1
|
Llancalahuen FM, Vallejos A, Aravena D, Prado Y, Gatica S, Otero C, Simon F. α1-Adrenergic Stimulation Increases Platelet Adhesion to Endothelial Cells Mediated by TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:65-82. [PMID: 37093422 DOI: 10.1007/978-3-031-26163-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Stimulation of a1-adrenergic nervous system is increased during systemic inflammation and other pathological conditions with the consequent adrenergic receptors (ARs) activation. It has been reported that a1-stimulation contributes to coagulation since a1-AR blockers inhibit coagulation and its organic consequences. Also, coagulation induced by a1-AR stimulation can be greatly decreased using a1-AR blockers. In health, endothelial cells (ECs) perform anticoagulant actions at cellular and molecular level. However, during inflammation, ECs turn dysfunctional promoting a procoagulant state. Endothelium-dependent coagulation progresses at cellular and molecular levels, promoting endothelial acquisition of procoagulant properties to potentiate coagulation by means of prothrombotic and antifibrinolytic proteins expression increase in ECs releasing them to circulation, the thrombus formation is strengthened. Calcium signaling is a main feature of coagulation. Inhibition of ion channels involved in Ca2+ entry severely decreases coagulation. The transient receptor potential canonical 6 (TRPC6) is a non-selective Ca2+-permeable ion channel. TRPC6 activity is induced by diacylglycerol, suggesting that is regulated by a1-ARs. Furthermore, a1-ARs stimulation elicits a TRPC-like current in rat mesenteric artery smooth muscle and mesangial cells. However, whether TRPC6 could promote an ECs-mediated platelet adhesion induced by a1-adrenergic stimulation is currently not known. Therefore, the aim of this study was to examine if the TRPC6 calcium channel mediates platelet adhesion induced by a1-adrenergic stimulation. Our results suggest that platelet adhesion to ECs is enhanced by the a1-adrenergic stimulation evoked by phenylephrine mediated by TRPC6 activity. We conclude that TRPC6 is a molecular determinant in platelet adhesion to ECs with implications in systemic inflammatory diseases treatment.
Collapse
Affiliation(s)
- Felipe M Llancalahuen
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejando Vallejos
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
2
|
Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang X, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M. Myocardial TRPC6-mediated Zn 2+ influx induces beneficial positive inotropy through β-adrenoceptors. Nat Commun 2022; 13:6374. [PMID: 36289215 PMCID: PMC9606288 DOI: 10.1038/s41467-022-34194-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates β-adrenoceptor (βAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated βAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting β-arrestin-mediated βAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.
Collapse
Affiliation(s)
- Sayaka Oda
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Kazuhiro Nishiyama
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yuka Furumoto
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yohei Yamaguchi
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Akiyuki Nishimura
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Xiaokang Tang
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Yuri Kato
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Takuro Numaga-Tomita
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Toshiyuki Kaneko
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Supachoke Mangmool
- grid.10223.320000 0004 1937 0490Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Takuya Kuroda
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Reishin Okubo
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Makoto Sanbo
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Masumi Hirabayashi
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Yoji Sato
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Yasuaki Nakagawa
- grid.258799.80000 0004 0372 2033Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Koichiro Kuwahara
- grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Ryu Nagata
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
| | - Gentaro Iribe
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Yasuo Mori
- grid.258799.80000 0004 0372 2033Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 Japan
| | - Motohiro Nishida
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan ,grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
3
|
Lattanzi R, Miele R. Prokineticin-Receptor Network: Mechanisms of Regulation. Life (Basel) 2022; 12:172. [PMID: 35207461 PMCID: PMC8877203 DOI: 10.3390/life12020172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Prokineticins are a new class of chemokine-like peptides that bind their G protein-coupled receptors, PKR1 and PKR2, and promote chemotaxis and the production of pro-inflammatory cytokines following tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms of prokineticins pathway regulation that, like other chemokines, include: genetic polymorphisms; mRNA splice modulation; expression regulation at transcriptional and post-transcriptional levels; prokineticins interactions with cell-surface glycosaminoglycans; PKRs degradation, localization, post-translational modifications and oligomerization; alternative signaling responses; binding to pharmacological inhibitors. Understanding these mechanisms, which together exert substantial biochemical control and greatly enhance the complexity of the prokineticin-receptor network, leads to novel opportunities for therapeutic intervention. In this way, besides targeting prokineticins or their receptors directly, it could be possible to indirectly influence their activity by modulating their expression and localization or blocking the downstream signaling pathways.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
4
|
Ishida H, Saito SY, Dohi N, Ishikawa T. Mechanism of Membrane Depolarization Involved in α 1A-Adrenoceptor-Mediated Contraction in Rat Tail and Iliac Arteries. Biol Pharm Bull 2019; 42:1741-1745. [PMID: 31582662 DOI: 10.1248/bpb.b19-00473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies have shown that phenylephrine-induced contraction of cutaneous arteries is primarily mediated via α1A-adrenoceptors, but not α1D-adrenoceptors that generally mediate vascular contraction, and that the larger part of the contraction is induced in a voltage-dependent Ca2+ channel (VDCC)-independent manner. Here, we investigated the mechanism underlying the smaller part of the α1A-adrenoceptor-mediated contraction, i.e., VDCC-dependent one, in cutaneous arteries. Isometric contraction was measured with wire myograph in endothelium-denuded tail and iliac arterial rings isolated from male Wistar rats. LOE908 (10 µM), a cation channel blocker, partially inhibited the contraction induced by phenylephrine in tail and iliac arteries. Nifedipine (10 µM) further suppressed the phenylephrine-induced contraction that remained in the presence of LOE908 (10 µM) in iliac arteries but barely in tail arteries, suggesting that phenylephrine-induced depolarization in tail arteries is due to the activation of LOE908-sensitive cation channels. In iliac arteries, the contraction induced by A-61603, a specific α1A-adrenoceptor agonist, was also partially inhibited by LOE908 (10 µM); however, nifedipine had little effect on the A-61603-induced contraction that remained in the presence of LOE908 (10 µM), suggesting that depolarization mediated via α1A-adrenoceptors is due to the activation of LOE908-sensitive cation channels even in iliac arteries. These results suggest that membrane depolarization mediated via α1Α-adrenoceptors is caused by cation influx through LOE908-sensitive cation channels. Less contribution of VDCC to phenylephrine-induced contraction in tail arteries compared to in iliac arteries is likely due to that α1Α-adrenoceptor-mediated activation of VDCC is caused only by depolarization via cation influx through LOE908-sensitive cation channels.
Collapse
Affiliation(s)
- Hirotake Ishida
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Shin-Ya Saito
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Naoki Dohi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Ishida H, Saito SY, Ishikawa T. α1A-Adrenoceptors, but not α1B- or α1D-adrenoceptors, contribute to enhanced contractile response to phenylephrine in cooling conditions in the rat tail artery. Eur J Pharmacol 2018; 838:120-128. [DOI: 10.1016/j.ejphar.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
|
6
|
Sun XL, Yuan JF, Jin T, Cheng XQ, Wang Q, Guo J, Zhang W, Zhang Y, Lu L, Zhang Z. Physical and functional interaction of Snapin with Cav1.3 calcium channel impacts channel protein trafficking in atrial myocytes. Cell Signal 2016; 30:118-129. [PMID: 27915047 DOI: 10.1016/j.cellsig.2016.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The L-type Ca2+ channel (LTCC) Cav1.3 plays a critical role in generating electrical activity in atrial myocytes and cardiac pacemaker cells. However, the molecular and functional basis of Cav1.3 modulation in atrial myocytes has not yet been fully understood. By using the yeast two-hybrid system (Y2H), a Cav1.3-associated protein was screened, which was identified as Snapin. Physical interaction and co-localization between Snapin and Cav1.3 were then confirmed in both the heterologous expression system and mouse atrial myocytes. Direct interaction between them was additionally addressed in a GST pull down assay. Furthermore, both total and membrane expressions of Cav1.3 were significantly impaired by Snapin overexpression, resulting in the ubiquitin-proteasomal degradation of Cav1.3 and a consequent reduction of the densities of whole-cell ICa-L. Snapin-induced down-regulation of Cav1.3 was reversed by SNAP-23 competitively. What is more important is that the depressed-expression of Cav1.3 paralleled with enhanced-expression of Snapin was documented in atrial samples from atrial fibrillation (AF) patients. Our results provide the evidence of a direct regulatory role of Snapin on Cav1.3 channels in atrial myocytes, and highlight a potential role of Snapin in the regulation of Cav1.3 in atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ju-Fang Yuan
- Anesthesia Department of The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Tao Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Qing Cheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiang Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; Department of Nephrology at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
8
|
Bouron A, Chauvet S, Dryer S, Rosado JA. Second Messenger-Operated Calcium Entry Through TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:201-49. [PMID: 27161231 DOI: 10.1007/978-3-319-26974-0_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca(2+). This latter response can reflect the entry of Ca(2+) through open TRPC6 channels but it can also be due to the Na(+)/Ca(2+) exchanger (operating in its reverse mode) or voltage-gated Ca(2+) channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, 38000, Grenoble, France.
- CNRS, iRTSV-LCBM, 38000, Grenoble, France.
| | - Sylvain Chauvet
- Université Grenoble Alpes, 38000, Grenoble, France
- CNRS, iRTSV-LCBM, 38000, Grenoble, France
| | - Stuart Dryer
- University of Houston, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
Song J, Li J, Liu HD, Liu W, Feng Y, Zhou XT, Li JD. Snapin interacts with G-protein coupled receptor PKR2. Biochem Biophys Res Commun 2015; 469:501-6. [PMID: 26687946 DOI: 10.1016/j.bbrc.2015.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 01/21/2023]
Abstract
Mutations in Prokineticin receptor 2 (PKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, characterized by delayed puberty and infertility. In this study, we performed yeast two-hybrid screening by using PKR2 C-terminus (amino acids 333-384) as a bait, and identified Snapin as a novel interaction partner for PKR2. The interaction of Snapin and PKR2 was confirmed in GST pull-down and co-immunoprecipitation studies. We further demonstrated that two α-helix domains in Snapin are required for the interaction. And the interactive motifs of PKR2 were mapped to YFK (343-345) and HWR (351-353), which shared a similar sequence of two aromatic amino acids followed by a basic amino acid. Disruption of Snapin-PKR2 interaction did not affect PKR2 signaling, but increased the ligand-induced degradation, implying a role of Snapin in the trafficking of PKR2.
Collapse
Affiliation(s)
- Jian Song
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jie Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hua-die Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wei Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Tao Zhou
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Immunology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Jia-Da Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Chauvet S, Boonen M, Chevallet M, Jarvis L, Abebe A, Benharouga M, Faller P, Jadot M, Bouron A. The Na+/K+-ATPase and the amyloid-beta peptide aβ1-40 control the cellular distribution, abundance and activity of TRPC6 channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2957-65. [PMID: 26348127 DOI: 10.1016/j.bbamcr.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
The Na(+)/K(+)-ATPase interacts with the non-selective cation channels TRPC6 but the functional consequences of this association are unknown. Experiments performed with HEK cells over-expressing TRPC6 channels showed that inhibiting the activity of the Na(+)/K(+)-ATPase with ouabain reduced the amount of TRPC6 proteins and depressed Ca(2+) entry through TRPC6. This effect, not mimicked by membrane depolarization with KCl, was abolished by sucrose and bafilomycin-A, and was partially sensitive to the intracellular Ca(2+) chelator BAPTA/AM. Biotinylation and subcellular fractionation experiments showed that ouabain caused a multifaceted redistribution of TRPC6 to the plasma membrane and to an endo/lysosomal compartment where they were degraded. The amyloid beta peptide Aβ(1-40), another inhibitor of the Na(+)/K(+)-ATPase, but not the shorter peptide Aβ1-16, reduced TRPC6 protein levels and depressed TRPC6-mediated responses. In cortical neurons from embryonic mice, ouabain, veratridine (an opener of voltage-gated Na(+) channel), and Aβ(1-40) reduced TRPC6-mediated Ca(2+) responses whereas Aβ(1-16) was ineffective. Furthermore, when Aβ(1-40) was co-added together with zinc acetate it could no longer control TRPC6 activity. Altogether, this work shows the existence of a functional coupling between the Na(+)/K(+)-ATPase and TRPC6. It also suggests that the abundance, distribution and activity of TRPC6 can be regulated by cardiotonic steroids like ouabain and the naturally occurring peptide Aβ(1-40) which underlines the pathophysiological significance of these processes.
Collapse
Affiliation(s)
- Sylvain Chauvet
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Marielle Boonen
- URPhyM-Laboratoire de Chimie Physiologique, University of Namur, Belgium
| | - Mireille Chevallet
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Louis Jarvis
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Addis Abebe
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Mohamed Benharouga
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Peter Faller
- CNRS, Laboratoire de Chimie de Coordination, Toulouse, France
| | - Michel Jadot
- URPhyM-Laboratoire de Chimie Physiologique, University of Namur, Belgium
| | - Alexandre Bouron
- Université Grenoble Alpes, F-38000 Grenoble, France; CNRS, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France.
| |
Collapse
|
11
|
LIU CHANG, QI YING, MA YANPING, HE RONG, SUN ZHENGRONG, HUANG YUJING, JI YAOHUA, RUAN QIANG. Interaction between the human cytomegalovirus-encoded UL142 and cellular Snapin proteins. Mol Med Rep 2014; 11:1069-72. [DOI: 10.3892/mmr.2014.2829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
|
12
|
Snapin, positive regulator of stimulation- induced Ca²⁺ release through RyR, is necessary for HIV-1 replication in T cells. PLoS One 2013; 8:e75297. [PMID: 24130701 PMCID: PMC3794929 DOI: 10.1371/journal.pone.0075297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022] Open
Abstract
To identify critical host factors necessary for human immunodeficiency virus 1 (HIV-1) replication, large libraries of short-peptide-aptamers were expressed retrovirally. The target of one inhibitor peptide, Pep80, identified in this screen was determined to be Snapin, a protein associated with the soluble N-ethyl maleimide sensitive factor adaptor protein receptor (SNARE) complex that is critical for calcium-dependent exocytosis during neurotransmission. Pep80 inhibited Ca2+ release from intracellular stores and blocked downstream signaling by direct interruption of the association between Snapin and an intracellular calcium release channel, the ryanodine receptor (RyR). NFAT signaling was preferentially abolished by Pep80. Expression of Snapin overcame Pep80-mediated inhibition of Ca2+/NFAT signaling and HIV-1 replication. Furthermore, Snapin induced HIV-1 replication in primary CD4+ T cells. Thus, through its interaction with RyR, Snapin is a critical regulator of Ca2+ signaling and T cell activation. Use of the genetically selected intracellular aptamer inhibitors allowed us to define unique mechanisms important to HIV-1 replication and T cell biology.
Collapse
|
13
|
LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med 2013; 45:e36. [PMID: 23949442 PMCID: PMC3789260 DOI: 10.1038/emm.2013.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/20/2013] [Accepted: 06/10/2013] [Indexed: 01/17/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.
Collapse
|
14
|
Modulation of the cellular distribution of human cytomegalovirus helicase by cellular factor Snapin. J Virol 2013; 87:10628-40. [PMID: 23885069 DOI: 10.1128/jvi.01657-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV UL105 is believed to encode the helicase of the DNA replication machinery that needs to localize in the nuclei, the site of viral DNA synthesis. No host factors that interact with UL105 have been identified. In this study, we show that UL105 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and associated with cellular vesicles. UL105 was found to interact with Snapin in both the yeast two-hybrid screen and coimmunoprecipitation experiments in HCMV-infected cells. The nuclear and cytoplasmic levels of UL105 were decreased and increased in cells overexpressing Snapin, respectively, while the levels of UL105 in the nuclei and cytoplasm were increased and decreased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. Our results provide the first direct evidence to suggest that Snapin interacts with UL105 and alters its cellular distribution, leading to modulation of viral DNA synthesis and progeny production. Our study further suggests that modulation of the cellular distribution of viral helicase by Snapin may represent a possible mechanism for regulating HCMV genomic DNA synthesis, a key step during herpesvirus lytic and persistent infections.
Collapse
|
15
|
Morishima S, Anisuzzaman ASM, Uwada J, Yoshiki H, Muramatsu I. Comparison of subcellular distribution and functions between exogenous and endogenous M1 muscarinic acetylcholine receptors. Life Sci 2013; 93:17-23. [DOI: 10.1016/j.lfs.2013.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/28/2013] [Accepted: 05/13/2013] [Indexed: 02/01/2023]
|
16
|
Horinouchi T, Terada K, Higashi T, Miwa S. Endothelin Receptor Signaling: New Insight Into Its Regulatory Mechanisms. J Pharmacol Sci 2013; 123:85-101. [DOI: 10.1254/jphs.13r02cr] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Abstract
The molecular mechanisms underlying the homeostatic modulation of presynaptic neurotransmitter release are largely unknown. We have previously used an electrophysiology-based forward genetic screen to assess the function of >400 neuronally expressed genes for a role in the homeostatic control of synaptic transmission at the neuromuscular junction of Drosophila melanogaster. This screen identified a critical function for dysbindin, a gene linked to schizophrenia in humans (Dickman and Davis, 2009). Biochemical studies in other systems have shown that Snapin interacts with Dysbindin, prompting us to test whether Snapin might be involved in the mechanisms of synaptic homeostasis. Here, we demonstrate that loss of snapin blocks the homeostatic modulation of presynaptic vesicle release following inhibition of postsynaptic glutamate receptors. This is true for both the rapid induction of synaptic homeostasis induced by pharmacological inhibition of postsynaptic glutamate receptors, and the long-term expression of synaptic homeostasis induced by the genetic deletion of the muscle-specific GluRIIA glutamate receptor subunit. Loss of snapin does not alter baseline synaptic transmission, synapse morphology, synapse growth, or the number or density of active zones, indicating that the block of synaptic homeostasis is not a secondary consequence of impaired synapse development. Additional genetic evidence suggests that snapin functions in concert with dysbindin to modulate vesicle release and possibly homeostatic plasticity. Finally, we provide genetic evidence that the interaction of Snapin with SNAP25, a component of the SNARE complex, is also involved in synaptic homeostasis.
Collapse
|
18
|
Horinouchi T, Higa T, Aoyagi H, Nishiya T, Terada K, Miwa S. Adenylate cyclase/cAMP/protein kinase A signaling pathway inhibits endothelin type A receptor-operated Ca²⁺ entry mediated via transient receptor potential canonical 6 channels. J Pharmacol Exp Ther 2011; 340:143-51. [PMID: 22001259 DOI: 10.1124/jpet.111.187500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Receptor-operated Ca²⁺ entry (ROCE) via transient receptor potential canonical channel 6 (TRPC6) is important machinery for an increase in intracellular Ca²⁺ concentration triggered by the activation of G(q) protein-coupled receptors. TRPC6 is phosphorylated by various protein kinases including protein kinase A (PKA). However, the regulation of TRPC6 activity by PKA is still controversial. The purpose of this study was to elucidate the role of adenylate cyclase/cAMP/PKA signaling pathway in the regulation of G(q) protein-coupled endothelin type A receptor (ET(A)R)-mediated ROCE via TRPC6. For this purpose, human embryonic kidney 293 (HEK293) cells stably coexpressing human ET(A)R and TRPC6 (wild type) or its mutants possessing a single point mutation of putative phosphorylation sites for PKA were used to analyze ROCE and amino acids responsible for PKA-mediated phosphorylation of TRPC6. Ca²⁺ measurements with thapsigargin-induced Ca²⁺-depletion/Ca²⁺-restoration protocol to estimate ROCE showed that the stimulation of ET(A)R induced marked ROCE in HEK293 cells expressing TRPC6 compared with control cells. The ROCE was inhibited by forskolin and papaverine to activate the cAMP/PKA pathway, whereas it was potentiated by Rp-8-bromoadenosine-cAMP sodium salt, a PKA inhibitor. The inhibitory effects of forskolin and papaverine were partially cancelled by replacing Ser28 (TRPC6(S28A)) but not Thr69 (TRPC6(T69A)) of TRPC6 with alanine. In vitro kinase assay with Phos-tag biotin to determine the phosphorylation level of TRPC6 revealed that wild-type and mutant (TRPC6(S28A) and TRPC6(T69A)) TRPC6 proteins were phosphorylated by PKA, but the phosphorylation level of these mutants was lower (approximately 50%) than that of wild type. These results suggest that TRPC6 is negatively regulated by the PKA-mediated phosphorylation of Ser28 but not Thr69.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Human cytomegalovirus primase UL70 specifically interacts with cellular factor Snapin. J Virol 2011; 85:11732-41. [PMID: 21917956 DOI: 10.1128/jvi.05357-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV). HCMV UL70 is believed to encode the primase of the DNA replication machinery, a function which requires localization in the nucleus, the site of viral DNA synthesis. No host factors that interact with UL70 have been reported. In this study, we provide the first direct evidence that UL70 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and is associated with cellular vesicles. The interaction between UL70 and Snapin was identified in both the two-hybrid screen in yeast and coimmunoprecipitation in human cells. The nuclear import of UL70 was decreased in cells overexpressing Snapin and increased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. In contrast, no significant difference in the nuclear level of UL70, viral DNA synthesis, and progeny production was found among the parental cells and cells that either expressed a control empty vector or were treated with control siRNA molecules that did not recognize any viral or cellular transcripts. Our results suggest that Snapin may play a key role in regulating the cellular localization of UL70 in HCMV, leading to modulation of viral DNA synthesis and progeny production.
Collapse
|
20
|
Bollimuntha S, Selvaraj S, Singh BB. Emerging roles of canonical TRP channels in neuronal function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:573-93. [PMID: 21290317 DOI: 10.1007/978-94-007-0265-3_31] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca(2+) signaling in neurons is intimately associated with the regulation of vital physiological processes including growth, survival and differentiation. In neurons, Ca(2+) elicits two major functions. First as a charge carrier, Ca(2+) reveals an indispensable role in information relay via membrane depolarization, exocytosis, and the release of neurotransmitters. Second on a global basis, Ca(2+) acts as a ubiquitous intracellular messenger to modulate neuronal function. Thus, to mediate Ca(2+)-dependent physiological events, neurons engage multiple mode of Ca(2+) entry through a variety of Ca(2+) permeable plasma membrane channels. Here we discuss a subset of specialized Ca(2+)-permeable non-selective TRPC channels and summarize their physiological and pathological role in the context of excitable cells. TRPC channels are predominately expressed in neuronal cells and are activated through complex mechanisms, including second messengers and store depletion. A growing body of evidence suggests a prime contribution of TRPC channels in regulating fundamental neuronal functions. TRPC channels have been shown to be associated with neuronal development, proliferation and differentiation. In addition, TRPC channels have also been suggested to have a potential role in regulating neurosecretion, long term potentiation, and synaptic plasticity. During the past years, numerous seminal discoveries relating TRPC channels to neurons have constantly emphasized on the significant contribution of this group of ion channels in regulating neuronal function. Here we review the major groundbreaking work that has uniquely placed TRPC channels in a pivotal position for governing neuronal Ca(2+) signaling and associated physiological responses.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA.
| | | | | |
Collapse
|
21
|
Mohl MC, Iismaa SE, Xiao XH, Friedrich O, Wagner S, Nikolova-Krstevski V, Wu J, Yu ZY, Feneley M, Fatkin D, Allen DG, Graham RM. Regulation of murine cardiac contractility by activation of α1A-adrenergic receptor-operated Ca2+ entry. Cardiovasc Res 2011; 91:310-9. [DOI: 10.1093/cvr/cvr081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Björk K, Svenningsson P. Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 2011; 51:211-42. [PMID: 20887195 DOI: 10.1146/annurev-pharmtox-010510-100520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoamines and their cognate receptors are widespread in the central nervous system and are vital for normal brain function. Dysfunction in these systems underlies several psychiatric and neurological disease states, and consequently monoamines are targets of a host of pharmacotherapies. This review provides an overview on how monoamine receptors are regulated by adaptor proteins and lipid rafts with emphasis on interactions in nerve cells. Monoamine receptors have prominent intracellular loops that provide binding sites for adaptor proteins. Receptor function is further modulated by cholesterol and submembranous microdomains termed lipid rafts. These interactions determine several facets of G protein-coupled receptor (GPCR) function including trafficking, localization, and signaling. Possible roles of adaptor proteins and lipid rafts in disease states and in mediating actions of drugs and therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Karl Björk
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
23
|
Regulation of TRP signalling by ion channel translocation between cell compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:545-72. [PMID: 21290316 DOI: 10.1007/978-94-007-0265-3_30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The TRP (transient receptor potential) family of ion channels is a heterogeneous family of calcium permeable cation channels that is subdivided into seven subfamilies: TRPC ("Canonical"), TRPV ("Vanilloid"), TRPM ("Melastatin"), TRPA ("Ankyrin"), TRPN ("NOMPC"), TRPP ("Polycystin"), and TRPML ("Mucolipin"). TRP-mediated ion currents across the cell membrane are determined by the single channel conductance, by the fraction of activated channels, and by the total amount of TRP channels present at the plasma membrane. In many cases, the amount of TRP channels at the plasma membrane is altered in response to physiological stimuli by translocation of channels to and from the plasma membrane. Regulated translocation has been described for channels of the TRPC, TRPV, TRPM, and TRPA family and is achieved by vesicular transport of these channels along cellular exocytosis and endocytosis pathways. This review summarizes the stimuli and signalling cascades involved in the translocation of TRP channels and highlights interactions of TRP channels with proteins of the endocytosis and exocytosis machineries.
Collapse
|
24
|
Nishimune A, Suzuki F, Yoshiki H, Morishima S, Muramatsu I. Identification of Cysteine-Rich Epidermal Growth Factor–Like Domain 1α (CRELD1α) as a Novel α1A-Adrenoceptor–Down-Regulating Protein and Establishment of an α1L-Adrenoceptor–Expressing Cell Line. J Pharmacol Sci 2010; 113:169-81. [DOI: 10.1254/jphs.10093fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
25
|
Snapin associates with late endocytic compartments and interacts with late endosomal SNAREs. Biosci Rep 2009; 29:261-9. [PMID: 19335339 DOI: 10.1042/bsr20090043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Late endocytic membrane trafficking delivers target materials and newly synthesized hydrolases into lysosomes and is critical for maintaining an efficient degradation process and cellular homoeostasis. Although some features of late endosome-lysosome trafficking have been described, the mechanisms underlying regulation of this event remain to be elucidated. Our previous studies showed that Snapin, as a SNAP25 (25 kDa synaptosome-associated protein)-binding protein, plays a critical role in priming synaptic vesicles for synchronized fusion in neurons. In the present study, we report that Snapin also associates with late endocytic membranous organelles and interacts with the late endosome-targeted SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex. Using a genetic mouse model, we further discovered that Snapin is required to maintain a proper balance of the late endocytic protein LAMP-1 (lysosome-associated membrane protein-1) and late endosomal SNARE proteins syntaxin 8 and Vti1b (vesicle transport through interaction with target SNAREs homologue 1b). Deleting the snapin gene in mice selectively led to the accumulation of these proteins in late endocytic organelles. Thus our present study suggests that Snapin serves as an important regulator of the late endocytic fusion machinery, in addition to its established role in regulating synaptic vesicle fusion.
Collapse
|
26
|
Rodriguez-Fernandez IA, Dell'Angelica EC. A data-mining approach to rank candidate protein-binding partners-The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Inherit Metab Dis 2009; 32:190-203. [PMID: 19083121 PMCID: PMC2756288 DOI: 10.1007/s10545-008-1014-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The study of protein-protein interactions is a powerful approach to uncovering the molecular function of gene products associated with human disease. Protein-protein interaction data are accumulating at an unprecedented pace owing to interactomics projects, although it has been recognized that a significant fraction of these data likely represents false positives. During our studies of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a protein complex involved in protein trafficking and containing the products of genes mutated in Hermansky-Pudlak syndrome, we faced the problem of having too many candidate binding partners to pursue experimentally. In this work, we have explored ways of efficiently gathering high-quality information about candidate binding partners and presenting the information in a visually friendly manner. We applied the approach to rank 70 candidate binding partners of human BLOC-1 and 102 candidates of its counterpart from Drosophila melanogaster. The top candidate for human BLOC-1 was the small GTPase encoded by the RAB11A gene, which is a paralogue of the Rab38 and Rab32 proteins in mammals and the lightoid gene product in flies. Interestingly, genetic analyses in D. melanogaster uncovered a synthetic sick/lethal interaction between Rab11 and lightoid. The data-mining approach described herein can be customized to study candidate binding partners for other proteins or possibly candidates derived from other types of 'omics' data.
Collapse
Affiliation(s)
- I A Rodriguez-Fernandez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | |
Collapse
|
27
|
Hu G, Oboukhova EA, Kumar S, Sturek M, Obukhov AG. Canonical transient receptor potential channels expression is elevated in a porcine model of metabolic syndrome. Mol Endocrinol 2009; 23:689-99. [PMID: 19221052 DOI: 10.1210/me.2008-0350] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasma epinephrine and heart rate are elevated in metabolic syndrome, suggesting enhanced catecholamine secretion from the adrenal medulla. Canonical transient receptor potential (TRPC) channels are implicated in mediating hormone-induced Ca(2+) influx and catecholamine secretion in adrenomedullary chromaffin cells. We studied the pattern of TRPC expression in the pig adrenal medulla and investigated whether adrenal TRPC expression is altered in prediabetic metabolic syndrome Ossabaw miniature pigs. We used a combination of molecular biological, biochemical, and fluorescence imaging techniques. We determined the sequence of pig TRPC1 and TRPC3-7 channels. We found that the pig adrenal medulla expressed predominantly TRPC1, TRPC5, and TRPC6 transcripts. The expression level of these TRPCs was significantly elevated in the adrenal medulla from pigs with metabolic syndrome. Interestingly, aldosterone, which is endogenously secreted in the adjacent adrenal cortex, increased TRPC1, TRPC5, and TRPC6 expression in adrenal chromaffin cells isolated from metabolic syndrome but not control pigs. Spironolactone, a blocker of mineralocorticoid receptors, inhibited the aldosterone effect. Dexamethasone also increased TRPC5 expression in metabolic syndrome chromaffin cells. The amplitude of hormone-induced divalent cation influx correlated with the level of TRPC expression in adrenal chromaffin cells. Orai1/Stim1 protein expression was not significantly altered in the metabolic syndrome adrenal medulla when compared with the control. We propose that in metabolic syndrome, abnormally elevated adrenal TRPC expression may underlie increased plasma epinephrine and heart rate. The excess of plasma catecholamines and increased heart rate are risk factors for cardiovascular disease. Thus, TRPCs are potential therapeutic targets in the fight against cardiovascular disease.
Collapse
Affiliation(s)
- Guoqing Hu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
28
|
Matsuoka H, Harada K, Ikeda T, Uetsuki K, Sata T, Warashina A, Inoue M. Ca2+ pathway involved in the refilling of store sites in rat adrenal medullary cells. Am J Physiol Cell Physiol 2009; 296:C889-99. [PMID: 19176761 DOI: 10.1152/ajpcell.00439.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has been suggested that store-operated Ca(2+) entry (SOC) facilitates catecholamine secretion and synthesis in bovine adrenal medullary (AM) cells. However, there has been no experimental result clearly showing that cation channel activity is enhanced by store Ca(2+) depletion. Thus the present experiments were undertaken to address the issue of whether rat AM cells have SOC channels. Inhibition of the sarco(endo)plasmic reticulum Ca(2+) (SERCA) pump resulted in a sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in rat AM cells. This increase was completely suppressed by 2 mM Ni(2+) but not by 100 muM D600. A bath application of Ni(2+), but not D600, produced an outward current at -60 mV in rat AM cells, whereas exposure to a SERCA pump inhibitor did not affect either the whole cell current level or the Ni(2+)-induced outward current. The refilling of intracellular store sites was suppressed by the addition of Ni(2+) to the perfusate. RT-PCR revealed that transcripts for transient receptor potential channels 1 (TRPC1) and 5 (TRPC5) were present in rat adrenal medullas. Immunocytochemistry showed that TRPC1 channels, which have been implicated in SOC in certain types of cells, were mainly localized in the endoplasmic reticulum (ER) and not in the plasma membrane, and that STIM1, a Ca(2+) sensor in the ER, was not expressed in rat AM cells. On the basis of these results, we conclude that rat AM cells lack the SOC mechanism.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Dept. of Cell and Systems Physiology, School of Medicine, Univ. of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Copik AJ, Ma C, Kosaka A, Sahdeo S, Trane A, Ho H, Dietrich PS, Yu H, Ford APDW, Button D, Milla ME. Facilitatory interplay in alpha 1a and beta 2 adrenoceptor function reveals a non-Gq signaling mode: implications for diversification of intracellular signal transduction. Mol Pharmacol 2008; 75:713-28. [PMID: 19109357 DOI: 10.1124/mol.108.050765] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Agonist occupied alpha(1)-adrenoceptors (alpha(1)-ARs) engage several signaling pathways, including phosphatidylinositol hydrolysis, calcium mobilization, arachidonic acid release, mitogen-activated protein (MAP) kinase activation, and cAMP accumulation. The natural agonist norepinephrine (NE) activates with variable affinity and intrinsic efficacy all adrenoceptors, and in cells that coexpress alpha(1)- and beta-AR subtypes, such as cardiomyocytes, this leads to coactivation of multiple downstream pathways. This may result in pathway cross-talk with significant consequences to heart physiology and pathologic state. To dissect signaling components involved specifically in alpha(1A)- and beta(2)-AR signal interplay, we have developed a recombinant model system that mimics the levels of receptor expression observed in native cells. We followed intracellular Ca(2+) mobilization to monitor in real time the activation of both G(q) and G(s) pathways. We found that coactivation of alpha(1A)- and beta(2)-AR by the nonselective agonist NE or via a combination of the highly selective alpha(1A)-AR agonist A61603 and the beta-selective agonist isoproterenol led to increases in Ca(2+) influx from the extracellular compartment relative to stimulation with A61603 alone, with no effect on the associated transient release of Ca(2+) from intracellular stores. This effect became more evident upon examination of an alpha(1A)-AR variant exhibiting a partial defect in coupling to G(q), and we attribute it to potentiation of a non G(q)-pathway, uncovered by application of a combination of xestospongin C, an endoplasmic reticulum inositol 1,4,5-triphosphate receptor blocker, and 2-aminoethoxydiphenyl borate, a nonselective storeoperated Ca(2+) entry channel blocker. We also found that stimulation with A61603 of a second alpha(1A)-AR variant entirely unable to signal induced no Ca(2+) unless beta(2)-AR was concomitantly activated. These results may be accounted for by the presence of alpha(1A)/beta(2)-AR heterodimers or alternatively by specific adrenoceptor signal cross-talk resulting in distinct pharmacological behavior. Finally, our findings provide a new conceptual framework to rationalize outcomes from clinical studies targeting alpha- and beta-adrenoceptors.
Collapse
Affiliation(s)
- Alicja J Copik
- Inflammation Discovery, Roche Palo Alto, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lyssand JS, DeFino MC, Tang XB, Hertz AL, Feller DB, Wacker JL, Adams ME, Hague C. Blood pressure is regulated by an alpha1D-adrenergic receptor/dystrophin signalosome. J Biol Chem 2008; 283:18792-800. [PMID: 18468998 DOI: 10.1074/jbc.m801860200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypertension is a cardiovascular disease associated with increased plasma catecholamines, overactivation of the sympathetic nervous system, and increased vascular tone and total peripheral resistance. A key regulator of sympathetic nervous system function is the alpha(1D)-adrenergic receptor (AR), which belongs to the adrenergic family of G-protein-coupled receptors (GPCRs). Endogenous catecholamines norepinephrine and epinephrine activate alpha(1D)-ARs on vascular smooth muscle to stimulate vasoconstriction, which increases total peripheral resistance and mean arterial pressure. Indeed, alpha(1D)-AR KO mice display a hypotensive phenotype and are resistant to salt-induced hypertension. Unfortunately, little information exists about how this important GPCR functions because of an inability to obtain functional expression in vitro. Here, we identified the dystrophin proteins, syntrophin, dystrobrevin, and utrophin as essential GPCR-interacting proteins for alpha(1D)-ARs. We found that dystrophins complex with alpha(1D)-AR both in vitro and in vivo to ensure proper functional expression. More importantly, we demonstrate that knock-out of multiple syntrophin isoforms results in the complete loss of alpha(1D)-AR function in mouse aortic smooth muscle cells and abrogation of alpha(1D)-AR-mediated increases in blood pressure. Our findings demonstrate that syntrophin and utrophin associate with alpha(1D)-ARs to create a functional signalosome, which is essential for alpha(1D)-AR regulation of vascular tone and blood pressure.
Collapse
Affiliation(s)
- John S Lyssand
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Suzuki F. [Roles of Snapin in alpha(1A)-adrenoceptor-induced calcium influx through TRPC6 channels]. Nihon Yakurigaku Zasshi 2008; 131:357-360. [PMID: 18480566 DOI: 10.1254/fpj.131.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|