1
|
Komatsuya K, Ishikawa M, Kikuchi N, Hirabayashi T, Taguchi R, Yamamoto N, Arai M, Kasahara K. Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin. Biomedicines 2023; 12:69. [PMID: 38255176 PMCID: PMC10813660 DOI: 10.3390/biomedicines12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Platelet lipid rafts are critical membrane domains for adhesion, aggregation, and clot retraction. Lipid rafts are isolated as a detergent-resistant membrane fraction via sucrose density gradient centrifugation. The platelet detergent-resistant membrane shifted to a higher density on the sucrose density gradient upon thrombin stimulation. The shift peaked at 1 min and returned to the control level at 60 min. During this time, platelets underwent clot retraction and spreading on a fibronectin-coated glass strip. Thrombin induced the transient tyrosine phosphorylation of several proteins in the detergent-resistant membrane raft fraction and the transient translocation of fibrin and myosin to the detergent-resistant membrane raft fraction. The level of phosphatidylserine (36:1) was increased and the level of phosphatidylserine (38:4) was decreased in the detergent-resistant membrane raft fraction via the thrombin stimulation. Furthermore, Glanzmann's thrombasthenia integrin αIIbβ3-deficient platelets underwent no detergent-resistant membrane shift to a higher density upon thrombin stimulation. As the phosphorylation of the myosin regulatory light chain on Ser19 was at a high level in Glanzmann's thrombasthenia resting platelets, thrombin caused no further phosphorylation of the myosin regulatory light chain on Ser19 or clot retraction. These observations suggest that the fibrin-integrin αIIbβ3-myosin axis and compositional change of phosphatidylserine species may be required for the platelet detergent-resistant membrane shift to a higher density upon stimulation with thrombin.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Masaki Ishikawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan;
| | - Norihito Kikuchi
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Tetsuya Hirabayashi
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naomasa Yamamoto
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Morio Arai
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
- Sado General Hospital, Niigata 952-1209, Japan
| | - Kohji Kasahara
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| |
Collapse
|
2
|
Harada K, Inoue M. Muscarinic Receptor Stimulation Does Not Inhibit Voltage-dependent Ca 2+ Channels in Rat Adrenal Medullary Chromaffin Cells. Acta Histochem Cytochem 2023; 56:67-75. [PMID: 37680574 PMCID: PMC10480484 DOI: 10.1267/ahc.23-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Adrenal medullary chromaffin (AMC) and sympathetic ganglion cells are derived from the neural crest and show a similar developmental path. Thus, these two cell types have many common properties in membrane excitability and signaling. However, AMC cells function as endocrine cells while sympathetic ganglion cells are neurons. In rat sympathetic ganglion cells, muscarinic M1 and M4 receptors mediate excitation and inhibition via suppression of M-type K+ channels and suppression of voltage-dependent Ca2+ channels, respectively. On the other hand, M1 receptor stimulation in rat AMC cells also produces excitation by suppressing TWIK-related acid sensitive K+ (TASK) channels. However, whether M4 receptors are coupled with voltage-dependent Ca2+ channel suppression is unclear. We explore this issue electrophysiologically and biochemically. Electrical stimulation of nerve fibers in rat adrenal glands trans-synaptically increased the Ca2+ signal in AMC cells. This electrically evoked increased Ca2+ signal was not altered during muscarine-induced increase in Ca2+ signal, whereas it decreased significantly during a GABA-induced increase, due to a shunt effect of increased Cl- conductance. The whole-cell current recordings revealed that voltage-dependent Ca2+ currents in AMC cells were suppressed by adenosine triphosphate, but not by muscarinic agonists. The fractionation analysis and immunocytochemistry indicated that CaV1.2 Ca2+ channels and M4 receptors are located in the raft and non-raft membrane domains, respectively. We concluded that muscarinic stimulation in rat AMC cells does not produce voltage-dependent Ca2+ channel inhibition. This lack of muscarinic inhibition is at least partly due to physical separation of voltage-dependent Ca2+ channels and M4 receptors in the plasma membrane.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807–8555, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807–8555, Japan
| |
Collapse
|
3
|
Komatsuya K, Kikuchi N, Hirabayashi T, Kasahara K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2023; 24:ijms24065566. [PMID: 36982638 PMCID: PMC10058044 DOI: 10.3390/ijms24065566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Collapse
|
4
|
Hayashi Y, Tsuchiya K, Yamamoto M, Nemoto-Sasaki Y, Tanigawa K, Hama K, Ueda Y, Tanikawa T, Gohda J, Maeda K, Inoue JI, Yamashita A. N-(4-Hydroxyphenyl) Retinamide Suppresses SARS-CoV-2 Spike Protein-Mediated Cell-Cell Fusion by a Dihydroceramide Δ4-Desaturase 1-Independent Mechanism. J Virol 2021; 95:e0080721. [PMID: 34106748 PMCID: PMC8354230 DOI: 10.1128/jvi.00807-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023] Open
Abstract
The membrane fusion between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host cells is essential for the initial step of infection; therefore, the host cell membrane components, including sphingolipids, influence the viral infection. We assessed several inhibitors of the enzymes pertaining to sphingolipid metabolism, against SARS-CoV-2 spike protein (S)-mediated cell-cell fusion and viral infection. N-(4-Hydroxyphenyl) retinamide (4-HPR), an inhibitor of dihydroceramide Δ4-desaturase 1 (DES1), suppressed cell-cell fusion and viral infection. The analysis of sphingolipid levels revealed that the inhibition efficiencies of cell-cell fusion and viral infection in 4-HPR-treated cells were consistent with an increased ratio of saturated sphinganine-based lipids to total sphingolipids. We investigated the relationship of DES1 with the inhibition efficiencies of cell-cell fusion. The changes in the sphingolipid profile induced by 4-HPR were mitigated by the supplementation with exogenous cell-permeative ceramide; however, the reduced cell-cell fusion could not be reversed. The efficiency of cell-cell fusion in DES1 knockout (KO) cells was at a level comparable to that in wild-type (WT) cells; however, the ratio of saturated sphinganine-based lipids to the total sphingolipids was higher in DES1 KO cells than in WT cells. 4-HPR reduced cell membrane fluidity without any significant effects on the expression or localization of angiotensin-converting enzyme 2, the SARS-CoV-2 receptor. Therefore, 4-HPR suppresses SARS-CoV-2 S-mediated membrane fusion through a DES1-independent mechanism, and this decrease in membrane fluidity induced by 4-HPR could be the major cause for the inhibition of SARS-CoV-2 infection. IMPORTANCE Sphingolipids could play an important role in SARS-CoV-2 S-mediated membrane fusion with host cells. We studied the cell-cell fusion using SARS-CoV-2 S-expressing cells and sphingolipid-manipulated target cells, with an inhibitor of the sphingolipid metabolism. 4-HPR (also known as fenretinide) is an inhibitor of DES1, and it exhibits antitumor activity and suppresses cell-cell fusion and viral infection. 4-HPR suppresses membrane fusion through a decrease in membrane fluidity, which could possibly be the cause for the inhibition of SARS-CoV-2 infection. There is accumulating clinical data on the safety of 4-HPR. Therefore, it could be a potential candidate drug against COVID-19.
Collapse
Affiliation(s)
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yusuke Ueda
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Takashi Tanikawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
5
|
IIAEK Targets Intestinal Alkaline Phosphatase (IAP) to Improve Cholesterol Metabolism with a Specific Activation of IAP and Downregulation of ABCA1. Nutrients 2020; 12:nu12092859. [PMID: 32961978 PMCID: PMC7551322 DOI: 10.3390/nu12092859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
IIAEK (Ile-Ile-Ala-Glu-Lys, lactostatin) is a novel cholesterol-lowering pentapeptide derived from bovine milk β-lactoglobulin. However, the molecular mechanisms underlying the IIAEK-mediated suppression of intestinal cholesterol absorption are unknown. Therefore, we evaluated the effects of IIAEK on intestinal cholesterol metabolism in a human intestinal model using Caco-2 cells. We found that IIAEK significantly reduced the expression of intestinal cholesterol metabolism-associated genes, particularly that of the ATP-binding cassette transporter A1 (ABCA1). Subsequently, we chemically synthesized a novel molecular probe, IIXEK, which can visualize a complex of target proteins interacting with photoaffinity-labeled IIAEK by fluorescent substances. Through photoaffinity labeling and MS analysis with IIXEK for the rat small intestinal mucosa and intestinal lipid raft fractions of Caco-2 cells, we identified intestinal alkaline phosphatase (IAP) as a specific molecule interacting with IIAEK and discovered the common IIAEK-binding amino acid sequence, GFYLFVEGGR. IIAEK significantly increased IAP mRNA and protein levels while decreasing ABCA1 mRNA and protein levels in Caco-2 cells. In conclusion, we found that IIAEK targets IAP to improve cholesterol metabolism via a novel signaling pathway involving the specific activation of IAP and downregulation of intestinal ABCA1.
Collapse
|
6
|
Komatsuya K, Kaneko K, Kasahara K. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2020; 21:ijms21155539. [PMID: 32748854 PMCID: PMC7432685 DOI: 10.3390/ijms21155539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed.
Collapse
|
7
|
|
8
|
SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation. PLoS One 2017; 12:e0169609. [PMID: 28072855 PMCID: PMC5224795 DOI: 10.1371/journal.pone.0169609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.
Collapse
|
9
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
10
|
Wibowo A, Peters EC, Hsieh-Wilson LC. Photoactivatable glycopolymers for the proteome-wide identification of fucose-α(1-2)-galactose binding proteins. J Am Chem Soc 2014; 136:9528-31. [PMID: 24937314 PMCID: PMC4105059 DOI: 10.1021/ja502482a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
fucose-α(1-2)-galactose (Fucα(1-2)Gal)-containing
glycans have been implicated in cognitive processes such as learning
and memory, their precise molecular mechanisms are poorly understood.
Here we employed the use of multivalent glycopolymers to enable the
first proteome-wide identification of weak affinity, low abundance
Fucα(1-2)Gal glycan-binding proteins (GBPs). Biotin-terminated
glycopolymers containing photoactivatable cross-linking groups were
designed to capture and enrich GBPs from rat brain lysates. Candidate
proteins were tested for their ability to bind Fucα(1-2)Gal,
and the functional significance of the interaction was investigated
for the synaptic vesicle protein SV2a using a knockout mouse system.
The results suggest a role for SV2a-Fucα(1-2)Gal interactions
in SV2a trafficking and synaptic vesicle recycling. More broadly,
our studies outline a general chemical approach for the systems-level
discovery of novel GBPs.
Collapse
Affiliation(s)
- Arif Wibowo
- Division of Chemistry and Chemical Engineering, California Institute of Technology and Howard Hughes Medical Institute , 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | |
Collapse
|
11
|
Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A, Michaelis EK, Michaelis ML. Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1255-65. [PMID: 24434060 DOI: 10.1016/j.bbamem.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 02/03/2023]
Abstract
Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca(2+) transporter.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.
| | - Misty D Bechtel
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Jennifer L Bean
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert Winefield
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Todd D Williams
- Structural Biology Center, University of Kansas, Lawrence, KS, USA
| | - Asma Zaidi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA; Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Elias K Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Mary L Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
12
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
13
|
Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood 2013; 122:3340-8. [PMID: 24002447 DOI: 10.1182/blood-2013-04-491290] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.
Collapse
|
14
|
Miki T, Kaneda M, Iida K, Hasegawa G, Murakami M, Yamamoto N, Asou H, Kasahara K. An anti-sulfatide antibody O4 immunoprecipitates sulfatide rafts including Fyn, Lyn and the G protein α subunit in rat primary immature oligodendrocytes. Glycoconj J 2013; 30:819-23. [DOI: 10.1007/s10719-013-9487-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 01/06/2023]
|
15
|
Li Q, Sullivan NR, McAllister CE, Van de Kar LD, Muma NA. Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling. Psychoneuroendocrinology 2013; 38:1145-57. [PMID: 23219224 PMCID: PMC3610798 DOI: 10.1016/j.psyneuen.2012.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 11/17/2022]
Abstract
A major problem with current anti-depressant therapy is that it takes on average 6-7 weeks for remission. Since desensitization of serotonin (5-HT)1A receptor signaling contributes to the anti-depressive response, acceleration of the desensitization may reduce this delay in response to antidepressants. The purpose of the present study was to test the hypothesis that estradiol accelerates fluoxetine-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) of rats, via alterations in components of the 5-HT1A receptor signaling pathway. Ovariectomized rats were injected with estradiol and/or fluoxetine, then adrenocorticotropic hormone (ACTH) and oxytocin responses to a 5-HT1A receptor agonist (+)-8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) were examined to assess the function of 5-HT1A receptors in the PVN. Treatment with estradiol for either 2 or 7 days or fluoxetine for 2 days produced at most a partial desensitization of 5-HT1A receptor signaling, whereas 7 days of fluoxetine produced full desensitization. Combined treatment with estradiol and fluoxetine for 2 days produced nearly a full desensitization, demonstrating an accelerated response compared to either treatment alone. With two days of combined treatments, estradiol prevented the fluoxetine-induced increase in 5-HT1A receptor protein, which could contribute to the more rapid desensitization. Furthermore, EB treatment for 2 days decreased the abundance of the 35 kD Gαz protein which could contribute to the desensitization response. We found two isoforms of Gαz proteins with molecular mass of 35 and 33 kD, which differentially distributed in the detergent resistant microdomain (DRM) and in Triton X-100 soluble membrane region, respectively. The 35 kD Gαz proteins in the DRM can be sumoylated by SUMO1. Stimulation of 5-HT1A receptors with 8-OH-DPAT increases the sumoylation of Gαz proteins and reduces the 33 kD Gαz proteins, suggesting that these responses may be related to the desensitization of 5-HT1A receptors. Treatment with estradiol for 2 days also reduced the levels of the G-protein coupled estrogen receptor GPR30, possibly limiting to the ability of estradiol to produce only a partial desensitization response. These data provide evidence that estradiol may be effective as a short-term adjuvant to SSRIs to accelerate the onset of therapeutic effects.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Nicole R. Sullivan
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Carrie E. McAllister
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Louis D Van de Kar
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS,Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
16
|
Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch 2013; 465:1051-64. [DOI: 10.1007/s00424-013-1222-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/13/2013] [Accepted: 01/20/2013] [Indexed: 11/27/2022]
|
17
|
Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N, Yamamoto T, Oneyama C, Okada M, Kasahara K. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem 2013; 124:514-22. [PMID: 23035659 DOI: 10.1111/jnc.12040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C-terminal src kinase)-binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent-resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti-ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over-expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314-phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314-phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP-43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella.
Collapse
Affiliation(s)
- Naoko Sekino-Suzuki
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hernández-Pinto AM, Puebla-Jiménez L, Perianes-Cachero A, Arilla-Ferreiro E. Vitamin E deficiency impairs the somatostatinergic receptor-effector system and leads to phosphotyrosine phosphatase overactivation and cell death in the rat hippocampus. J Nutr Biochem 2012; 24:848-58. [PMID: 22902329 DOI: 10.1016/j.jnutbio.2012.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022]
Abstract
Vitamin E plays an essential role in maintaining the structure and function of the nervous system, and its deficiency, commonly associated with fat malabsorption diseases, may reduce neuronal survival. We previously demonstrated that the somatostatinergic system, implicated in neuronal survival control, can be modulated by α-tocopherol in the rat dentate gyrus, increasing cyclic adenosine monophosphate response element binding protein phosphorylation. To gain a better understanding of the molecular actions of tocopherols and examine the link among vitamin E, somatostatin and neuronal survival, we have investigated the effects of a deficiency and subsequent administration of tocopherol on the somatostatin signaling pathway and neuronal survival in the rat hippocampus. No changes in somatostatin expression were detected in vitamin-E-deficient rats. These rats, however, showed a significant increase in the somatostatin receptor density and dissociation constant, which correlated with a significant increase in the protein levels of somatostatin receptors. Nevertheless, vitamin E deficiency impaired the ability of the somatostatin receptors to couple to the effectors adenylyl cyclase and phosphotyrosine phosphatase by diminishing Gi protein functionality. Furthermore, vitamin E deficiency significantly increased phosphotyrosine phosphatase activity and PTPη expression, as well as PKCδ activation, and decreased extracellular-signal-regulated kinase phosphorylation. All these changes were accompanied by an increase in neuronal cell death. Subsequent α-tocopherol administration partially or completely reversed all these values to control levels. Altogether, our results prove the importance of vitamin E homeostasis in the somatostatin receptor-effector system and suggest a possible mechanism by which this vitamin may regulate the neuronal cell survival in the adult hippocampus.
Collapse
Affiliation(s)
- Alberto M Hernández-Pinto
- Biochemical and Molecular Biology Department, Neuro-Biochemical Group, Faculty of Medicine, Universidad de Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Watanabe S, Takahashi N, Uchida H, Wakasugi K. Human neuroglobin functions as an oxidative stress-responsive sensor for neuroprotection. J Biol Chem 2012; 287:30128-38. [PMID: 22787149 DOI: 10.1074/jbc.m112.373381] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian neuroglobin (Ngb) protects neuronal cells under conditions of oxidative stress. The mechanism underlying this function is only partly understood. Here, we report that human Ngb exists in lipid rafts only during oxidative stress and that lipid rafts are crucial for neuroprotection by Ngb. The ferrous oxygen-bound form of Ngb, which exists under normoxia, is converted to the ferric bis-His conformation during oxidative stress, inducing large tertiary structural changes. We clarified that ferric bis-His Ngb, but not ferrous ligand-bound Ngb, specifically binds to flotillin-1, a lipid raft microdomain-associated protein, as well as to α-subunits of heterotrimeric G proteins (Gα(i/o)). Moreover, we found that human ferric bis-His Ngb acts as a guanine nucleotide dissociation inhibitor for Gα(i/o) that has been modified by oxidative stress. In addition, our data shows that Ngb inhibits the decrease in cAMP concentration that occurs under oxidative stress, leading to protection against cell death. Furthermore, by using a mutated Ngb protein that cannot form the bis-His conformation, we demonstrate that the oxidative stress-induced structural changes of human Ngb are essential for its neuroprotective activity.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
20
|
Rusciani A, Duca L, Brassart B, Martiny L, Debelle L. From elastin peptides to neuraminidase-1-dependent lactosylceramide generation. CR CHIM 2012. [DOI: 10.1016/j.crci.2011.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Tencé M, Ezan P, Amigou E, Giaume C. Increased interaction of connexin43 with zonula occludens-1 during inhibition of gap junctions by G protein-coupled receptor agonists. Cell Signal 2011; 24:86-98. [PMID: 21872657 DOI: 10.1016/j.cellsig.2011.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 11/17/2022]
Abstract
Astrocytes are extensively coupled through gap junctions (GJs) that are composed of channels mostly constituted by connexin43 (Cx43). This astroglial gap junctional intercellular communication (GJIC) allows propagation of ions and signaling molecules critical for neuronal activity and survival. It is drastically inhibited by a short-term exposure to endothelin-1 (ET-1) or to sphingosine-1-phosphate (S1P), both compounds being inflammatory mediators acting through activation of GTP-binding protein-coupled receptors (GPCRs). Previously, we have identified the GTPases G(i/o) and Rho as key actors in the process of S1P-induced inhibition. Here, we asked whether similar mechanisms underlied the effects of ET-1 and S1P by investigating changes in the phosphorylation status of Cx43 and in the molecular associations of Cx43 with zonula occludens (ZO) proteins and occludin. We showed that the inhibitory effect of ET-1 on GJIC was entirely dependent on the activation of G(i/o) but not on Rho and Rho-associated kinase. Both ET-1 and S1P induced dephosphorylation of Cx43 located at GJs through a process mediated by G(i/o) and calcineurin. Thanks to co-immunoprecipitation approaches, we found that a population of Cx43 (likely junctional Cx43) was associated to ZO-1-ZO-2-occludin multiprotein complexes and that acute treatments of astrocytes with ET-1 or S1P induced a G(i/o)-dependent increase in the amount of Cx43 linked to these complexes. As a whole, this study identifies a new mechanism of GJIC regulation in which two GPCR agonists dynamically alter interactions of Cx43 with its molecular partners.
Collapse
Affiliation(s)
- Martine Tencé
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Paris, France.
| | | | | | | |
Collapse
|
22
|
Breit A, Büch TRH, Boekhoff I, Solinski HJ, Damm E, Gudermann T. Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 2011; 331:232-40. [PMID: 20674667 DOI: 10.1016/j.mce.2010.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
Abstract
The melanocortin-4 receptor (MC4R) is a prototypical G protein-coupled receptor (GPCR) that plays a considerable role in controlling appetite and energy homeostasis. Signalling initiated by MC4R is orchestrated by multiple agonists, inverse agonism and by interactions with accessory proteins. The exact molecular events translating MC4R signalling into its physiological role, however, are not fully understood. This review is an attempt to summarize new aspects of MC4R signalling in the context of its recently discovered alternative G protein coupling, and to give a perspective on how future research could improve our knowledge about the intertwining molecular mechanisms that are responsible for the regulation of energy homeostasis by the melanocortin system.
Collapse
Affiliation(s)
- Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, Ludwig-Maximilians-Universität München, 80336 München, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Yuyama K, Sekino-Suzuki N, Yamamoto N, Kasahara K. Ganglioside GD3 monoclonal antibody-induced paxillin tyrosine phosphorylation and filamentous actin assembly in cerebellar growth cones. J Neurochem 2011; 116:845-50. [DOI: 10.1111/j.1471-4159.2010.07071.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rusciani A, Duca L, Sartelet H, Chatron-Colliet A, Bobichon H, Ploton D, Le Naour R, Blaise S, Martiny L, Debelle L. Elastin peptides signaling relies on neuraminidase-1-dependent lactosylceramide generation. PLoS One 2010; 5:e14010. [PMID: 21103358 PMCID: PMC2982818 DOI: 10.1371/journal.pone.0014010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
The sialidase activity of neuraminidase-1 (Neu-1) is responsible for ERK 1/2 pathway activation following binding of elastin peptide on the elastin receptor complex. In this work, we demonstrate that the receptor and lipid rafts colocalize at the plasma membrane. We also show that the disruption of these microdomains as well as their depletion in glycolipids blocks the receptor signaling. Following elastin peptide treatment, the cellular GM3 level decreases while lactosylceramide (LacCer) content increases consistently with a GM3/LacCer conversion. The use of lactose or Neu-1 siRNA blocks this process suggesting that the elastin receptor complex is responsible for this lipid conversion. Flow cytometry analysis confirms this elastin peptide-driven LacCer generation. Further, the use of a monoclonal anti-GM3 blocking antibody shows that GM3 is required for signaling. In conclusion, our data strongly suggest that Neu-1-dependent GM3/LacCer conversion is the key event leading to signaling by the elastin receptor complex. As a consequence, we propose that LacCer is an early messenger for this receptor.
Collapse
Affiliation(s)
- Anthony Rusciani
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Duca
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
- * E-mail:
| | - Hervé Sartelet
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Aurore Chatron-Colliet
- Laboratoire Médicament, Dynamique Intracellulaire, Architecture Nucléaire (MéDIAN), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté de Pharmacie, Reims, France
| | - Hélène Bobichon
- Laboratoire Médicament, Dynamique Intracellulaire, Architecture Nucléaire (MéDIAN), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté de Pharmacie, Reims, France
| | - Dominique Ploton
- Laboratoire Médicament, Dynamique Intracellulaire, Architecture Nucléaire (MéDIAN), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté de Pharmacie, Reims, France
| | - Richard Le Naour
- Laboratoire d'Immunologie et de Microbiologie, EA 4303 Inflammation et Immunité de l'appareil respiratoire, Faculté de Pharmacie, Reims, France
| | - Sébastien Blaise
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Martiny
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Debelle
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| |
Collapse
|
25
|
Fujiwara M, Hamada S, Hiratsuka M, Fukao Y, Kawasaki T, Shimamoto K. Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. PLANT & CELL PHYSIOLOGY 2009; 50:1191-200. [PMID: 19502382 PMCID: PMC2709549 DOI: 10.1093/pcp/pcp077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/29/2009] [Indexed: 05/18/2023]
Abstract
OsRac1, a member of the Rac/Rop GTPase family, plays important roles as a molecular switch in rice innate immunity, and the active form of OsRac1 functions in the plasma membrane (PM). To study the precise localization of OsRac1 in the PM and its possible association with other signaling components, we performed proteomic analysis of DRMs (detergent-resistant membranes) isolated from rice suspension-cultured cells transformed with myc-tagged constitutively active (CA) OsRac1. DRMs are regions of the PM that are insoluble after Triton X-100 treatment under cold conditions and are thought to be involved in various signaling processes in animal, yeast and plant cells. We identified 192 proteins in DRMs that included receptor-like kinases (RLKs) such as Xa21, nucleotide-binding leucine-rich repeat (NB-LRR)-type disease resistance proteins, a glycosylphosphatidylinositol (GPI)-anchored protein, syntaxin, NADPH oxidase, a WD-40 repeat family protein and various GTP-binding proteins. Many of these proteins have been previously identified in the DRMs isolated from other plant species, and animal and yeast cells, validating the methods used in our study. To examine the possible association of DRMs and OsRac1-mediated innate immunity, we used rice suspension-cultured cells transformed with myc-tagged wild-type (WT) OsRac1 and found that OsRac1 and RACK1A, an effector of OsRac1, shifted to the DRMs after chitin elicitor treatment. These results suggest that OsRac1-mediated innate immunity is associated with DRMs in the PM.
Collapse
Affiliation(s)
- Masayuki Fujiwara
- Laboratory of Plant Protein Analysis, Plant Education Unit, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Satoshi Hamada
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Minori Hiratsuka
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Yoichiro Fukao
- Laboratory of Plant Protein Analysis, Plant Education Unit, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Tsutomu Kawasaki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- *Corresponding author: E-mail, ; Fax: +81-743-72-5502
| |
Collapse
|
26
|
A crosslinking analysis of GAP-43 interactions with other proteins in differentiated N1E-115 cells. Int J Mol Sci 2008; 9:1753-1771. [PMID: 19325830 PMCID: PMC2635752 DOI: 10.3390/ijms9091753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/03/2008] [Accepted: 09/13/2008] [Indexed: 11/16/2022] Open
Abstract
It has been suggested that GAP-43 (growth-associated protein) binds to various proteins in growing neurons as part of its mechanism of action. To test this hypothesis in vivo, differentiated N1E-115 neuroblastoma cells were labeled with [35S]-amino acids and were treated with a cleavable crosslinking reagent. The cells were lysed in detergent and the lysates were centrifuged at 100,000 × g to isolate crosslinked complexes. Following cleavage of the crosslinks and analysis by two-dimensional gel electrophoresis, it was found that the crosslinker increased the level of various proteins, and particularly actin, in this pellet fraction. However, GAP-43 was not present, suggesting that GAP-43 was not extensively crosslinked to proteins of the cytoskeleton and membrane skeleton and did not sediment with them. GAP-43 also did not sediment with the membrane skeleton following nonionic detergent lysis. Calmodulin, but not actin or other proposed interaction partners, co-immunoprecipitated with GAP-43 from the 100,000 × g supernatant following crosslinker addition to cells or cell lysates. Faint spots at 34 kDa and 60 kDa were also present. Additional GAP-43 was recovered from GAP-43 immunoprecipitation supernatants with anti-calmodulin but not with anti-actin. The results suggest that GAP-43 is not present in complexes with actin or other membrane skeletal or cytoskeletal proteins in these cells, but it is nevertheless possible that a small fraction of the total GAP-43 may interact with other proteins.
Collapse
|