1
|
Arcuschin CD, Kahrizi K, Sayaman RW, DiBenedetto C, Shen Y, Salaberry PJ, Zakroui O, Schwarzer C, Scapozza A, Betancur P, Saba JD, Coppé JP, Barcellos-Hoff MH, Kappes D, van 't Veer L, Schor IE, Muñoz DP. Super-enhancer profiling reveals ThPOK/ZBTB7B, a CD4 + cell lineage commitment factor, as a master regulator that restricts breast cancer cells to a luminal non-migratory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614267. [PMID: 39386673 PMCID: PMC11463473 DOI: 10.1101/2024.09.21.614267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite efforts to understand breast cancer biology, metastatic disease remains a clinical challenge. Identifying suppressors of breast cancer progression and mechanisms of transition to more invasive phenotypes could provide game changing therapeutic opportunities. Transcriptional deregulation is central to all malignancies, highlighted by the extensive reprogramming of regulatory elements that underlie oncogenic programs. Among these, super-enhancers (SEs) stand out due to their enrichment in genes controlling cancer hallmarks. To reveal novel breast cancer dependencies, we integrated the analysis of the SE landscape with master regulator activity inference for a series of breast cancer cell lines. As a result, we identified T - h elper-inducing Poxviruses and Zinc-finger ( PO Z)/ K rüppel-like factor (ThPOK, ZBTB7B ), a CD4 + cell lineage commitment factor, as a breast cancer master regulator that is recurrently associated with a SE. ThPOK expression is highest in luminal breast cancer but is significantly reduced in the basal subtype. Manipulation of ThPOK levels in cell lines shows that its repressive function restricts breast cancer cells to an epithelial phenotype by suppressing the expression of genes involved in the epithelial-mesenchymal transition (EMT), WNT/β-catenin target genes, and the pro-metastatic TGFβ pathway. Our study reveals ThPOK as a master transcription factor that restricts the acquisition of metastatic features in breast cancer cells.
Collapse
|
2
|
Ahn KJ, Kim JS. TGF-β1 upregulates Sar1a expression and induces procollagen-I secretion in hypertrophic scarring fibroblasts. Open Med (Wars) 2022; 17:1473-1482. [PMID: 36188194 PMCID: PMC9483117 DOI: 10.1515/med-2022-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Hypertrophic scarring (HTS) is a common fibroproliferative disorder that typically follows thermal and other injuries involving the deep dermis. The underlying pathogenic mechanisms are regulated by transforming growth factor-β (TGF-β); however, the exact mechanisms in HTS have not been elucidated. We conducted this study to explore the cellular signaling mechanisms for expression of Sar1a, a coat protein complex II-associated small GTPase, in HTS fibroblasts (HTSF). We found that Sar1a was upregulated in HTSF as compared to that in normal fibroblasts. Furthermore, stimulation of TGF-β1 increased the expression of Sar1a in HTSF, and small interfering RNA for Sar1a suppressed procollagen-I (PC-I) secretion. Next we investigated the signaling mechanism from TGF-β1 to Sar1a expression and its association with PC-I secretion. In the presence of TGF-β-activated kinase 1 (TAK1), c-Jun N-terminal kinase, or p38 inhibitors, the effect of TGF-β1 on Sar1a expression and PC-I secretion significantly decreased; however, it had no effect on collagen-1A (Col-1A) expression. Further, the inhibitors of Smad3 or extracellular signal-regulated kinases inhibited TGF-β1-induced Col-1A expression but had no effect on PC-I secretion and Sar1a expression. Taken together, our results suggested that TGF-β1 induces Sar1a expression through TAK1 signaling and this signaling event regulates PC-I secretion in HTSF.
Collapse
Affiliation(s)
- Keun Jae Ahn
- Department of Science Education, Jeju National University, Jeju, 63063, Korea
| | - Jun-Sub Kim
- Department of Biotechnology, Korea National University of Transportation, Chungbuk, 27909, Korea
| |
Collapse
|
3
|
Lee J, Jung E, Gestoso K, Heur M. ZEB1 Mediates Fibrosis in Corneal Endothelial Mesenchymal Transition Through SP1 and SP3. Invest Ophthalmol Vis Sci 2020; 61:41. [PMID: 32721022 PMCID: PMC7425726 DOI: 10.1167/iovs.61.8.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/21/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose ZEB1 is induced during endothelial-mesenchymal transition (EnMT) in the cornea. Induction of SP1 and SP3 by ZEB1 along with identification of putative SP1 and SP3 binding sites in promoters of EnMT-associated gene lead us to investigate their roles in retrocorneal membrane formation in the corneal endothelium. Methods Expressions of SP1, SP3, and EnMT associated genes were analyzed by immunoblotting and semiquantitative reverse transcription polymerase chain reaction. Accell SMARTpool siRNAs targeting ZEB1, SP1, and SP3 were used for gene knockdown. SP1 and SP3 binding to promoters of EnMT associated genes was investigated by chromatin immunoprecipitation assay. Corneal endothelium in mice was surgically injured in vivo under direct visualization. Results Transient Fibroblast Growth Factor 2 stimulation increased the expression of both SP1 and SP3 in the human corneal endothelium ex vivo. ZEB1 siRNA knockdown inhibited FGF2-induced SP1 mRNA and protein but not the expression of SP3. FGF2-induced expression of EnMT-related genes, such as fibronectin, vimentin, and type I collagen, was reduced by both SP1 and SP3 siRNA knockdown, with inhibition of SP1 having a greater inhibitory effect than SP3. Additionally, although SP1 and SP3 proteins were found to bind together, SP1 and SP3 could bind to the same promoter binding sites of EnMT-related genes in the absence of the other. Moreover, siRNA knockdown of Zeb1 inhibited injury-dependent RCM formation in mouse corneal endothelium in vivo. Conclusions Zeb1, through SP1 and SP3, plays a central role in mesenchymal transition induced fibrosis in the corneal endothelium and suggests that Zeb1 could be targeted to inhibit anterior segment fibrosis.
Collapse
Affiliation(s)
- JeongGoo Lee
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Eric Jung
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | | | - Martin Heur
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| |
Collapse
|
4
|
Srivastava A, Mishra RK. Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 2020. [DOI: 10.1007/s12038-020-0014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Niarakis A, Giannopoulou E, Syggelos SA, Panagiotopoulos E. Effects of proteasome inhibitors on cytokines, metalloproteinases and their inhibitors and collagen type-I expression in periprosthetic tissues and fibroblasts from loose arthroplasty endoprostheses. Connect Tissue Res 2019; 60:555-570. [PMID: 30931650 DOI: 10.1080/03008207.2019.1601186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective: Aseptic loosening is a major problem in total joint replacement. Implant wear debris provokes a foreign body host response and activates cells to produce a variety of mediators and ROS, leading to periprosthetic osteolysis. Elevated ROS levels can harm proteasome function. Proteasome inhibitors have been reported to alter the secretory profile of cells involved in inflammation and also to induce ROS production. In this work, we aimed to document the effects of proteasome inhibitors MG-132 and Epoxomicin, on the production of factors involved in aseptic loosening, in periprosthetic tissues and fibroblasts, and investigate the role of proteasome impairment in periprosthetic osteolysis. Materials and methods: IL-6 levels in tissue cultures were determined by sandwich ELISA. MMP-1, -3, -13, -14 and TIMP-1 levels in tissue or cell cultures were determined by indirect ELISA. Results for MMP-1 and TIMP-1 in tissue cultures were confirmed by Western blotting. MMP-2 and MMP-9 levels were determined by gelatin zymography. Gene expression of IL-6, MMP-1,-3,-14, TIMP-1 and collagen type-I was determined by RT-PCR. Results: Results show that proteasome inhibition induces the expression of ΜΜΡ-1, -2, -3, -9 and suppresses that of IL-6, MMP-14, -13, TIMP-1 and collagen type I, enhancing the collagenolytic and gelatinolytic activity already present in periprosthetic tissues, as documented in various studies. Conclusions: These findings suggest that proteasome impairment could be a contributing factor to aseptic loosening. Protection and enhancement of proteasome efficacy could thus be considered as an alternative strategy toward disease treatment.
Collapse
Affiliation(s)
- Anna Niarakis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece.,GenHotel EA3886, Univ Evry, Université Paris-Saclay , Evry , France
| | | | - Spyros A Syggelos
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras , Patras , Greece
| | - Elias Panagiotopoulos
- Department of Orthopaedics, School of Medicine, University of Patras , Patras , Greece
| |
Collapse
|
6
|
Abstract
Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. The degree to which the arrangement of motif sites within regulatory elements determines their function remains unclear. Here, we show that the positional distribution of TF motif sites within nucleosome-depleted regions of DNA fall into six distinct classes. These patterns are highly consistent across cell types and bring together factors that have similar functional and binding properties. Furthermore, the position of motif sites appears to be related to their known functions. Our results suggest that TFs play distinct roles in forming a functional enhancer, facilitated by their position within a regulatory sequence. Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.
Collapse
|
7
|
Someya T, Sano K, Hara K, Sagane Y, Watanabe T, Wijesekara RGS. Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant ( Ocimum tenuiflorum), malabar nut plant ( Justicia adhatoda), and emblic myrobalan plant ( Phyllanthus emblica). Data Brief 2018; 17:24-46. [PMID: 29876372 PMCID: PMC5988028 DOI: 10.1016/j.dib.2017.12.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/08/2023] Open
Abstract
This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of holy basil plant (Ocimum tenuiflorum), sri lankan local name “maduruthala”, 0.1% and 0.01% extracts of malabar nut plant (Justicia adhatoda), sri lankan local name “adayhoda” and 0.003% and 0.001% extracts of emblic myrobalan plant (Phyllanthus emblica), sri lankan local name “nelli”, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs.
Collapse
Affiliation(s)
- Takao Someya
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Katsura Sano
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - R G S Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
8
|
Srivastava A, Kumar AS, Mishra RK. Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci 2018; 75:623-633. [PMID: 28856379 PMCID: PMC11105447 DOI: 10.1007/s00018-017-2633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Amitha Sampath Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
9
|
Daiwile AP, Sivanesan S, Tarale P, Naoghare PK, Bafana A, Parmar D, Kannan K. Role of fluoride induced histone trimethylation in development of skeletal fluorosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:159-165. [PMID: 29275289 DOI: 10.1016/j.etap.2017.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/25/2017] [Accepted: 12/16/2017] [Indexed: 05/19/2023]
Abstract
Chronic exposure to fluoride has been associated with the development of skeletal fluorosis. Limited reports are available on fluoride induced histone modification. However, the role of histone modification in the pathogenesis of skeletal fluorosis is not investigated. In the present study, we have investigated the role of fluoride induced histone modification on fluorosis development using human osteosarcoma (HOS) cell line. The expression of histone methyltransferases (EHMT1 and EHZ2) and level of global histone trimethylation (H3K9 and H3K27) have been assessed and observed to be increased significantly after fluoride exposure (8 mg/L). EpiTect chromatin immunoprecipitation (CHIP) qPCR Array (Human TGFβ/BMP signaling pathway) was performed to assess the H3K9 trimethylation at promoter regions of pathway-specific genes. H3K9 ChIP PCR array analysis identified hyper H3K9 trimethylation in promoter regions of TGFBR2 and SMAD3. qPCR and STRING analysis was carried out to determine the repressive epigenetic effect of H3K9 trimethylation on expression pattern and functional association of identified genes. Identified genes (TGFBR2 and SMAD3) showed down-regulation which confirms the repressive epigenetic effect of promoter H3K9 hyper trimethylation. Expression of two other vital genes COL1A1 and MMP13 involved in TGFBR2-SMAD signaling pathway was also found to be down-regulated with a decrease in expression of TGFBR2 and SMAD3. STRING analysis revealed functional association and involvement of identified genes TGFBR2, SMAD3, COL1A1 and MMP13 in the collagen and cartilage development/morphogenesis, connective tissue formation, bio-mineral tissue development, endochondral bone formation, bone and skeletal morphogenesis. In conclusion, present investigation is a first attempt to link fluoride induced hyper H3K9 tri-methylation mediated repression of TGFBR2 and SMAD3 with the development of skeletal fluorosis.
Collapse
Affiliation(s)
- Atul P Daiwile
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Saravanadevi Sivanesan
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Prashant Tarale
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Pravin K Naoghare
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Amit Bafana
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow 226001, India
| | - Krishnamurthi Kannan
- Environmental Impact Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
10
|
Someya T, Sano K, Hara K, Sagane Y, Watanabe T, Wijesekara R. Fibroblast and keratinocyte gene expression following exposure to extracts of neem plant ( Azadirachta indica). Data Brief 2017; 16:982-992. [PMID: 29322079 PMCID: PMC5752095 DOI: 10.1016/j.dib.2017.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of neem plant (Azadirachta indica), local name “Kohomba” in Sri Lanka, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs.
Collapse
Affiliation(s)
- Takao Someya
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
- Corresponding author.
| | - Katsura Sano
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099–2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099–2493, Japan
| | - R.G.S. Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
11
|
Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim 2015; 52:235-42. [PMID: 26487428 DOI: 10.1007/s11626-015-9959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/10/2015] [Indexed: 10/22/2022]
Abstract
Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vitro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.
Collapse
|
12
|
Latire T, Legendre F, Bigot N, Carduner L, Kellouche S, Bouyoucef M, Carreiras F, Marin F, Lebel JM, Galéra P, Serpentini A. Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts. PLoS One 2014; 9:e99931. [PMID: 24949635 PMCID: PMC4064982 DOI: 10.1371/journal.pone.0099931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022] Open
Abstract
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.
Collapse
Affiliation(s)
- Thomas Latire
- UMR BOREA « Biologie des ORganismes et Ecosystèmes Aquatiques », MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Université de Caen Basse-Normandie, IBFA, Campus 1, Science C, Caen cedex 5, France
- Laboratoire Microenvironnement cellulaire et pathologies (MILPAT), EA 4652, SFR 146 ICORE, Université de Caen Basse-Normandie, Faculté de Médecine, CHU niveau 3, Caen cedex 5, France
| | - Florence Legendre
- Laboratoire Microenvironnement cellulaire et pathologies (MILPAT), EA 4652, SFR 146 ICORE, Université de Caen Basse-Normandie, Faculté de Médecine, CHU niveau 3, Caen cedex 5, France
| | - Nicolas Bigot
- Laboratoire Microenvironnement cellulaire et pathologies (MILPAT), EA 4652, SFR 146 ICORE, Université de Caen Basse-Normandie, Faculté de Médecine, CHU niveau 3, Caen cedex 5, France
| | - Ludovic Carduner
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), EA 1391, Institut des Matériaux, Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), EA 1391, Institut des Matériaux, Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | - Mouloud Bouyoucef
- Laboratoire Microenvironnement cellulaire et pathologies (MILPAT), EA 4652, SFR 146 ICORE, Université de Caen Basse-Normandie, Faculté de Médecine, CHU niveau 3, Caen cedex 5, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), EA 1391, Institut des Matériaux, Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | - Frédéric Marin
- UMR 6282 CNRS “Biogéosciences”, Université de Bourgogne, Dijon, France
| | - Jean-Marc Lebel
- UMR BOREA « Biologie des ORganismes et Ecosystèmes Aquatiques », MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Université de Caen Basse-Normandie, IBFA, Campus 1, Science C, Caen cedex 5, France
| | - Philippe Galéra
- Laboratoire Microenvironnement cellulaire et pathologies (MILPAT), EA 4652, SFR 146 ICORE, Université de Caen Basse-Normandie, Faculté de Médecine, CHU niveau 3, Caen cedex 5, France
| | - Antoine Serpentini
- UMR BOREA « Biologie des ORganismes et Ecosystèmes Aquatiques », MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Université de Caen Basse-Normandie, IBFA, Campus 1, Science C, Caen cedex 5, France
- * E-mail:
| |
Collapse
|
13
|
Abed A, Toubas J, Kavvadas P, Authier F, Cathelin D, Alfieri C, Boffa JJ, Dussaule JC, Chatziantoniou C, Chadjichristos CE. Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice. Kidney Int 2014; 86:768-79. [PMID: 24850151 DOI: 10.1038/ki.2014.108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/09/2022]
Abstract
Excessive recruitment of monocytes and progression of fibrosis are hallmarks of chronic kidney disease (CKD). Recently we reported that the expression of connexin 43 (Cx43) was upregulated in the kidney during experimental nephropathy. To investigate the role of Cx43 in the progression of CKD, we interbred RenTg mice, a genetic model of hypertension-induced CKD, with Cx43+/- mice. The renal cortex of 5-month-old RenTgCx43+/- mice showed a marked decrease of cell adhesion markers leading to reduced monocyte infiltration and interstitial renal fibrosis compared with their littermates. In addition, functional and histological parameters such as albuminuria and glomerulosclerosis were ameliorated in RenTgCx43+/- mice. Interestingly, treatment with Cx43 antisense produced remarkable improvement of renal function and structure in 1-year-old RenTg mice. Similar results were found in Cx43+/- or wild-type mice treated with Cx43 antisense after obstructive nephropathy. Furthermore, in these mice, Cx43 antisense attenuated E-cadherin downregulation and phosphorylation of the transcription factor Sp1 by the ERK pathway resulting in decreased transcription of type I collagen gene. Interestingly, Cx43-specific blocking peptide inhibited monocyte adhesion in activated endothelium and profibrotic pathways in tubular cells. Cx43 was highly increased in biopsies of patients with CKD. Thus, Cx43 may represent a new therapeutic target against the progression of CKD.
Collapse
Affiliation(s)
- Ahmed Abed
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Julie Toubas
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | | | | | | | | | - Jean-Jacques Boffa
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France [3] Department of Nephrology, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France [3] Department of Physiology, Saint-Antoine Hospital, Paris, France
| | - Christos Chatziantoniou
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Christos E Chadjichristos
- 1] INSERM UMR-S1155, Tenon Hospital, Paris, France [2] Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| |
Collapse
|
14
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
15
|
Zhao L, Tian W, Pan H, Zhu X, Wang J, Cheng Z, Cheng L, Ma X, Wang B. Variations of the COL1A1 gene promoter and the relation to developmental dysplasia of the hip. Genet Test Mol Biomarkers 2013; 17:840-3. [PMID: 23941072 DOI: 10.1089/gtmb.2013.0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM Developmental dysplasia of the hip (DDH) is one of the most common hip deformities in children. Since the COL1A1 gene is located in the DDH relating region, we investigated the COL1A1 promoter variations in the development of DDH. RESULTS We collected 154 unrelated female patients and 180 matched healthy female children, and then sequenced the COL1A1 gene promoter for detection of variations. Three variations in the COL1A1 gene promoter were detected in ten patients (T-139C, C-106T, and C-35T [rs113647555]), but none of the 180 health controls. The chi-square test showed that the rate of total variations in COL1A1 gene contributed to DDH (p=0.0016). CONCLUSION We detected three variations in the COL1A1 gene promoter in patients and first demonstrated that the higher rate of total variations of COL1A1 gene contributed to DDH in Chinese female children; thus, the COL1A1 gene is a new candidate gene for DDH disease.
Collapse
Affiliation(s)
- Lixi Zhao
- 1 Graduate School of Peking Union Medical College , Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17:1291-9. [PMID: 23859708 PMCID: PMC4159013 DOI: 10.1111/jcmm.12105] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/21/2013] [Accepted: 06/08/2013] [Indexed: 01/09/2023] Open
Abstract
Germline mutations in the bone morphogenetic protein type II receptor (BMPRII) gene play an essential role in the pathogenesis of familial pulmonary arterial hypertension (FPAH). In view of the histological similarities between scleroderma (SSc) and FPAH arterial lesion, we examined the expression levels of BMPRII in SSc microvascular endothelial cells (MVEC). Oxidative stress and serum starvation were used to examine apoptotic responses of MVECs. BMPRII expression levels were determined by RT-PCR and by Western blot. Epigenetic regulation of BMPRII expression was examined by the addition of epigenetic inhibitors to MVECs cultures, by methylation-specific PCR, and by sequence analysis of DNA methylation pattern of the BMPRII promotor region. SSc-MVECs were more sensitive to apoptotic signals than were normal-MVECs. A significant decrease in BMPRII expression levels in SSc-MVECs was noted, whereas no significant differences in the expression levels of BMPRIA and BMPRIB were observed. Similar reduction in expression levels was noted in SSc skin biopsies. The expression level of BMPRII in SSc-MVECs was normalized by the addition of 2-deoxy-5-azacytidine and trichostatin A to cell cultures. Extensive CpG sites methylation in the BMPRII promoter region was noted in SSc-MVECs with no detectable site methylation in control-MVECs. SSc-MVECs are more sensitive to apoptotic triggers than are control-MVECs. The enhanced apoptosis may be related to epigenetic repression of BMPRII expression as apoptosis of control-MVECs can be augmented by knocking down BMPRII expression. The role of BMPRII underexpression in the pathogenesis of SSc vasculopathy is suggested and should be investigated further.
Collapse
Affiliation(s)
- Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
17
|
Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 2013; 19:550-67. [PMID: 23270543 DOI: 10.1089/ten.tec.2012.0508] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.
Collapse
Affiliation(s)
- Florence Legendre
- Laboratoire Microenvironnement Cellulaire et Pathologies, MILPAT, EA 4652, SFR ICORE 146, Université de Caen Basse-Normandie, UFR de Médecine, Caen, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bigot N, Beauchef G, Hervieu M, Oddos T, Demoor M, Boumediene K, Galéra P. NF-κB Accumulation Associated with COL1A1 Trans activators Defects during Chronological Aging Represses Type I Collagen Expression through a –112/–61-bp Region of the COL1A1 Promoter in Human Skin Fibroblasts. J Invest Dermatol 2012; 132:2360-2367. [DOI: 10.1038/jid.2012.164] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Zhu L, Gao D, Yang J, Li M. Characterization of the phenotype of high collagen-producing fibroblast clones in systemic sclerosis, using a new modified limiting-dilution method. Clin Exp Dermatol 2012; 37:395-403. [PMID: 22582912 DOI: 10.1111/j.1365-2230.2011.04254.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Overproduction of type I collagen in fibroblasts of systemic sclerosis (SSc) is the hallmark of fibrosis. Establishment and characterization of the phenotype of SSc fibroblasts has been hindered by the heterogeneity between fibroblasts and the lack of adequate cloning methods. AIM To establish and investigate the characteristics of the SSc high collagen-producing fibroblast phenotype. METHODS Primary cultured fibroblasts from skin biopsies of patients with SSc and normal controls were cloned by a new modified limiting-dilution method. All clones were divided into different subpopulations based on their α1(I) procollagen (COL1A1) mRNA level detected by real-time reverse transcriptase PCR assay. In the different subpopulations, cell growth and cycle distribution were analysed by MTT and flow cytometry, COL1A1 promoter activity was examined by transient transfection, and the binding activity of Sp1 to the COL1A1 proximal promoter was investigated by quantitative chromatin immunoprecipitation. RESULTS The clonogenicities of SSc and normal control fibroblasts were similar, but the mean COL1A1 mRNA level of clones and the percentage of the subpopulation with a high COL1A1 mRNA level were significantly higher in SSc fibroblasts than in controls. There was no significant difference on cell growth and cycle between different subpopulations of SSc and control fibroblasts. The COL1A1 proximal promoter activity and its binding activity to Sp1 in the clones were strongly correlated with their COL1A1 mRNA level. CONCLUSION Overproduction of collagen in an SSc fibroblast subpopulation seems to result mainly from the abnormally activated transcription of COL1A1 rather than from overproliferation of fibroblasts. The new modified limiting-dilution method provides a useful means for characterizing cells with heterogeneous phenotypes.
Collapse
Affiliation(s)
- L Zhu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
20
|
Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, Boumediene K, Galera P. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. ACTA ACUST UNITED AC 2012; 60:199-207. [DOI: 10.1016/j.patbio.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
|
21
|
Park JH, Kim SR, An HJ, Kim WJ, Choe M, Han JA. Esculetin promotes type I procollagen expression in human dermal fibroblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 2012; 368:61-7. [PMID: 22581442 DOI: 10.1007/s11010-012-1342-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
Type I collagen is the major constituent of the skin and the reduction of dermal type I collagen content is closely associated with the intrinsic skin aging. We here found that esculetin, 6,7-dihydroxycoumarin, strongly induces type I procollagen expression in human dermal fibroblasts. Esculetin not only increased protein levels of type I procollagen but also increased mRNA levels of COL1A1 but not COL1A2. Esculetin activated the MAPKs (ERK1/2, p38, JNK) and PI3K/Akt pathways, through which it promoted the type I procollagen expression. We also demonstrated that the binding motifs for transcription factor Sp1 occur with the highest frequency in the COL1A1 promoter and that esculetin increases the Sp1 expression through the MAPK and PI3K/Akt pathways. These results suggest that esculetin promotes type I procollagen expression through the MAPK and PI3K/Akt pathways and that Sp1 might be involved in the esculetin-induced type I procollagen expression via activation of the COL1A1 transcription.
Collapse
Affiliation(s)
- Jung Hae Park
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Beauchef G, Bigot N, Kypriotou M, Renard E, Porée B, Widom R, Dompmartin-Blanchere A, Oddos T, Maquart FX, Demoor M, Boumediene K, Galera P. The p65 subunit of NF-κB inhibits COL1A1 gene transcription in human dermal and scleroderma fibroblasts through its recruitment on promoter by protein interaction with transcriptional activators (c-Krox, Sp1, and Sp3). J Biol Chem 2012; 287:3462-3478. [PMID: 22139845 PMCID: PMC3271000 DOI: 10.1074/jbc.m111.286443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/04/2011] [Indexed: 11/05/2024] Open
Abstract
Transcriptional mechanisms regulating type I collagen genes expression in physiopathological situations are not completely known. In this study, we have investigated the role of nuclear factor-κB (NF-κB) transcription factor on type I collagen expression in adult normal human (ANF) and scleroderma (SF) fibroblasts. We demonstrated that NF-κB, a master transcription factor playing a major role in immune response/apoptosis, down-regulates COL1A1 expression by a transcriptional control involving the -112/-61 bp sequence. This 51-bp region mediates the action of two zinc fingers, Sp1 (specific protein-1) and Sp3, acting as trans-activators of type I collagen expression in ANF and SF. Knockdown of each one of these trans factors by siRNA confirmed the trans-activating effect of Sp1/Sp3 and the p65 subunit of NF-κB trans-inhibiting effect on COL1A1 expression. Despite no existing κB consensus sequence in the COL1A1 promoter, we found that Sp1/Sp3/c-Krox and NF-κB bind and/or are recruited on the proximal promoter in chromatin immunoprecipitation (ChIP) assays. Attempts to elucidate whether interactions between Sp1/Sp3/c-Krox and p65 are necessary to mediate the NF-κB inhibitory effect on COL1A1 in ANF and SF were carried out; in this regard, immunoprecipitation assays revealed that they interact, and this was validated by re-ChIP. Finally, the knockdown of Sp1/Sp3/c-Krox prevents the p65 inhibitory effect on COL1A1 transcription in ANF, whereas only the siRNAs targeting Sp3 and c-Krox provoked the same effect in SF, suggesting that particular interactions are characteristic of the scleroderma phenotype. In conclusion, our findings highlight a new mechanism for COL1A1 transcriptional regulation by NF-κB, and these data could allow the development of new antifibrotic strategies.
Collapse
Affiliation(s)
- Gallic Beauchef
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Nicolas Bigot
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Magdalini Kypriotou
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Emmanuelle Renard
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Benoît Porée
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Russell Widom
- the Department of Medicine, Arthritis Center, Boston University School of Medicine and Boston Veterans Affairs Medical Center, Boston, Massachusetts 02118
| | | | - Thierry Oddos
- Johnson & Johnson Consumer France, R&D Europe, Campus de Maigremont, 27106 Val de Reuil, France, and
| | - François-Xavier Maquart
- the Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 6237, Université de Reims/Champagne-Ardennes, 51095 Reims Cedex, France
| | - Magali Demoor
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Karim Boumediene
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Philippe Galera
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| |
Collapse
|
23
|
Fleury C, Serpentini A, Kypriotou M, Renard E, Galéra P, Lebel JM. Characterization of a non-fibrillar-related collagen in the mollusc Haliotis tuberculata and its biological activity on human dermal fibroblasts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1003-1016. [PMID: 21271271 DOI: 10.1007/s10126-011-9364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/07/2011] [Indexed: 05/30/2023]
Abstract
In invertebrates, members of the collagen family have been found in various phyla. Surprisingly, in mollusc, little is known about such molecules. In this study, we characterize the full-length abalone type IV collagen and we analysed its biological effects on human fibroblast in order to gain insights about this molecule in molluscs and particularly clues about its roles. We screened a cDNA library of Haliotis tuberculata hemocytes. The expression pattern of the transcript is determined using real-time polymerase chain reaction and in situ hybridization. The close identity between α1(IV) C-terminal domain and the vertebrate homologue led us to produce, purify and test in vitro a recombinant protein corresponding to this region using human dermal fibroblasts cell culture. The biological effects were evaluated on proliferation and on differentiation. We found that the 5,334-bp open reading frame transcript encodes a protein of 1,777 amino acids, including an interrupted 1,502-residue collagenous domain and a 232-residue C-terminal non-collagenous domain. The expression pattern of this transcript is mainly found in the mantle and hemocytes. The recombinant protein corresponding α1(IV) C-terminal domain increased fibroblast proliferation by 69% and doubled collagen synthesis produced in primary cultures. This work provides the first complete primary structure of a mollusc non-fibrillar collagen chain and the biological effects of its C-terminal domain on human cells. In this study, we prove that the NC1 domain from a molluscan collagen can improve human fibroblast proliferation as well as differentiation.
Collapse
Affiliation(s)
- Christophe Fleury
- UMR 100 IFREMER Physiologie et Ecophysiologie des Mollusques Marins-IFR 146 ICORE-IBFA-Esplanade de la Paix, Université de Caen Basse-normandie, 14032, Caen, France
| | | | | | | | | | | |
Collapse
|
24
|
Kenth G, Puzhko S, Goodyer CG. Human growth hormone receptor gene expression is regulated by Gfi-1/1b and GAGA cis-elements. Mol Cell Endocrinol 2011; 335:135-47. [PMID: 21238539 DOI: 10.1016/j.mce.2011.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/15/2022]
Abstract
Human growth hormone receptor (hGHR) gene regulation is complex: mRNAs are transcribed from multiple variant (V) 5'UTR exons, several ubiquitously while others only in the postnatal hepatocyte. The liver-specific V1 exon promoter contains Gfi-1/1b repressor sites adjacent to a GAGA box, a GH response element (GHRE) in several mammalian genes. GAGA boxes are also present in the ubiquitously expressing V3 exon promoter. Heterologous sites in bovine, ovine and murine GHR genes suggest conserved roles. GAGA factor stimulated V1 and V3 promoters while Gfi-1/1b repressed basal and GAF-stimulated V1 transcription. HGH treatment of HepG2 cells resulted in a new complex forming with V3 GAGA elements, suggesting a functional GHRE. Data suggest liver-specific V1 transcription is regulated by inhibitory Gfi-1/1b and stimulatory GAGA cis-elements and Gfi-1/1b may control the lack of V1 expression in fetal liver, hepatic tumours and non-hepatic tissues. In addition, hGH may regulate hGHR expression through V3 GAGA boxes.
Collapse
Affiliation(s)
- Gurvinder Kenth
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
25
|
Ban K, Kozar RA. Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1344-53. [PMID: 20884886 PMCID: PMC3006244 DOI: 10.1152/ajpgi.00334.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.
Collapse
Affiliation(s)
- Kechen Ban
- Department of Surgery, University of Texas Medical School, Houston, 77030, USA.
| | | |
Collapse
|
26
|
Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci 2010; 87:391-400. [PMID: 20670633 PMCID: PMC2946433 DOI: 10.1016/j.lfs.2010.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 02/06/2023]
Abstract
The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models.
Collapse
Affiliation(s)
- Claude Jourdan-LeSaux
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Jianhua Zhang
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Merry L. Lindsey
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| |
Collapse
|
27
|
Matharu NK, Hussain T, Sankaranarayanan R, Mishra RK. Vertebrate homologue of Drosophila GAGA factor. J Mol Biol 2010; 400:434-47. [PMID: 20471984 DOI: 10.1016/j.jmb.2010.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/11/2010] [Accepted: 05/06/2010] [Indexed: 11/19/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are chromatin-mediated regulators of a number of developmentally important genes including the homeotic genes. In Drosophila melanogaster, one of the trxG members, Trithorax like (Trl), encodes the essential multifunctional DNA binding protein called GAGA factor (GAF). While most of the PcG and trxG genes are conserved from flies to humans, a Trl-GAF homologue has been conspicuously missing in vertebrates. Here, we report the first identification of c-Krox/Th-POK as the vertebrate homologue of GAF on the basis of sequence similarity and comparative structural analysis. The in silico structural analysis of the zinc finger region showed preferential interaction of vertebrate GAF with GAGA sites similar to that of fly GAF. We also show by cross-immunoreactivity studies that both fly and vertebrate GAFs are highly conserved and share a high degree of structural similarity. Electrophoretic mobility shift assays show that vertebrate GAF binds to GAGA sites in vitro. Finally, in vivo studies by chromatin immunoprecipitation confirmed that vertebrate GAF binds to GAGA-rich DNA sequences present in hox clusters. Identification of vertebrate GAF and the presence of its target sites at various developmentally regulated loci, including hox complexes, highlight the evolutionarily conserved components involved in developmental mechanisms across the evolutionary lineage and answer a long-standing question of the presence of vertebrate GAF.
Collapse
Affiliation(s)
- Navneet Kaur Matharu
- Centre for Cellular and Molecular Biology Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500007, India
| | | | | | | |
Collapse
|
28
|
Goffin L, Seguin-Estévez Q, Alvarez M, Reith W, Chizzolini C. Transcriptional regulation of matrix metalloproteinase-1 and collagen 1A2 explains the anti-fibrotic effect exerted by proteasome inhibition in human dermal fibroblasts. Arthritis Res Ther 2010; 12:R73. [PMID: 20429888 PMCID: PMC2888229 DOI: 10.1186/ar2991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/01/2010] [Accepted: 04/29/2010] [Indexed: 12/29/2022] Open
Abstract
Introduction Extracellular matrix (ECM) turnover is controlled by the synthetic rate of matrix proteins, including type I collagen, and their enzymatic degradation by matrix metalloproteinases (MMPs). Fibrosis is characterized by an unbalanced accumulation of ECM leading to organ dysfunction as observed in systemic sclerosis. We previously reported that proteasome inhibition (PI) in vitro decreases type I collagen and enhances MMP-1 production by human fibroblasts, thus favoring an antifibrotic fibroblast phenotype. These effects were dominant over the pro-fibrotic phenotype induced by transforming growth factor (TGF)-β. Here we investigate the molecular events responsible for the anti-fibrotic phenotype induced in fibroblasts by the proteasome inhibitor bortezomib. Methods The steady-state mRNA levels of COL1A1, COL1A2, TIMP-1, MMP-1, and MMP-2 were assessed by quantitative PCR in human dermal fibroblasts cultured in the presence of TGF-β, bortezomib, or both. Transient fibroblast transfection was performed with wild-type and mutated COL1A1 and MMP-1 promoters. Chromatin immunoprecipitation, electrophoretic mobility shift assay (EMSA), and DNA pull-down assays were used to assess the binding of c-Jun, SP1, AP2, and Smad2 transcription factors. Immunoblotting and immunofluorescent microscopy were performed for identifying phosphorylated transcription factors and their cellular localization. Results Bortezomib decreased the steady-state mRNA levels of COL1A1 and COL1A2, and abrogated SP1 binding to the promoter of COL1A2 in both untreated and TGF-β-activated fibroblasts. Reduced COL1A2 expression was not due to altered TGF-β-induced Smad2 phosphorylation, nuclear translocation, or binding to the COL1A2 promoter. In contrast to collagen, bortezomib specifically increased the steady-state mRNA levels of MMP-1 and enhanced the binding of c-Jun to the promoter of MMP-1. Furthermore, disruption of the proximal AP-1-binding site in the promoter of MMP-1 severely impaired MMP-1 transcription in response to bortezomib. Conclusions By altering the binding of at least two transcription factors, c-Jun and SP1, proteasome inhibition results in increased production of MMP-1 and decreased synthesis of type I collagen in human dermal fibroblasts. Thus, the antifibrotic phenotype observed in fibroblasts submitted to proteasome inhibition results from profound modifications in the binding of key transcription factors. This provides a novel rationale for assessing the potential of drugs targeting the proteasome for their anti-fibrotic properties.
Collapse
Affiliation(s)
- Laurence Goffin
- Immunology and Allergy, Department of Internal Medicine, Geneva University Hospital and School of Medicine, rue Gabrielle Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Sysa P, Potter JJ, Liu X, Mezey E. Transforming growth factor-beta1 up-regulation of human alpha(1)(I) collagen is mediated by Sp1 and Smad2 transacting factors. DNA Cell Biol 2009; 28:425-34. [PMID: 19558215 DOI: 10.1089/dna.2009.0884] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatic fibrosis results from excessive deposition of type I collagen. The roles of Smads in mediating the effect of transforming growth factor-beta1 (TGFbeta1) on activation of the alpha(1)(I) collagen promoter were determined. Smads bind in association with Sp1 to the CC(GG)-rich TGFbeta1 responsive element of the promoter that lacks the classical Smad recognition element, and enhance binding of Sp1. In transfection experiments, TGFbeta1 activated a proximal promoter, but not promoters mutated at sites that prevented Sp1 binding. Sp1 alone or the combination of Smad2 and Smad4 activated the promoter in transfected human LX-2 stellate cells. Sp1 or Smad2 knockdowns with siRNAs prevented the effect of TGFbeta1 in enhancing the promoter. In conclusion, this study shows that Smads bind in association with Sp1 to the CC(GG)-rich TGFbeta1 responsive element of the human alpha(1)(I) collagen promoter that lacks the classical Smad recognition element, thus enhancing the binding of Sp1 and in this manner activating the collagen promoter.
Collapse
Affiliation(s)
- Polina Sysa
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | |
Collapse
|
30
|
Chiang CT, Chu WK, Chow SE, Chen JK. Overexpression of delta Np63 in a human nasopharyngeal carcinoma cell line downregulates CKIs and enhances cell proliferation. J Cell Physiol 2009; 219:117-22. [PMID: 19089994 DOI: 10.1002/jcp.21656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
p63 belongs to a member of the tumor suppressor protein p53 family. Due to alternative promoter usage, two types of p63 proteins are produced. The DeltaNp63 isoform lacks the N-terminal transactivation domain and is thought to antagonize TAp63 and p53 in target gene regulation. DeltaNp63 has been found to be overexpressed in numerous human squamous cell carcinomas, including nasopharyngeal carcinoma (NPC). However, the role of DeltaNp63 overexpression in NPC pathogenesis has not been clear. In this study, we use a DeltaNp63 overexpressing human NPC cell line (NPC-076) to explore the possible roles of DeltaNp63 in cell proliferation and cell-cycle regulation. We found that the proliferation of NPC-076 cell is greatly suppressed when the overexpressed DeltaNp63 is silenced by specific DeltaNp63 siRNA. Further studies show that DeltaNp63 silencing results in the upregulation of CKIs, including p27(kip1) and p57(kip2) in both mRNA and protein levels. Cell-cycle analysis shows that DeltaNp63 silencing also results in an increased G1 phase cell and apoptotic cell population. Our findings indicate that DeltaNp63 plays important roles in the regulation of NPC-076 cell-cycle progression, and may play a role in the maintenance of NPC-076 tumor cell phenotype.
Collapse
Affiliation(s)
- Chi-Tai Chiang
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
31
|
Yang L, Zhang H, Bruce JE. Optimizing the detergent concentration conditions for immunoprecipitation (IP) coupled with LC-MS/MS identification of interacting proteins. Analyst 2009; 134:755-62. [PMID: 19305927 DOI: 10.1039/b813335b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunoprecipitation (IP) coupled with LC-MS/MS is a widely used method in proteomics research to identify proteins and to study protein-protein interactions. IP techniques allow purification of proteins of interest and reduce sample complexity before introduction to the mass spectrometer. The effectiveness of IP experiments is an important factor for identification of proteins and protein-protein interactions. In this paper, a variety of IP conditions were studied systematically to improve IP-based protein interaction identification capabilities. Low concentration detergent (around 0.05% NP40/PBS) was found to improve IP effectiveness by decreasing non-specific binding. However, higher concentration detergent (e.g. 1% NP40/PBS) was detrimental. Furthermore, with lower protein concentrations, the IP system showed lower tolerance to detergent. For example, with a detergent concentration higher than 0.05% NP40/PBS, IP experiments were unsuccessful with low protein concentration (e.g. 0.28 microM ADH). In some cases the observed results were even worse than the results obtained without detergent. However, when the protein concentration was high (e.g. 1.12 microM ADH), this effect was not obvious and the high detergent (higher than 0.1%) experimental results were similar to those from low detergent concentration experiments (around 0.05%). Another application of this strategy to a more general system based on FLAG-Bacterial Alkaline Phosphatase (BAP) and anti-FLAG antibody was also performed. These results also suggested that low detergent concentration (0.05% NP40) is helpful for IP experiments, especially for the experiments with low protein concentrations. Considering that in most real applications, the proteins of interest are usually present in low abundance, a low amount of detergent is recommended to be used. The optimized detergent concentration was determined to be 0.05% in these studies. However, the key result presented here illustrates that both detergent and protein concentrations should be carefully considered when one is trying to optimize IP prior to mass spectrometry experiments.
Collapse
Affiliation(s)
- Li Yang
- Department of Genome Sciences, The University of Washington, Seattle, WA 98195-5065, USA
| | | | | |
Collapse
|
32
|
Prieto C, Risueño A, Fontanillo C, De Las Rivas J. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One 2008; 3:e3911. [PMID: 19081792 PMCID: PMC2597745 DOI: 10.1371/journal.pone.0003911] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/05/2008] [Indexed: 12/12/2022] Open
Abstract
Background Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global “omic” scale are not focused on human samples and when they correspond to human very often include heterogeneous datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the estimation of errors in the data is not provided. Methodology/Principal Findings Human genome-wide expression data from a controlled set of normal-healthy tissues is used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve this we describe a new method that combines several statistical and computational strategies: robust normalization and expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over previously published datasets. Further functional analysis of a subset core network, validated by two independent methods, shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression clusters organized in well defined functional constellations. Two major regions in this network correspond to genes involved in nuclear and mitochondrial metabolism and investigations on their functional assignment indicate that more than 60% are house-keeping and essential genes. The network displays new non-described gene associations and it allows the placement in a functional context of some unknown non-assigned genes based on their interactions with known gene families. Conclusions/Significance The identification of stable and reliable human gene to gene coexpression networks is essential to unravel the interactions and functional correlations between human genes at an omic scale. This work contributes to this aim, and we are making available for the scientific community the validated human gene coexpression networks obtained, to allow further analyses on the network or on some specific gene associations. The data are available free online at http://bioinfow.dep.usal.es/coexpression/.
Collapse
Affiliation(s)
- Carlos Prieto
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
| | - Alberto Risueño
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
| | - Celia Fontanillo
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Salamanca, Spain
- * E-mail:
| |
Collapse
|
33
|
Current world literature. Curr Opin Rheumatol 2008; 20:729-35. [PMID: 18946335 DOI: 10.1097/bor.0b013e328317a234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Su HW, Wang SW, Ghishan FK, Kiela PR, Tang MJ. Cell confluency-induced Stat3 activation regulates NHE3 expression by recruiting Sp1 and Sp3 to the proximal NHE3 promoter region during epithelial dome formation. Am J Physiol Cell Physiol 2008; 296:C13-24. [PMID: 19064501 DOI: 10.1152/ajpcell.00263.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of signal transducer and activator of transcription-3 (Stat3) during cell confluency is related to its regulatory roles in cell growth arrest- or survival-related physiological or developmental processes. We previously demonstrated that this signaling event triggers epithelial dome formation by transcriptional augmentation of sodium hydrogen exchanger-3 (NHE3) expression. However, the detailed molecular mechanism remained unclear. By using serial deletions, site-directed mutagenesis, and EMSA analysis, we now demonstrate Stat3 binding to an atypical Stat3-response element in the rat proximal NHE3 promoter, located adjacent to a cluster of Sp cis-elements (SpA/B/C), within -77/-36 nt of the gene. SpB (-58/-55 nt) site was more effective than SpA (-72/-69 nt) site for cooperative binding of Sp1/Sp3. Increasing cell density had no effect on Sp1/Sp3 expression but resulted in their increased binding to the SpA/B/C probe along with Stat3 and concurrently with enhanced nuclear pTyr705-Stat3 level. Immunoprecipitation performed with the nuclear extracts demonstrated physical interaction of Stat3 and Sp1/Sp3 triggered by cell confluency. Stat3 inhibition by overexpression of dominant-negative Stat3-D mutant in MDCK cells or by small interfering RNA-mediated knockdown in Caco-2 cells resulted in inhibition of the cell density-induced NHE3 expression, Sp1/Sp3 binding, and NHE3 promoter activity and in decreased dome formation. Thus, during confluency, ligand-independent Stat3 activation leads to its interaction with Sp1/Sp3, their recruitment to the SpA/B/C cluster in a Stat3 DNA-binding domain-dependent fashion, increased transcription, and expression of NHE3, to coordinate cell density-mediated epithelial dome formation.
Collapse
Affiliation(s)
- Hsiao-Wen Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 Univ. Road, Tainan 70101, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Renard E, Chadjichristos C, Kypriotou M, Beauchef G, Bordat P, Dompmartin A, Widom RL, Boumediene K, Pujol JP, Galéra P. Chondroitin sulphate decreases collagen synthesis in normal and scleroderma fibroblasts through a Smad-independent TGF-beta pathway--implication of C-Krox and Sp1. J Cell Mol Med 2008; 12:2836-47. [PMID: 18298657 PMCID: PMC3828896 DOI: 10.1111/j.1582-4934.2008.00287.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Despite several investigations, the transcriptional mechanisms which regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. In this study, we determined the effects of both native ichtyan chondroïtin sulphate (CS) and its derived hydrolytic fragments (CSf) on human normal (NF) and scleroderma (SF) fibroblasts. Here, we demonstrate for the first time that CS and CSf exert an inhibitory effect on type I collagen protein synthesis and decrease the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in NF and SF. These glycosaminoglycan molecules repress COL1A1 gene transcription through a -112/-61 bp sequence upstream the start site of transcription and imply hc-Krox and Sp1 transcription factors. In addition, CS and CSf induced a down-regulation of TβRI expression. As a conclusion, our findings highlight a possible new role for CS and CSf as anti-fibrotic molecules and could help in elucidating the mechanisms of action by which CS and CSf exert their inhibitory effect on type I collagen synthesis.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Laboratoire de Biochimie du Tissu Conjonctif, Université de Caen/Basse-Normandie, IFR 146 ICORE, Faculté de Médecine, CHU niveau 3, Caen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hanley KP, Oakley F, Sugden S, Wilson DI, Mann DA, Hanley NA. Ectopic SOX9 mediates extracellular matrix deposition characteristic of organ fibrosis. J Biol Chem 2008; 283:14063-71. [PMID: 18296708 DOI: 10.1074/jbc.m707390200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate temporospatial expression of the transcription factor SOX9 is important for normal development of a wide range of organs. Here, we show that when SOX9 is expressed ectopically, target genes become expressed that are associated with disease. Histone deacetylase inhibitors in clinical trials for cancer therapy induced SOX9 expression via enhanced recruitment of nuclear factor Y (NF-Y) to CCAAT elements in the SOX9 proximal promoter. The effect of histone deacetylase inhibitors could be elicited in cells that normally lack SOX9, such as hepatocytes. In human fetal hepatocytes, this aberrant induction of SOX9 protein caused ectopic expression of COL2A1 and COMP1 that encode extracellular matrix (ECM) components normally associated with chondrogenesis. Previously, ectopic expression of this "chondrogenic" profile has been implicated in vascular calcification. More broadly, inappropriate ECM deposition is a hallmark of fibrosis. We demonstrated that induction of SOX9 expression also occurred during activation of fibrogenic cells from the adult liver when the transcription factor was responsible for expression of the major component of fibrotic ECM, type 1 collagen. These combined data identify new aspects in the regulation of SOX9 expression. They support a role for SOX9 beyond normal development as a transcriptional regulator in the pathology of fibrosis.
Collapse
|