtering relation can be used to quantify the cell-surface presentation of virus-derived peptides for immune system surveillance.
Collapse
|
31
|
Antipina MN, Sukhorukov GB. Remote control over guidance and release properties of composite polyelectrolyte based capsules. Adv Drug Deliv Rev 2011; 63:716-29. [PMID: 21510987 DOI: 10.1016/j.addr.2011.03.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/01/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
Polyelectrolyte multilayer capsules represent a unique tool to fabricate micron- and submicron-sized delivery systems with the properties of external guidance by means of remote physical influence. Embedding of nanoparticles into polyelectrolyte multilayer constructs opens up the opportunities to navigate the capsules with magnetic field and in-situ trigger the release of encapsulated material in response to the physical stimuli, such as light and ultrasound. So far, optically- and magnetically-induced addressing of the polyelectrolyte multilayer capsules internalized by the living cells in-vitro has been demonstrated. In this review, we discuss the state of the art, future perspectives and anticipated obstacles of in-vivo and in-vitro applications of the polyelectrolyte capsules performing remotely controlled release delivery of bioactives.
Collapse
|
32
|
Saunders PM, van Endert P. Running the gauntlet: from peptide generation to antigen presentation by MHC class I. ACTA ACUST UNITED AC 2011; 78:161-70. [DOI: 10.1111/j.1399-0039.2011.01735.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Del Val M, Iborra S, Ramos M, Lázaro S. Generation of MHC class I ligands in the secretory and vesicular pathways. Cell Mol Life Sci 2011; 68:1543-52. [PMID: 21387141 PMCID: PMC11114776 DOI: 10.1007/s00018-011-0661-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/13/2022]
Abstract
CD8(+) T lymphocytes screen the surface of all cells in the body to detect pathogen infection or oncogenic transformation. They recognize peptides derived from cellular proteins displayed at the plasma membrane by major histocompatibility complex (MHC) class I molecules. Peptides are mostly by-products of cytosolic proteolytic enzymes. Peptidic ligands of MHC class I molecules are also generated in the secretory and vesicular pathways. Features of protein substrates, of proteases and of available MHC class I molecules for loading peptides in these compartments shape a singular collection of ligands that also contain different, longer, and lower affinity peptides than ligands produced in the cytosol. Especially in individuals who lack the transporters associated with antigen processing, TAP, and in infected and tumor cells where TAP is blocked, which thus have no supply of peptides derived from the cytosol, MHC class I ligands generated in the secretory and vesicular pathways contribute to shaping the CD8(+) T lymphocyte response.
Collapse
Affiliation(s)
- Margarita Del Val
- Unidad de Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain,
| | | | | | | |
Collapse
|
34
|
Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T. The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. ACTA ACUST UNITED AC 2011; 76:259-75. [PMID: 21050182 DOI: 10.1111/j.1399-0039.2010.01550.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins protect the host from intracellular pathogens and cellular abnormalities through the binding of peptide fragments derived primarily from intracellular proteins. These peptide-MHC complexes are displayed at the cell surface for inspection by cytotoxic T lymphocytes. Here we reveal how MHC I molecules achieve this feat in the face of numerous levels of quality control. Among these is the chaperone tapasin, which governs peptide selection in the endoplasmic reticulum as part of the peptide-loading complex, and we propose key amino acid interactions central to the peptide selection mechanism. We discuss how the aminopeptidase ERAAP fine-tunes the peptide repertoire available to assembling MHC I molecules, before focusing on the journey of MHC I molecules through the secretory pathway, where calreticulin provides additional regulation of MHC I expression. Lastly we discuss how these processes culminate to influence immune responses.
Collapse
Affiliation(s)
- A Van Hateren
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
35
|
Ghanem E, Fritzsche S, Al-Balushi M, Hashem J, Ghuneim L, Thomer L, Kalbacher H, van Endert P, Wiertz E, Tampé R, Springer S. The transporter associated with antigen processing (TAP) is active in a post-ER compartment. J Cell Sci 2010; 123:4271-9. [DOI: 10.1242/jcs.060632] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The translocation of cytosolic peptides into the lumen of the endoplasmic reticulum (ER) is a crucial step in the presentation of intracellular antigen to T cells by major histocompatibility complex (MHC) class I molecules. It is mediated by the transporter associated with antigen processing (TAP) protein, which binds to peptide-receptive MHC class I molecules to form the MHC class I peptide-loading complex (PLC). We investigated whether TAP is present and active in compartments downstream of the ER. By fluorescence microscopy, we found that TAP is localized to the ERGIC (ER-Golgi intermediate compartment) and the Golgi of both fibroblasts and lymphocytes. Using an in vitro vesicle formation assay, we show that COPII vesicles, which carry secretory cargo out of the ER, contain functional TAP that is associated with MHC class I molecules. Together with our previous work on post-ER localization of peptide-receptive class I molecules, our results suggest that loading of peptides onto class I molecules in the context of the peptide-loading complex can occur outside the ER.
Collapse
Affiliation(s)
- Esther Ghanem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Susanne Fritzsche
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Mohammed Al-Balushi
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Jood Hashem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lana Ghuneim
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lena Thomer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Hubert Kalbacher
- Medical and Natural Sciences Research Center, University of Tübingen, 72074 Tübingen, Germany
| | - Peter van Endert
- INSERM, U580, 75015 Paris, France, and Université Paris Descartes, Faculté de Médecine René Descartes, 75015 Paris, France
| | - Emmanuel Wiertz
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, and Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Tampé
- Cluster of Excellence ‘Macromolecular Complexes’, Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt, Germany
| | - Sebastian Springer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
36
|
Cho S, Ryoo J, Jun Y, Ahn K. Receptor-Mediated ER Export of Human MHC Class I Molecules Is Regulated by the C-Terminal Single Amino Acid. Traffic 2010; 12:42-55. [DOI: 10.1111/j.1600-0854.2010.01132.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Galocha B, López de Castro JA. Mutational analysis reveals a complex interplay of peptide binding and multiple biological features of HLA-B27. J Biol Chem 2010; 285:39180-90. [PMID: 20889980 DOI: 10.1074/jbc.m110.149906] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Molecular polymorphism influences the strong association of HLA-B27 with ankylosing spondylitis through an unknown mechanism. Natural subtypes and site-directed mutants were used to analyze the effect of altering the peptide-binding site of this molecule on its stability, interaction with tapasin, folding, and export. The disease-associated subtypes B*2705, B*2702, and B*2704 showed higher thermostability at 50 °C than all other subtypes and mutants, except some mimicking B*2702 polymorphism. The lowest values were found among pocket B mutants, most of which interacted strongly with tapasin, but otherwise there was no correlation between thermostability and tapasin interaction. Mutants resulting in increased hydrophobicity frequently acquired their maximal thermostability faster than those with increased polarity, suggesting that this process is largely driven by the thermodynamics of peptide binding. Folding, export, and tendency to misfold were influenced by polymorphism all along the peptide-binding site and were not specifically dependent on any particular region or structural feature. Frequent uncoupling of thermostability, folding/misfolding, and export can be explained by the distinct effect of mutations on the acquisition of a folded conformation, the optimization rate of B27-peptide complexes, and their quality control in the endoplasmic reticulum, all of which largely depend on the ways in which mutations alter peptide binding, without excluding additional effects on interactions with tapasin or other proteins involved in folding and export. The similarity of the generally disease-associated B*2707 to nondisease-associated subtypes in all the features analyzed suggests that molecular properties other than antigen presentation may not currently explain the relationship between HLA-B27 polymorphism and ankylosing spondylitis.
Collapse
Affiliation(s)
- Begoña Galocha
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
38
|
Chapman DC, Williams DB. ER quality control in the biogenesis of MHC class I molecules. Semin Cell Dev Biol 2010; 21:512-9. [DOI: 10.1016/j.semcdb.2009.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 11/17/2022]
|
39
|
Rosner C, Kruse PH, Lübke T, Walter L. Erratum to: rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 2010; 62:409-18. [PMID: 20445972 PMCID: PMC3128699 DOI: 10.1007/s00251-010-0447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding alpha1 and alpha2 domains, suggesting failure of peptide binding is responsible for retaining 'intracellular' Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.
Collapse
Affiliation(s)
- Cornelia Rosner
- Abteilung Primatengenetik, Deutsches Primatenzentrum-Leibniz, Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
40
|
Rosner C, Kruse PH, Lübke T, Walter L. Rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 2010; 62:149-58. [PMID: 20151120 PMCID: PMC2827799 DOI: 10.1007/s00251-010-0424-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/18/2010] [Indexed: 11/16/2022]
Abstract
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.
Collapse
Affiliation(s)
- Cornelia Rosner
- Abteilung Primatengenetik, Deutsches Primatenzentrum--Leibniz Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
Praveen PVK, Yaneva R, Kalbacher H, Springer S. Tapasin edits peptides on MHC class I molecules by accelerating peptide exchange. Eur J Immunol 2010; 40:214-24. [PMID: 20017190 DOI: 10.1002/eji.200939342] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) protein tapasin is essential for the loading of high-affinity peptides onto MHC class I molecules. It mediates peptide editing, i.e. the binding of peptides of successively higher affinity until class I molecules pass ER quality control and exit to the cell surface. The molecular mechanism of action of tapasin is unknown. We describe here the reconstitution of tapasin-mediated peptide editing on class I molecules in the lumen of microsomal membranes. We find that in a competitive situation between high- and low-affinity peptides, tapasin mediates the binding of the high-affinity peptide to class I by accelerating the dissociation of the peptide from an unstable intermediate of the binding reaction.
Collapse
Affiliation(s)
- P V K Praveen
- Biochemistry and Cell Biology, Jacobs University Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
42
|
Future challenges in colloid and interfacial science. Colloid Polym Sci 2010; 288:123-131. [PMID: 20098719 PMCID: PMC2808514 DOI: 10.1007/s00396-009-2176-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 11/17/2022]
Abstract
This article deals with topics where I expect special future challenges, exemplifying these by experiments out of my own department. One area where I expect large progress also in view of many technical developments in the past concerns the understanding of the structure of fluid interfaces at the atomic level. It is shown by non-linear optical spectroscopies that the free water surface is ice-like and can be “liquefied” by ion adsorption. X-ray fluorescence from the interface demonstrates that ion binding is very specific which cannot be explained by existing theories. A second major area are nonequilibrium features, and one of the old and new ones here is nucleation and growth. This presentation concentrates on effects produced by ultrasound, a well-defined trigger of gas bubble formation. It exhibits high potential for chemistry at extreme conditions but with a reactor at normal conditions. It has special importance for treatment of surfaces that can be also manipulated via controlled surface energies. A third area will concern complex and smart systems with multiple functions in materials and biosciences. As next generation, I anticipate those with feedback control, and examples on this are self-repairing coatings.
Collapse
|
43
|
Peptide binding to MHC class I and II proteins: New avenues from new methods. Mol Immunol 2010; 47:649-57. [DOI: 10.1016/j.molimm.2009.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 01/27/2023]
|
44
|
Calreticulin-dependent recycling in the early secretory pathway mediates optimal peptide loading of MHC class I molecules. EMBO J 2009; 28:3730-44. [PMID: 19851281 DOI: 10.1038/emboj.2009.296] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 09/14/2009] [Indexed: 01/27/2023] Open
Abstract
Calreticulin is a lectin chaperone of the endoplasmic reticulum (ER). In calreticulin-deficient cells, major histocompatibility complex (MHC) class I molecules travel to the cell surface in association with a sub-optimal peptide load. Here, we show that calreticulin exits the ER to accumulate in the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi, together with sub-optimally loaded class I molecules. Calreticulin that lacks its C-terminal KDEL retrieval sequence assembles with the peptide-loading complex but neither retrieves sub-optimally loaded class I molecules from the cis-Golgi to the ER, nor supports optimal peptide loading. Our study, to the best of our knowledge, demonstrates for the first time a functional role of intracellular transport in the optimal loading of MHC class I molecules with antigenic peptide.
Collapse
|
45
|
Palankar R, Skirtach AG, Kreft O, Bédard M, Garstka M, Gould K, Möhwald H, Sukhorukov GB, Winterhalter M, Springer S. Controlled intracellular release of peptides from microcapsules enhances antigen presentation on MHC class I molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2168-2176. [PMID: 19644923 DOI: 10.1002/smll.200900809] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To understand the time course of action of any small molecule inside a single cell, one would deposit a defined amount inside the cell and initiate its activity at a defined moment. An elegant way to achieve this is to encapsulate the molecule in a micrometer-sized reservoir, introduce it into a cell, remotely open its wall by a laser pulse, and then follow the biological response by microscopy. The validity of this approach is validated here using microcapsules with defined walls that are doped with metallic nanoparticles so as to enable them to be opened with an infrared laser. The capsules are loaded with a fluorescent antigenic peptide and introduced into mammalian cultured cells where, upon laser-induced release, the peptide binds to major histocompatibility complex (MHC) class I proteins and elicits their cell surface transport. The concept of releasing a drug inside a cell and following its action is applicable to many problems in cell biology and medicine.
Collapse
|
46
|
Abstract
The presentation of antigenic peptides by class I molecules of the major histocompatibility complex begins in the endoplasmic reticulum (ER) where the co-ordinated action of molecular chaperones, folding enzymes and class I-specific factors ensures that class I molecules are loaded with high-affinity peptide ligands that will survive prolonged display at the cell surface. Once assembled, class I molecules are released from the quality-control machinery of the ER for export to the plasma membrane where they undergo dynamic endocytic cycling and turnover. We review recent progress in our understanding of class I assembly, anterograde transport and endocytosis and highlight some of the events targeted by viruses as a means to evade detection by cytotoxic T cells and natural killer cells.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
47
|
Schneeweiss C, Garstka M, Smith J, Hütt MT, Springer S. The mechanism of action of tapasin in the peptide exchange on MHC class I molecules determined from kinetics simulation studies. Mol Immunol 2009; 46:2054-63. [DOI: 10.1016/j.molimm.2009.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 01/08/2023]
|