1
|
Qian Y, Ma S, Qiu R, Sun Z, Liu W, Wu F, Lam SM, Xia Z, Wang K, Fang L, Shui G, Cao X. Golgi protein ACBD3 downregulation sensitizes cells to ferroptosis. Cell Biol Int 2024; 48:1559-1572. [PMID: 38953242 DOI: 10.1002/cbin.12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is emerging as a promising target in cancer therapy. It is regulated by a network of molecules and pathways that modulate lipid metabolism, iron homeostasis and redox balance, and related processes. However, there are still numerous regulatory molecules intricately involved in ferroptosis that remain to be identified. Here, we indicated that suppression of Golgi protein acyl-coenzyme A binding domain A containing 3 (ACBD3) increased the sensitivity of Henrieta Lacks and PANC1 cells to ferroptosis. ACBD3 knockdown increases labile iron levels by promoting ferritinophagy. This increase in free iron, coupled with reduced levels of glutathione peroxidase 4 due to ACBD3 knockdown, leads to the accumulation of reactive oxygen species and lipid peroxides. Moreover, ACBD3 knockdown also results in elevated levels of polyunsaturated fatty acid-containing glycerophospholipids through mechanisms that remain to be elucidated. Furthermore, inhibition of ferrtinophagy in ACBD3 downregulated cells by knocking down the nuclear receptor co-activator 4 or Bafilomycin A1 treatment impeded ferroptosis. Collectively, our findings highlight the pivotal role of ACBD3 in governing cellular resistance to ferroptosis and suggest that pharmacological manipulation of ACBD3 levels is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ying Qian
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Shanchuan Ma
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Rong Qiu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhiyang Sun
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wei Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fan Wu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhengguo Xia
- Department of Wound Repair and Plastic and Aesthetic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Linshen Fang
- Department of Wound Repair and Plastic and Aesthetic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Stalder D, Yakunin I, Pereira C, Eden J, Gershlick DC. Recruitment of PI4KIIIβ to the Golgi by ACBD3 is dependent on an upstream pathway of a SNARE complex and golgins. Mol Biol Cell 2024; 35:ar20. [PMID: 38134218 PMCID: PMC7615549 DOI: 10.1091/mbc.e23-09-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
ACBD3 is a protein localised to the Golgi apparatus and recruits other proteins, such as PI4KIIIβ, to the Golgi. However, the mechanism through which ACBD3 itself is recruited to the Golgi is poorly understood. This study demonstrates there are two mechanisms for ACBD3 recruitment to the Golgi. First, we identified that an MWT374-376 motif in the unique region upstream of the GOLD domain in ACBD3 is essential for Golgi localization. Second, we use unbiased proteomics to demonstrate that ACBD3 interacts with SCFD1, a Sec1/Munc-18 (SM) protein, and a SNARE protein, SEC22B. CRISPR-KO of SCFD1 causes ACBD3 to become cytosolic. We also found that ACBD3 is redundantly recruited to the Golgi apparatus by two golgins: golgin-45 and giantin, which bind to ACBD3 through interaction with the MWT374-376 motif. Taken together, our results suggest that ACBD3 is recruited to the Golgi in a two-step sequential process, with the SCFD1-mediated interaction occurring upstream of the interaction with the golgins.
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Igor Yakunin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
3
|
ACBD3 Bioinformatic Analysis and Protein Expression in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23168881. [PMID: 36012147 PMCID: PMC9408326 DOI: 10.3390/ijms23168881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.
Collapse
|
4
|
Liao J, Guan Y, Chen W, Shi C, Yao D, Wang F, Lam SM, Shui G, Cao X. ACBD3 is required for FAPP2 transferring glucosylceramide through maintaining the Golgi integrity. J Mol Cell Biol 2020; 11:107-117. [PMID: 29750412 DOI: 10.1093/jmcb/mjy030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/14/2022] Open
Abstract
Glycosphingolipid (GSL) metabolism is involved in various physiological processes, including all major cell signaling pathways, and its dysregulation is linked to some diseases. The four-phosphate adaptor protein FAPP2-mediated glucosylceramide (GlcCer) transport for complex GSL synthesis has been studied extensively. However, the molecular machinery of FAPP2 as a GlcCer-transferring protein remains poorly defined. Here, we identify a Golgi-resident protein, acyl-coenzyme A binding domain containing 3 (ACBD3), as an interacting partner of FAPP2. We find that ACBD3 knockdown leads to dramatic Golgi fragmentation, which subsequently causes FAPP2 dispersal throughout the cytoplasm and a decreased localization at trans-Golgi network. The further quantitative lipidomic analysis indicates that ACBD3 knockdown triggers abnormal sphingolipid metabolism. Interestingly, the expression of siRNA-resistant full-length ACBD3 can rescue these defects caused by ACBD3 knockdown. These data reveal critical roles for ACBD3 in maintaining the integrity of Golgi morphology and cellular sphingolipid homeostasis and establish the importance of the integrated Golgi complex for the transfer of GlcCer and complex GSL synthesis.
Collapse
Affiliation(s)
- Jing Liao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yuxiang Guan
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wei Chen
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Can Shi
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Dongdong Yao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
6
|
Yue X, Qian Y, Gim B, Lee I. Acyl-CoA-Binding Domain-Containing 3 (ACBD3; PAP7; GCP60): A Multi-Functional Membrane Domain Organizer. Int J Mol Sci 2019; 20:ijms20082028. [PMID: 31022988 PMCID: PMC6514682 DOI: 10.3390/ijms20082028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023] Open
Abstract
Acyl-CoA-binding domain-containing 3 (ACBD3) is a multi-functional scaffolding protein, which has been associated with a diverse array of cellular functions, including steroidogenesis, embryogenesis, neurogenesis, Huntington’s disease (HD), membrane trafficking, and viral/bacterial proliferation in infected host cells. In this review, we aim to give a timely overview of recent findings on this protein, including its emerging role in membrane domain organization at the Golgi and the mitochondria. We hope that this review provides readers with useful insights on how ACBD3 may contribute to membrane domain organization along the secretory pathway and on the cytoplasmic surface of intracellular organelles, which influence many important physiological and pathophysiological processes in mammalian cells.
Collapse
Affiliation(s)
- Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| | - Bopil Gim
- School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| |
Collapse
|
7
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Overexpressed ACBD3 has prognostic value in human breast cancer and promotes the self-renewal potential of breast cancer cells by activating the Wnt/beta-catenin signaling pathway. Exp Cell Res 2018; 363:39-47. [PMID: 29307786 DOI: 10.1016/j.yexcr.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 01/30/2023]
Abstract
Acyl-CoA binding domain containing 3 (ACBD3) is involved in the maintenance of Golgi structure and function through its interaction with the integral membrane protein. However, the clinical significance and biological role of ACBD3 in breast cancer remain unclear. Herein, we found that the mRNA and protein levels of ACBD3 were markedly up-regulated in breast cancer cells and tissues. Immunohistochemical analysis of breast cancer tissues demonstrated that ACBD3 overexpression was significantly associated with advanced clinicopathological features. Univariate and multivariate analysis indicated that ACBD3 overexpression correlates with poor prognosis in breast cancer. Furthermore, overexpressing ACBD3 promoted, while silencing ACBD3 inhibited, self-renewal and tumorigenesis in breast cancer cells in vitro and in vivo respectively. Importantly, upregulating ACBD3 promoted the self-renewal and tumorigenesis of breast cancer cells via activating the Wnt/beta-catenin signaling, and the pro-self-renewal effect of ACBD3 in breast cancer was antagonized by the Wnt signaling inhibitor TCF4-siRNA and Lef1-siRNA.These findings indicate that ACBD3 may represent candidate therapeutic targets to enable the elimination of breast cancer stem cells, providing the preclinical proof-of-concept for the prevention and treatment of breast cancer.
Collapse
|
9
|
Yue X, Bao M, Christiano R, Li S, Mei J, Zhu L, Mao F, Yue Q, Zhang P, Jing S, Rothman JE, Qian Y, Lee I. ACBD3 functions as a scaffold to organize the Golgi stacking proteins and a Rab33b-GAP. FEBS Lett 2017; 591:2793-2802. [PMID: 28777890 DOI: 10.1002/1873-3468.12780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 01/24/2023]
Abstract
Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co-expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi-protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b-GAP at the medial-Golgi.
Collapse
Affiliation(s)
- Xihua Yue
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Mengjing Bao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Romain Christiano
- Department of Genetics and Complex Diseases, School of Public Health, Harvard medical school, Boston, MA, USA
| | - Siyang Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Lianhui Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Feifei Mao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Qiang Yue
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Panpan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Shuaiyang Jing
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - James E Rothman
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yi Qian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Intaek Lee
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| |
Collapse
|
10
|
Taniguchi M, Yoshida H. TFE3, HSP47, and CREB3 Pathways of the Mammalian Golgi Stress Response. Cell Struct Funct 2017; 42:27-36. [PMID: 28179603 DOI: 10.1247/csf.16023] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The capacity of each organelle in eukaryotic cells is tightly regulated in accordance with cellular demands by specific regulatory systems, which are generically termed organelle autoregulation. The Golgi stress response is one of the systems of organelle autoregulation and it augments the capacity of Golgi function if this becomes insufficient (Golgi stress). Recently, several pathways of the mammalian Golgi stress response have been identified, specifically the TFE3, HSP47, and CREB3 pathways. This review summarizes the essential parts of the Golgi stress response from the perspective of the organelle autoregulation.
Collapse
Affiliation(s)
- Mai Taniguchi
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo
| | | |
Collapse
|
11
|
Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1. Biochem J 2015; 469:189-98. [PMID: 25940138 DOI: 10.1042/bj20141487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
NAD(+) plays essential roles in cellular energy homoeostasis and redox state, functioning as a cofactor along the glycolysis and citric acid cycle pathways. Recent discoveries indicated that, through the NAD(+)-consuming enzymes, this molecule may also be involved in many other cellular and biological outcomes such as chromatin remodelling, gene transcription, genomic integrity, cell division, calcium signalling, circadian clock and pluripotency. Poly(ADP-ribose) polymerase 1 (PARP1) is such an enzyme and dysfunctional PARP1 has been linked with the onset and development of various human diseases, including cancer, aging, traumatic brain injury, atherosclerosis, diabetes and inflammation. In the present study, we showed that overexpressed acyl-CoA-binding domain containing 3 (ACBD3), a Golgi-bound protein, significantly reduced cellular NAD(+) content via enhancing PARP1's polymerase activity and enhancing auto-modification of the enzyme in a DNA damage-independent manner. We identified that extracellular signal-regulated kinase (ERK)1/2 as well as de novo fatty acid biosynthesis pathways are involved in ACBD3-mediated activation of PARP1. Importantly, oxidative stress-induced PARP1 activation is greatly attenuated by knocking down the ACBD3 gene. Taken together, these findings suggest that ACBD3 has prominent impacts on cellular NAD(+) metabolism via regulating PARP1 activation-dependent auto-modification and thus cell metabolism and function.
Collapse
|
12
|
Belman JP, Bian RR, Habtemichael EN, Li DT, Jurczak MJ, Alcázar-Román A, McNally LJ, Shulman GI, Bogan JS. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment. J Biol Chem 2015; 290:4447-63. [PMID: 25561724 DOI: 10.1074/jbc.m114.603977] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD(+)-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- Jonathan P Belman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Department of Cell Biology
| | - Rachel R Bian
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | | | - Don T Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Michael J Jurczak
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Leah J McNally
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine
| | - Gerald I Shulman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, Department of Cell Biology,
| |
Collapse
|
13
|
Löffler MG, Birkenfeld AL, Philbrick KM, Belman JP, Habtemichael EN, Booth CJ, Castorena CM, Choi CS, Jornayvaz FR, Gassaway BM, Lee HY, Cartee GD, Philbrick W, Shulman GI, Samuel VT, Bogan JS. Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle. J Biol Chem 2013; 288:20135-50. [PMID: 23744065 DOI: 10.1074/jbc.m113.458075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12-13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.
Collapse
Affiliation(s)
- Michael G Löffler
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oku M, Tanakura S, Uemura A, Sohda M, Misumi Y, Taniguchi M, Wakabayashi S, Yoshida H. Novel Cis-acting Element GASE Regulates Transcriptional Induction by the Golgi Stress Response. Cell Struct Funct 2011; 36:1-12. [DOI: 10.1247/csf.10014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Masaya Oku
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Soichiro Tanakura
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo
| | - Aya Uemura
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Miwa Sohda
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University
| | - Yoshio Misumi
- Department of Biochemistry, School of Medicine, Fukuoka University
| | - Mai Taniguchi
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo
| | - Sadao Wakabayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo
| | - Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo
| |
Collapse
|
15
|
Fox RM, Hanlon CD, Andrew DJ. The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity. ACTA ACUST UNITED AC 2010; 191:479-92. [PMID: 21041443 PMCID: PMC3003312 DOI: 10.1083/jcb.201004062] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CrebA up-regulates expression of both the general protein machinery required in all cells for secretion and genes encoding cell type–specific secreted components. Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary, and mammary glands. How secretory capacity is selectively up-regulated in specialized secretory cells is unknown. Here, we find that the CrebA/Creb3-like family of bZip transcription factors functions to up-regulate expression of both the general protein machinery required in all cells for secretion and of cell type–specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also up-regulates expression of genes encoding cell type–specific secreted components. Finally, we found that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to up-regulate the secretory pathway in nonsecretory cell types.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
16
|
Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus. J Bacteriol 2010; 192:86-93. [PMID: 19854899 DOI: 10.1128/jb.01248-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sensor kinase NreB from Staphylococcus carnosus contains an O(2)-sensitive [4Fe-4S](2+) cluster which is converted by O(2) to a [2Fe-2S](2+) cluster, followed by complete degradation and formation of Fe-S-less apo-NreB. NreB.[2Fe-2S](2+) and apoNreB are devoid of kinase activity. NreB contains four Cys residues which ligate the Fe-S clusters. The accessibility of the Cys residues to alkylating agents was tested and used to differentiate Fe-S-containing and Fe-S-less NreB. In a two-step labeling procedure, accessible Cys residues in the native protein were first labeled by iodoacetate. In the second step, Cys residues not labeled in the first step were alkylated with the fluorescent monobromobimane (mBBr) after denaturing of the protein. In purified (aerobic) apoNreB, most (96%) of the Cys residues were alkylated in the first step, but in anaerobic (Fe-S-containing) NreB only a small portion (23%) were alkylated. In anaerobic bacteria, a very small portion of the Cys residues of NreB (9%) were accessible to alkylation in the native state, whereas most (89%) of the Cys residues from aerobic bacteria were accessible. The change in accessibility allowed determination of the half-time (6 min) for the conversion of NreB x [4Fe-4S](2+) to apoNreB after the addition of air in vitro. Overall, in anaerobic bacteria most of the NreB exists as NreB x [4Fe-4S](2+), whereas in aerobic bacteria the (Fe-S-less) apoNreB is predominant and represents the physiological form. The number of accessible Cys residues was also determined by iodoacetate alkylation followed by mass spectrometry of Cys-containing peptides. The pattern of mass increases confirmed the results from the two-step labeling experiments.
Collapse
|
17
|
Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res 2010; 49:218-34. [PMID: 20043945 DOI: 10.1016/j.plipres.2009.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Golgi body-mediated signaling has been linked to its fragmentation and regeneration during the mitotic cycle of the cell. During this process, Golgi-resident proteins are released to the cytosol and interact with other signaling molecules to regulate various cellular processes. Acyl-coenzyme A binding domain containing 3 protein (ACBD3) is a Golgi protein involved in several signaling events. ACBD3 protein was previously known as peripheral-type benzodiazepine receptor and cAMP-dependent protein kinase associated protein 7 (PAP7), Golgi complex-associated protein of 60kDa (GCP60), Golgi complex-associated protein 1 (GOCAP1), and Golgi phosphoprotein 1 (GOLPH1). In this review, we present the gene ontology of ACBD3, its relations to other Acyl-coenzyme A binding domain containing (ACBD) proteins, and its biological function in steroidogenesis, apoptosis, neurogenesis, and embryogenesis. We also discuss the role of ACBD3 in asymmetric cell division and cancer. New findings about ACBD3 may help understand this newly characterized signaling molecule and stimulate further research into its role in molecular endocrinology, neurology, and stem cell biology.
Collapse
|
18
|
Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
19
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|