1
|
Fedai H, Toprak K, Cetin M, Elmas AN, Tosun V, Demirbag R. The assessment of the relationship between the development of cardiovascular diseases and SCUBE-1 level in individuals exposed to loud noise. Medicine (Baltimore) 2024; 103:e41053. [PMID: 39705419 DOI: 10.1097/md.0000000000041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Development of industry in the modern world, the number of individuals working in noisy environments is increasing with each passing day. Noise causes an increase in the incidence of cardioembolic events, yet the relevant underlying pathophysiology remains unclear. In this study, we aimed to investigate the relationship between signal peptide and complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein-1 (SCUBE-1) in the pathophysiology of cardioembolic events in individuals exposed to noisy environments. The study sample consisted of 99 textile factory workers who were exposed to loud noise and 56 volunteer office workers who were not exposed to loud noise. Hemogram values, basic biochemical parameters, and SCUBE-1 levels were measured for all participants. When the SCUBE-1 level of the group exposed to loud noise was compared with the control group, SCUBE-1 level was found to be significantly higher in the group exposed to loud noise (P < .001). The group exposed to loud noise was divided into 2 subgroups based on the duration of exposure to loud noise. The SCUBE-1 levels were significantly higher in the group exposed to loud noise for >10 years than in the group exposed to loud noise for <10 years (P < .001). In this study, we found that noise significantly increased the serum SCUBE-1 levels. Noise was also an independent predictor of serum signal peptide-complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein-1 levels. Therefore, it should be noted that individuals exposed to noise may be more prone to embolic events.
Collapse
Affiliation(s)
- Halil Fedai
- Harran University Faculty of Medicine, Department of Cardiology, Şanliurfa, Turkey
| | - Kenan Toprak
- Harran University Faculty of Medicine, Department of Cardiology, Şanliurfa, Turkey
| | - Mustafa Cetin
- Clinic of Cardiology, Mehmet Akif İnan Training and Research Hospital, Sanliurfa, Turkey
| | | | - Veysel Tosun
- Clinic of Cardiology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Recep Demirbag
- Harran University Faculty of Medicine, Department of Cardiology, Şanliurfa, Turkey
| |
Collapse
|
2
|
Chen H, Wu X, Lan Y, Zhou X, Zhang Y, Long L, Zhong Y, Hao Z, Zhang W, Xue D. SCUBE3 promotes osteogenic differentiation and mitophagy in human bone marrow mesenchymal stem cells through the BMP2/TGF-β signaling pathway. FASEB J 2024; 38:e70011. [PMID: 39250278 DOI: 10.1096/fj.202400991r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-β expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-β signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Xiaoyong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Yinan Lan
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Xijie Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Long Long
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Yuliang Zhong
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Zhengan Hao
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Weijun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - DeTing Xue
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
3
|
Selcuk OT, Ozturk Yılmaz G, Ellidag HY, Ilden O, Turkoglu Selcuk N, Yilmaz G, Ensari N, Konsuk Unlu H, Eyigor H. Can we use serum SCUBE 1 levels as a biomarker in obstructive sleep apnea hypopnea syndrome? Cranio 2024; 42:490-498. [PMID: 34842057 DOI: 10.1080/08869634.2021.2005917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To examine the SCUBE1 level, a biomarker in vascular biology that could determine the prognosis of cardiovascular events during OSA treatment. METHODS In total, 129 patients were included in the study. Thirty were diagnosed with simple snoring and 99 with OSA. RESULTS In males, significant correlation was determined between SCUBE1 non-REM AHI, hypopnea index, total apnea index, mean SO2, minimum SO2, and < 90% saturation duration. CONCLUSION Serum SCUBE1 levels increased more in male patients with severe OSA compared to other OSA levels, and high serum SCUBE1 levels were found to be associated with lower oxygen levels in OSA patients. The SCUBE1 biomarker can correlate with severe OSA in males. There was a statistically significant difference between OSA groups in terms of SCUBE1 score for male patients (p = 0.002) but not for females (p = 0.498). It is important that future SCUBE1 studies evaluate males vs. females.
Collapse
Affiliation(s)
- Omer Tarik Selcuk
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Gamze Ozturk Yılmaz
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hamit Yasar Ellidag
- Department of Biochemistry, Antalya Training and Research Hospital, Antalya, Turkey
| | - Oğuzhan Ilden
- Department of Otorhinolaryngology, Kumluca Public Hospital, Antalya, Turkey
| | | | - Gokhan Yilmaz
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Nuray Ensari
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| | | | - Hülya Eyigor
- Department of Otorhinolaryngology, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
4
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
5
|
Toprak K, Yıldız Z, Akdemir S, Esen K, Düken RK. Could signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 be a therapeutic target in the pathogenesis of preeclampsia? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231027. [PMID: 38451587 PMCID: PMC10914331 DOI: 10.1590/1806-9282.20231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Determination of biomolecules that play a role in the etiopathogenesis of preeclampsia and their application as therapeutic targets may increase surveillance in this patient group. The aim of this study was to investigate the relationship between signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1, a marker of endothelial dysfunction and platelet activation, and the development of preeclampsia. METHODS In this observational cross-sectional study conducted between April 2021 and December 2022, 73 consecutive pregnant women with preeclampsia and 73 healthy pregnant women were included. Blood samples were taken from all patients with preeclampsia to measure signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 levels at the time of hospitalization. Excluded from the study were pregnant women with certain medical conditions or treatments, and the signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 levels of the groups were compared according to the development of preeclampsia. RESULTS Signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 levels were significantly higher in the preeclampsia group than in the controls (p<0.001). In multivariate analysis, signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 was determined as an independent predictor for preeclampsia (OR: 1.678, 95%CI 1.424-1.979, p<0.001). Receiver operating characteristic curve analysis showed that the best cutoff value of signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 at 3.25 ng/mL predicted the development of preeclampsia with 71% sensitivity and 68% specificity (area under the curve, 0.739; 95% confidence ınterval (95%CI), 0.681-0.798, p<0.001). CONCLUSION Signal peptide complement C1r/C1s, Uegf, and Bmp1, and epidermal growth factor-containing protein 1 is significantly elevated in pregnant women with preeclampsia compared with healthy controls.
Collapse
Affiliation(s)
- Kenan Toprak
- Harran University, Faculty of Medicine, Department of Cardiology –
Şanlıurfa, Turkey
| | - Zafer Yıldız
- Harran University, Faculty of Medicine, Department of Obstetrics and
Gynecology – Şanlıurfa, Turkey
| | - Selim Akdemir
- Harran University, Faculty of Medicine, Department of Obstetrics and
Gynecology – Şanlıurfa, Turkey
| | - Kamil Esen
- Harran University, Faculty of Medicine, Department of Obstetrics and
Gynecology – Şanlıurfa, Turkey
| | - Rahime Kada Düken
- Siverek State Hospital, Department of Obstetrics and Gynecology –
Şanlıurfa, Turkey
| |
Collapse
|
6
|
Qu X, Huang D, Zhou X, Ruan W. SCUBE1 promotes pulmonary artery smooth muscle cell proliferation and migration in acute pulmonary embolism by modulating BMP7. PeerJ 2024; 12:e16719. [PMID: 38259670 PMCID: PMC10802153 DOI: 10.7717/peerj.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives After an episode of acute pulmonary embolism (APE), activated platelets have the ability to release various bioactive factors that can stimulate both proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). SCUBE1 has been previously reported to engage in platelet-platelet interactions, potentially contributing to the activation of platelets in early onset thrombi. The purpose of this study was to examine the alterations in SCUBE1 expression in PASMCs after APE, as well as understand the mechanism behind these changes. Methods The platelet-rich plasma samples of both APE patients and healthy individuals were collected. A hyperproliferative model of PASMCs was established by using platelet-derived growth factor (PDGF) as a stimulator and various assays were used to investigate how SCUBE1-mediated BMP7 can regulate PDGF-induced PASMC proliferation and migration. Results Elevated level of SCUBE1 were observed in platelet-rich plasma from patients with APE and in PASMCs induced by PDGF. SCUBE1 interference ameliorated PDGF-driven cell proliferation and migration, and also downregulated PCNA expression. Additionally, mechanistic studies demonstrated that SCUBE1 could directly bind to bone morphogenetic protein 7 (BMP7) and enhance BMP7 expression, which completely abolished the impact of SCUBE1 silencing on proliferation and migration ability of PASMCs after PDGF treatment. Conclusion In the PDGF-induced proliferation of PASMCs, the expression of SCUBE1 and BMP7 was upregulated. Silencing of SCUBE1 impeded PDGF-induced proliferation and migration of PASMCs by restraining BMP7.
Collapse
Affiliation(s)
- Xiaoya Qu
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| | - Dongmei Huang
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| | - Xiaomin Zhou
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| | - Wenwen Ruan
- Department of Basic Medicine, Xiamen Medical College, Fujian, China
| |
Collapse
|
7
|
Altuntaş G, Altuntaş M, Imamoğlu M, Çolakoğlu MK, Uydu HA, Bedir R. Diagnostic value of serum signal peptide-CUB-EGF-like domain-containing protein 1 levels in patients with acute appendicitis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20230076. [PMID: 37585982 PMCID: PMC10427172 DOI: 10.1590/1806-9282.20230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Acute appendicitis is one of the most common surgical causes of an acute abdomen among patients admitted to the emergency room due to abdominal pain. The clinical diagnosis of acute appendicitis is usually difficult and is made by evaluating the clinical, laboratory, and radiological findings together. The aim of this study was to investigate the diagnostic potential of signal peptide-CUB-EGF-like domain-containing protein 1 as a biomarker for acute appendicitis. METHODS A total of 67 adult patients without any comorbidities who presented to the emergency department with abdominal pain and were clinically diagnosed with acute appendicitis were included in the case group. The patients included in the study were classified into the negative appendectomy group and the acute appendicitis group according to their histopathological final diagnosis. In addition, 48 healthy volunteers without comorbidities were included in the control group. Signal peptide-CUB-EGF-like domain-containing protein 1 levels of patients and the control group were measured. RESULTS According to postoperative histopathological examinations of the patients, 7 (10.4%) patients were diagnosed with negative appendectomy, and 60 (89.6%) patients were diagnosed with acute appendicitis. Signal peptide-CUB-EGF-like domain-containing protein 1 levels were higher in the patients with acute appendicitis than in negative appendectomy patients (p=0.012). Signal peptide-CUB-EGF-like domain-containing protein 1 levels were also higher in the case group compared to the control group (p=0.001). CONCLUSION The admission signal peptide-CUB-EGF-like domain-containing protein 1 level was significantly higher in adults with acute appendicitis. The SCUBE1 level is a novel but promising biomarker that aids in the diagnosis of acute appendicitis.
Collapse
Affiliation(s)
- Gürkan Altuntaş
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Emergency Medicine – Rize, Turkey
| | - Mehmet Altuntaş
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Emergency Medicine – Rize, Turkey
| | - Melih Imamoğlu
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine – Trabzon, Turkey
| | - Muhammet Kadri Çolakoğlu
- Health Sciences University, Ankara City Hospital, Department of Gastrointestinal Surgery – Ankara, Turkey
| | - Hüseyin Avni Uydu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Biochemistry – Rize, Turkey
| | - Recep Bedir
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Pathology – Rize, Turkey
| |
Collapse
|
8
|
Thorne JW, Redden R, Bowdridge SA, Becker GM, Stegemiller MR, Murdoch BM. Genome-Wide Analysis of Sheep Artificially or Naturally Infected with Gastrointestinal Nematodes. Genes (Basel) 2023; 14:1342. [PMID: 37510248 PMCID: PMC10379027 DOI: 10.3390/genes14071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The anthelmintic resistance of gastrointestinal nematodes (GINs) poses a significant threat to sheep worldwide, but genomic selection can serve as an alternative to the use of chemical treatment as a solution for parasitic infection. The objective of this study is to conduct genome-wide association studies (GWASs) to identify single nucleotide polymorphisms (SNPs) in Rambouillet (RA) and Dorper × White Dorper (DWD) lambs associated with the biological response to a GIN infection. All lambs were genotyped with a medium-density genomic panel with 40,598 markers used for analysis. Separate GWASs were conducted using fecal egg counts (FECs) from lambs (<1 year of age) that acquired their artificial infections via an oral inoculation of 10,000 Haemonchus contortus larvae (n = 145) or naturally while grazing on pasture (n = 184). A GWAS was also performed for packed cell volume (PCV) in artificially GIN-challenged lambs. A total of 26 SNPs exceeded significance and 21 SNPs were in or within 20 kb of genes such as SCUBE1, GALNT6, IGF1R, CAPZB and PTK2B. The ontology analysis of candidate genes signifies the importance of immune cell development, mucin production and cellular signaling for coagulation and wound healing following epithelial damage in the abomasal gastric pits via H. contortus during GIN infection in lambs. These results add to a growing body of the literature that promotes the use of genomic selection for increased sheep resistance to GINs.
Collapse
Affiliation(s)
- Jacob W Thorne
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
- Texas A&M AgriLife Research and Extension, San Angelo, TX 76901, USA
| | - Reid Redden
- Texas A&M AgriLife Research and Extension, San Angelo, TX 76901, USA
| | - Scott A Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
9
|
Lin YC, Sahoo BK, Gau SS, Yang RB. The biology of SCUBE. J Biomed Sci 2023; 30:33. [PMID: 37237303 PMCID: PMC10214685 DOI: 10.1186/s12929-023-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The SCUBE [Signal peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial growth factor domain-containing protein] family consists of three proteins in vertebrates, SCUBE1, 2 and 3, which are highly conserved in zebrafish, mice and humans. Each SCUBE gene encodes a polypeptide of approximately 1000 amino acids that is organized into five modular domains: (1) an N-terminal signal peptide sequence, (2) nine tandem epidermal growth factor (EGF)-like repeats, (3) a large spacer region, (4) three cysteine-rich (CR) motifs, and (5) a CUB domain at the C-terminus. Murine Scube genes are expressed individually or in combination during the development of various tissues, including those in the central nervous system and the axial skeleton. The cDNAs of human SCUBE orthologs were originally cloned from vascular endothelial cells, but SCUBE expression has also been found in platelets, mammary ductal epithelium and osteoblasts. Both soluble and membrane-associated SCUBEs have been shown to play important roles in physiology and pathology. For instance, upregulation of SCUBEs has been reported in acute myeloid leukemia, breast cancer and lung cancer. In addition, soluble SCUBE1 is released from activated platelets and can be used as a clinical biomarker for acute coronary syndrome and ischemic stroke. Soluble SCUBE2 enhances distal signaling by facilitating the secretion of dual-lipidated hedgehog from nearby ligand-producing cells in a paracrine manner. Interestingly, the spacer regions and CR motifs can increase or enable SCUBE binding to cell surfaces via electrostatic or glycan-lectin interactions. As such, membrane-associated SCUBEs can function as coreceptors that enhance the signaling activity of various serine/threonine kinase or tyrosine kinase receptors. For example, membrane-associated SCUBE3 functions as a coreceptor that promotes signaling in bone morphogenesis. In humans, SCUBE3 mutations are linked to abnormalities in growth and differentiation of both bones and teeth. In addition to studies on human SCUBE function, experimental results from genetically modified mouse models have yielded important insights in the field of systems biology. In this review, we highlight novel molecular discoveries and critical directions for future research on SCUBE proteins in the context of cancer, skeletal disease and cardiovascular disease.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Binay K Sahoo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan.
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
da Silva Figueira R, Mustafa Gomes Muniz FW, Costa LC, Silva de Moura M, Moura LDFADD, Mello de Oliveira B, Lima CCB, Rösing CK, de Lima MDDM. Association between genetic factors and molar-incisor hypomineralisation or hypomineralised second primary molar: A systematic review. Arch Oral Biol 2023; 152:105716. [PMID: 37210809 DOI: 10.1016/j.archoralbio.2023.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To determine the association between genetic factors and molar-incisor hypomineralisation (MIH) and/or hypomineralised second primary molars by means of a systematic review. DESIGN A search was performed in Medline-PubMed, Scopus, Embase and Web of Science databases; manual search and search in gray literature were also performed. Selection of articles was performed independently by two researchers. A third examiner was involved in cases of disagreement. Data extraction was performed using an Excel® spreadsheet and independent analysis was performed for each outcome. RESULTS Sixteen studies were included. There was an association between MIH and genetic variants related to amelogenesis, immune response, xenobiotic detoxification and other genes. Moreover, interactions between amelogenesis and immune response genes, and SNPs in the aquaporin gene and vitamin D receptors were associated with MIH. Greater agreement of MIH was found in pairs of monozygotic twins than dizygotic twins. The heritability of MIH was 20 %. Hypomineralised second primary molars was associated with SNPs in the hypoxia-related HIF-1 gene and methylation in genes related to amelogenesis. CONCLUSION With very low or low certainty of evidence, an association was observed between MIH and SNPs in genes associated with amelogenesis, immune response, xenobiotic detox and ion transport. Interactions between genes related to amelogenesis and immune response as well as aquaporin genes were associated to MIH. With very low certainty of evidence, hypomineralised second primary molars was associated to a hypoxia-related gene and to methylation in genes related to amelogenesis. Moreover, higher agreement of MIH in pairs of monozygotic twins than dizygotic twins was observed.
Collapse
Affiliation(s)
| | | | - Lara Carvalho Costa
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcoeli Silva de Moura
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bibiana Mello de Oliveira
- Post Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
11
|
Xiao L, Wang M, Yang S, Li S, Huang Q, Xu L, Li Y, Fu Y. The diagnostic potential of plasma SCUBE-1 concentration for pulmonary embolism: A pilot study. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:263-269. [PMID: 36748401 PMCID: PMC10113275 DOI: 10.1111/crj.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This study aimed to investigate the potential application of plasma signal peptide-complement C1r/C1s, Uegf and Bmp1-epidermal growth factor domain-containing protein 1 (SCUBE-1) as a biomarker in the diagnosis of pulmonary embolism (PE). METHODS This cross-sectional study enrolled 177 patients who underwent PE diagnostic test and 87 healthy controls. The results of CT pulmonary angiogram (CTPA) were used as reference standards for PE diagnosis. The levels of SCUBE-1 and D-dimer in participants' plasma were detected with enzyme-linked immunosorbent assay and compared among patients with confirmed PE, suspicious PE and healthy controls. The diagnostic values were analysed using receiver operating characteristic (ROC) curve analysis. In addition, differences in plasma SCUBE-1 levels were compared among patients with different risk stratifications. RESULTS The plasma SCUBE-1 concentration levels in patients with CTPA confirmed PE (14.28 ± 7.74 ng/ml) was significantly higher than those in the suspicious patients (11.11 ± 4.48 ng/ml) and in healthy control (4.40 ± 3.23 ng/ml) (P < 0.01). ROC curve analysis showed that at the cut-off of 7.789 ng/ml, SCUBE-1 has significant diagnostic value in differentiating PE patients from healthy control (AUC = 0.919, sensitivity = 81.25%, specificity = 92.13%), and the performance is more accurate than D-dimer (cut-off 273.4 ng/ml, AUC = 0.648, sensitivity = 65.75%, specificity = 67.42%). The combination of D-dimer with SCUBE-1 did not further improve the diagnostic value. However, SCUBE-1 did not show significant diagnostic value in identifying PE among suspicious patients There was no significant difference in SCUBE-1 level among different risk groups (P > 0.05). CONCLUSION We believe that SCUBE-1 could be a potential coagulation-related marker for the diagnosis of PE.
Collapse
Affiliation(s)
- Lu Xiao
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China.,Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minlian Wang
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Sicong Yang
- Department of Cardiology, The seventh Affiliated Hospital of Sun Yat sen University (Shenzhen), Shenzhen, China
| | - Shulin Li
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Qijun Huang
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Lan Xu
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Yazhen Li
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| | - Yingyun Fu
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, China
| |
Collapse
|
12
|
Bourgault J, Abner E, Manikpurage HD, Pujol-Gualdo N, Laisk T, Gobeil É, Gagnon E, Girard A, Mitchell PL, Thériault S, Esko T, Mathieu P, Arsenault BJ. Proteome-Wide Mendelian Randomization Identifies Causal Links Between Blood Proteins and Acute Pancreatitis. Gastroenterology 2023; 164:953-965.e3. [PMID: 36736436 DOI: 10.1053/j.gastro.2023.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (n = 35,559) and 4979 blood proteins from the Fenland study (n = 10,708). RESULTS The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.
Collapse
Affiliation(s)
- Jérôme Bourgault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hasanga D Manikpurage
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Natàlia Pujol-Gualdo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Émilie Gobeil
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Arnaud Girard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
13
|
Ilden O, Selcuk OT, Ellidag HY, Türkoglu Selcuk N, Eyigor H, Renda L, Isik UG, Unlü HK, Osma U, Yılmaz MD, Eren E, Yilmaz N. An evaluation of the change in serum SCUBE-1 levels with CPAP treatment in patients with severe obstructive sleep apnea. Cranio 2022:1-7. [PMID: 36511108 DOI: 10.1080/08869634.2022.2145710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Signal peptide CUB-EGF domain-containing protein 1 (SCUBE-1) is a cell surface protein, wherein inflammation causes an increase in serum. The aim of this study was to compare serum SCUBE-1 levels in OSA patients and to investigate the serum SCUBE-1 change with CPAP treatment. METHODS Blood samples were obtained from 61 severe OSA patients and from 25 control subjects evaluated as simple snorers. The 61 patients with severe OSA were treated with CPAP therapy and were recalled for follow up after 1 year. Evaluation was made after 1 year of CPAP therapy. RESULTS Serum SCUBE-1 values were significantly higher in patients with severe OSA. The SCUBE-1 values significantly decreased after treatment with CPAP. CONCLUSION Serum SCUBE-1 values in OSA patients showed a significant reduction in SCUBE-1 levels following 1 year of CPAP treatment.
Collapse
Affiliation(s)
- Oguzhan Ilden
- Antalya Research and Teaching Hospital ENT Department, Muratpasa, Türkiye
| | - Omer Tarik Selcuk
- Antalya Research and Teaching Hospital ENT Department, Muratpasa, Türkiye
| | - Hamit Yasar Ellidag
- Antalya Research and Teaching Hospital Biochemistry Department, Muratpasa, Türkiye
| | | | - Hulya Eyigor
- Antalya Research and Teaching Hospital ENT Department, Muratpasa, Türkiye
| | - Levent Renda
- Antalya Research and Teaching Hospital ENT Department, Muratpasa, Türkiye
| | - Unal Gökalp Isik
- Antalya Research and Teaching Hospital ENT Department, Muratpasa, Türkiye
| | - Hande Konsuk Unlü
- Public Health Department, Hacettepe University Faculty of Medicine, , Samanpazarı, Türkiye
| | - Ustün Osma
- ENT Department, Akdeniz Üniversity Faculty of Medicine, Konyaaltı, Türkiye
| | | | - Esin Eren
- Antalya Research and Teaching Hospital Biochemistry Department, Muratpasa, Türkiye
| | - Necat Yilmaz
- Antalya Research and Teaching Hospital Biochemistry Department, Muratpasa, Türkiye
| |
Collapse
|
14
|
Toprak K, Kaplangoray M, Palice A, Taşcanov MB, İnanır M, Memioğlu T, Kök Z, Biçer A, Demirbağ R. SCUBE1 is associated with thrombotic complications, disease severity, and in-hospital mortality in COVID-19 patients. Thromb Res 2022; 220:100-106. [PMID: 36334396 PMCID: PMC9597517 DOI: 10.1016/j.thromres.2022.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Introduction COVID-19 disease, which has recently become an important cause of mortality and morbidity all over the world, is remarkably associated with thrombotic complications. Although many factors are responsible for these increased thrombotic complications in COVID-19 disease, its relationship with a marker that increases the risk of thrombosis such as Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1) has not yet been clarified. This is the first study to examine the potential diagnostic and prognostic value of SCUBE1 levels in patients with COVID-19. In this study, we aimed to clarify the relationship between the increased risk of thrombosis and SCUBE1 in the course of COVID-19 disease. Materials and methods 553 patients with COVID-19 and 553 healthy controls were compared in terms of SCUBE1 levels. Additionally, patients with COVID-19 were divided into two groups according to their SCUBE1 levels and compared in terms of severity of disease, thrombotic complications and ın-hospital mortality. Results SCUBE1 levels were significantly higher in patients with COVID-19 compared to the control group (p < 0.001). Plasma SCUBE1 levels were significantly higher in patients with severe disease and thrombotic complications, those with mild to moderate disease, and those without thrombotic complications (p < 0.001, for both). In addition, SCUBE1 was found to be an independent predictor of in-hospital mortality (p < 0.001). Conclusions SCUBE1 may be one of the major determinants of thrombotic complications, which is an increased cause of mortality and morbidity in COVID-19 patients so inhibition of this peptide may be among the therapeutic targets in patients with COVID-19.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey,Corresponding author
| | | | - Ali Palice
- Mehmet Akif İnan Training and Research Hospital, Sanlıurfa, Turkey
| | | | - Mehmet İnanır
- Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu, Turkey
| | - Tolga Memioğlu
- Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu, Turkey
| | - Zafer Kök
- Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
15
|
Zhao J, Li R, Li J, Chen Z, Lin Z, Zhang B, Deng L, Chen G, Wang Y. CAFs-derived SCUBE1 promotes malignancy and stemness through the Shh/Gli1 pathway in hepatocellular carcinoma. J Transl Med 2022; 20:520. [DOI: 10.1186/s12967-022-03689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The tumour microenvironment and cirrhotic liver are excellent sources of cancer-associated fibroblasts (CAFs), which participate in carcinogenesis. Thus, it is important to clarify the crosstalk between CAFs and HCC cells and the related mechanism in regulating carcinogenesis.
Methods
Human hepatocellular carcinoma (HCC) tissues and matched adjacent normal tissues were obtained from HCC patients. Immunohistochemistry, Western blotting (WB) and RT–qPCR were performed to detect the expression of SCUBE1. The roles of SCUBE1 in inducing stemness features in HCC cells were explored and investigated in vitro and in vivo. Student’s t tests or Mann–Whitney U tests were used to compare continuous variables, while chi-square tests or Fisher’s exact tests were used to compare categorical variables between two groups.
Results
SCUBE1 was confirmed to be highly expressed in CAFs in HCC and had a strong connection with stemness and a poor prognosis. In addition, CAFs were found to secrete SCUBE1 to enhance the malignancy of HCC cells and increase the proportion of CD133-positive cells. Silencing SCUBE1 expression had the opposite effect. The Shh pathway was activated by SCUBE1 stimulation. Inhibition of cyclopamine partially reversed the stimulating effect of SCUBE1 both in vivo and in vitro. Moreover, based on the RT–qPCR, ELISA and WB results, a high SCUBE1 expression level was found in HCC tissue and serum.
Conclusion
This study revealed that CAFs-derived SCUBE1 can enhance the malignancy and stemness of HCC cells through the Shh pathway. This study aims to provide new perspectives for future HCC studies and provide new strategies for HCC treatment.
Collapse
|
16
|
Yılmaz C, Gülen B, Sönmez E, Akbay D, Söğüt Ö, Özdemir S, Özer ÖF. Serum SCUBE-1 Levels and Return of Spontaneous Circulation Following Cardiopulmonary Resuscitation in Adult Patients. Avicenna J Med 2022; 12:148-153. [PMID: 36092384 PMCID: PMC9458353 DOI: 10.1055/s-0042-1755389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background
SCUBE 1-has been used as a biomarker for the diagnoses of myocardial infarction, stroke, mesenteric ischemia, and gastric cancer in some recent studies. In this study, we investigated the relationship between serum SCUBE−1 levels and return of spontaneous circulation (ROSC) in patients who received cardiopulmonary resuscitation (CPR).
Methods
Patients over 18 years of age who were not pregnant and received CPR were divided into two groups: those who achieved ROSC and those who died. There were 25 patients in each group. SCUBE−1 and other routine biochemical parameters were studied in blood samples taken at the time of admission.
Results
There was no significant difference between the age and gender distribution of the patients between the two groups. The SCUBE−1 value of the ROSC group was significantly higher than that of the non-survivor group (
p
˂ 0.05). At a cut-off value of 9 ng/mL, SCUBE−1 had a sensitivity of 100%, a positive predictive value of 65.8%, specificity of 48%, and a negative predictive value of 100% in predicting ROSC.
Conclusions
The SCUBE−1 values were found to be significantly higher in the ROSC group compared with the non-survivor group.
Collapse
Affiliation(s)
- Cahit Yılmaz
- Department of Emergency Medicine, University of Health Sciences Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Bedia Gülen
- Department of Emergency Medicine, İstanbul Medipol University, Istanbul, Turkey
| | - Ertan Sönmez
- Department of Emergency Medicine, Bezmialem Foundation University, Istanbul, Turkey
| | - Dursun Akbay
- Private Practice, Bezmialem Foundation University, Istanbul, Turkey
| | - Özgür Söğüt
- Department of Emergency Medicine, University of Health Sciences Haseki Training and Research Hospital, Istanbul, Turkey
| | - Serdar Özdemir
- Department of Emergency Medicine, University of Health Sciences Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Ömer Faruk Özer
- Department of Biochemistry, Bezmialem Foundation University, Istanbul, Turkey
| |
Collapse
|
17
|
Rios JJ, Denton K, Yu H, Manickam K, Garner S, Russell J, Ludwig S, Rosenfeld JA, Liu P, Munch J, Sucato DJ, Beutler B, Wise CA. Saturation mutagenesis defines novel mouse models of severe spine deformity. Dis Model Mech 2021; 14:269194. [PMID: 34142127 PMCID: PMC8246263 DOI: 10.1242/dmm.048901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease. Summary: We report selected mouse models of spine deformity following mutagenesis across 30% of autosomal genes, results of which are made publicly available to advance understanding of spine development and disease.
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shannon Garner
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Baylor Genetics, Houston, TX 77021, USA
| | - Jake Munch
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Daniel J Sucato
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Tsao KC, Lin YC, Chen YT, Lai SL, Yang RB. Zebrafish scube1 and scube2 cooperate in promoting Vegfa signaling during embryonic vascularization. Cardiovasc Res 2021; 118:1074-1087. [PMID: 33788916 DOI: 10.1093/cvr/cvab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The secreted and membrane-anchored SCUBE (signal peptide-CUB-EGF domain-containing proteins) gene family composed of 3 members was originally identified from endothelial cells (ECs). We recently showed that membrane SCUBE2 binds vascular endothelial growth factor A (VEGFA) and acts as a co-receptor for VEGF receptor 2 (VEGFR2) to modulate EC migration, proliferation and tube formation during postnatal and tumor angiogenesis. However, whether these SCUBE genes cooperate in modulating VEGF signaling during embryonic vascular development remains unknown. METHODS AND RESULTS To further dissect the genetic interactions of these scube genes, transcription activator-like effector nuclease-mediated genome editing was used to generate knockout (KO) alleles of each scube gene. No overt vascular phenotypes were seen in any single scube KO mutants because of compensation by other scube genes during zebrafish development. However, scube1 and scube2 double KO (DKO) severely impaired EC filopodia extensions, migration, and proliferation, thus disrupting proper vascular lumen formation during vasculogenesis and angiogenesis as well as development of the organ-specific intestinal vasculature. Further genetic, biochemical, and molecular analyses revealed that Scube1 and Scube2 might act cooperatively at the cell-surface receptor level to facilitate Vegfa signaling during zebrafish embryonic vascularization. CONCLUSIONS We showed for the first time that cooperation between scube1 and scube2 is critical for proper regulation of angiogenic cell behaviors and formation of functional vessels during zebrafish embryonic development. TRANSLATIONAL PERSPECTIVE Our studies indicate that targeting SCUBE1 and/or SCUBE2 on modulating VEGF signaling might provide potential therapeutic treatments or VEGF-mediated proliferative pathological vascular diseases.
Collapse
Affiliation(s)
- Ku-Chi Tsao
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Lei Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Lin YC, Niceta M, Muto V, Vona B, Pagnamenta AT, Maroofian R, Beetz C, van Duyvenvoorde H, Dentici ML, Lauffer P, Vallian S, Ciolfi A, Pizzi S, Bauer P, Grüning NM, Bellacchio E, Del Fattore A, Petrini S, Shaheen R, Tiosano D, Halloun R, Pode-Shakked B, Albayrak HM, Işık E, Wit JM, Dittrich M, Freire BL, Bertola DR, Jorge AAL, Barel O, Sabir AH, Al Tenaiji AMJ, Taji SM, Al-Sannaa N, Al-Abdulwahed H, Digilio MC, Irving M, Anikster Y, Bhavani GSL, Girisha KM, Haaf T, Taylor JC, Dallapiccola B, Alkuraya FS, Yang RB, Tartaglia M. SCUBE3 loss-of-function causes a recognizable recessive developmental disorder due to defective bone morphogenetic protein signaling. Am J Hum Genet 2021; 108:115-133. [PMID: 33308444 PMCID: PMC7820739 DOI: 10.1016/j.ajhg.2020.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, Taipei Medical University, 110301 Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, 115201 Taipei, Taiwan
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Otolaryngology - Head and Neck Surgery, Eberhard Karls University, 72076 Tübingen, Germany
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | | | - Hermine van Duyvenvoorde
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Peter Lauffer
- Department of Paediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Sadeq Vallian
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, 8174673441 Isfahan, Iran
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | | | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Del Fattore
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, 11211 Riyadh, Saudi Arabia; Qatar Biomedical Research Institute, Hamad Bin Khalifa University, 34110 Doha, Qatar
| | - Dov Tiosano
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, 352540 Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, 352540 Haifa, Israel
| | - Rana Halloun
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, 352540 Haifa, Israel
| | - Ben Pode-Shakked
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Hatice Mutlu Albayrak
- Department of Pediatric Endocrinology, Gaziantep Cengiz Gökcek Maternity & Children's Hospital, 27010 Gaziantep, Turkey
| | - Emregül Işık
- Department of Pediatric Endocrinology, Gaziantep Cengiz Gökcek Maternity & Children's Hospital, 27010 Gaziantep, Turkey
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Institute of Bioinformatics, Julius Maximilians University, 97070 Würzburg, Germany
| | - Bruna L Freire
- Unidade de Endocrinologia Genética, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, 01246903 Sao Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403000 Sao Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, 01246903 Sao Paulo, Brazil
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, 52621 Tel-Hashomer, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, 52621 Tel-Hashomer, Israel
| | - Ataf H Sabir
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, SE1 9RT London, UK; Birmingham Women's and Children's NHS Foundation Trust, University of Birmingham, B4 6NH Birmingham, UK
| | - Amal M J Al Tenaiji
- Department of Paediatrics, Sheikh Khalifa Medical City, 51900 Abu Dhabi, United Arab Emirates
| | - Sulaima M Taji
- Department of Paediatrics, Sheikh Khalifa Medical City, 51900 Abu Dhabi, United Arab Emirates
| | | | | | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, SE1 9RT London, UK
| | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, 52621 Tel-Hashomer, Israel
| | - Gandham S L Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, 11211 Riyadh, Saudi Arabia
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 115201 Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 110301 Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112304, Taipei, Taiwan.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
20
|
Cekic AB, Gonenc Cekic O, Aygun A, Pasli S, Yaman Ozer S, Caner Karahan S, Turedi S, Acar S, Tatli O, Yulug E, Turkmen, Suha. The Diagnostic Value of ischemia-modified albumin (IMA) and signal peptide-CUB-EGF domain-containing protein-1 (SCUBE-1) in an Experimental Model of Strangulated Mechanical Bowel Obstruction. J INVEST SURG 2020; 35:450-456. [PMID: 33190564 DOI: 10.1080/08941939.2020.1847218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mechanical bowel obstruction (MBO) is one of the principal pathologies requiring emergency surgery and a significant worldwide cause of morbidity. The identification of patients in whom bowel obstruction resolves spontaneously is important in terms of preventing unnecessary surgical interventions and future potential adhesions. The decision-making process is difficult in patients presenting without classic examination findings. METHODS 36 female Sprague-Dawley rats randomly divided into six experimental groups. In Group 1, 3 and 5, laparotomy was performed, with blood and tissue specimens being collected after 1, 2 and 6 h, respectively. In Group 2, 4 and 6, the ileum segment was ligated following laparotomy, and blood and tissue specimens were collected after 1, 2 and 6 h, respectively. The ileum specimens were examined macroscopically, after which 1-cm sections were taken and examined in terms of histopathological changes. IMA and SCUBE-1 levels were determined for each group, and macro- and microscopic tissue examination findings were compared between the groups. RESULTS Comparison within the groups exposed to waiting times of 1 h (groups 1 and 2), 2 h (groups 3 and 4) and 6 h (groups 5 and 6) revealed higher mean IMA and SCUBE-1 levels in rats undergoing ligation together with incision (groups 2, 4, and 6) compared to those undergoing laparotomy only (groups 1, 3, and 5). Correlation analysis was applied to determine the relationship between total scores obtained from histopathological examination and IMA and SCUBE-1 values. The analysis revealed strong, significant and positive correlation between histopathological examination scores and IMA (r=0.643, p=0.000) and SCUBE-1 (r=0.509, p=0.002) values. CONCLUSION The study findings showed that both IMA and SCUBE-1 values increased in a strangulated MBO model in rats. We think that IMA and SCUBE-1 values can be used as a markers of damage in the early period in strangulated MBO, and that the patient's surgery requirement can thus be determined in the early period.
Collapse
Affiliation(s)
- Arif Burak Cekic
- Department of General Surgery, Faculty of Medicine, Kardeniz Technical University, Trabzon, Turkey
| | - Ozgen Gonenc Cekic
- Department of Emergency Medicine, Kanuni Training and Education Hospital, Trabzon, Turkey
| | - Ali Aygun
- Department of Emergency Medicine, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Sinan Pasli
- Department of Emergency Medicine, Gumushane State Hospital, Gumushane, Turkey
| | - Serap Yaman Ozer
- Department of Medical Biochemistry, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Suleyman Caner Karahan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Suleyman Turedi
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sami Acar
- Department of General Surgery, Acibadem Taksim Hospital, Istanbul, Turkey
| | - Ozgur Tatli
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | | - Suha
- Department of Emergency Medicine School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Emergency Medicine, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
21
|
Sun W, Tang Y, Tai YY, Handen A, Zhao J, Speyer G, Al Aaraj Y, Watson A, Romanelli ME, Sembrat J, Rojas M, Simon MA, Zhang Y, Lee J, Xiong Z, Dutta P, Vasamsetti SB, McNamara D, McVerry B, McTiernan CF, Sciurba FC, Kim S, Smith KA, Mazurek JA, Han Y, Vaidya A, Nouraie SM, Kelly NJ, Chan SY. SCUBE1 Controls BMPR2-Relevant Pulmonary Endothelial Function: Implications for Diagnostic Marker Development in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1073-1092. [PMID: 33294740 PMCID: PMC7691287 DOI: 10.1016/j.jacbts.2020.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
Utilizing publicly available ribonucleic acid sequencing data, we identified SCUBE1 as a BMPR2-related gene differentially expressed between induced pluripotent stem cell-endothelial cells derived from pulmonary arterial hypertension (PAH) patients carrying pathogenic BMPR2 mutations and control patients without mutations. Endothelial SCUBE1 expression was decreased by known triggers of PAH, and its down-regulation recapitulated known BMPR2-associated endothelial pathophenotypes in vitro. Meanwhile, SCUBE1 concentrations were reduced in plasma obtained from PAH rodent models and patients with PAH, whereas plasma concentrations were tightly correlated with hemodynamic markers of disease severity. Taken together, these data implicate SCUBE1 as a novel contributor to PAH pathogenesis with potential therapeutic, diagnostic, and prognostic applications.
Collapse
Key Words
- BMP, bone morphogenetic protein
- BMPR2
- EC, endothelial cell
- PAEC, pulmonary arterial endothelial cell
- PAH, pulmonary arterial hypertension
- PAP, pulmonary artery pressure
- PCWP, pulmonary capillary wedge pressure
- PH, pulmonary hypertension
- PVR, pulmonary vascular resistance
- RV, right ventricle
- SCUBE1
- WSPH, World Symposium on Pulmonary Hypertension
- endothelium
- iPSC-EC, induced pluripotent stem cell-endothelial cell
- mPAP, mean pulmonary artery pressure
- pulmonary hypertension
Collapse
Affiliation(s)
- Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam Handen
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, Arizona, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Annie Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Makenna E Romanelli
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marc A Simon
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Janet Lee
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sathish Badu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Dennis McNamara
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bryan McVerry
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Charles F McTiernan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Frank C Sciurba
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry College of Engineering, Prairie View A and M University, Prairie View, Texas, USA
| | - Kerri Akaya Smith
- Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy A Mazurek
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchi Han
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anjali Vaidya
- Cardiovascular Division, Temple University Health Systems, Philadelphia, Pennsylvania, USA
| | - Seyed Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Gomez-Arroyo J, Voelkel NF, Abbate A. SCUBE Diving: Biomarker Discovery for Pulmonary Hypertension From Bench to Bedside. JACC Basic Transl Sci 2020; 5:1093-1094. [PMID: 33296445 PMCID: PMC7691277 DOI: 10.1016/j.jacbts.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jose Gomez-Arroyo
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Norbert F. Voelkel
- Amsterdam University Medical Centers/Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands, USA
| | - Antonio Abbate
- Department of Internal Medicine, Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
23
|
Bayoglu Tekin Y, Baki Erin K, Yilmaz A. Evaluation of SCUBE-1 levels as a placental dysfunction marker at gestational diabetes mellitus. Gynecol Endocrinol 2020; 36:417-420. [PMID: 31668102 DOI: 10.1080/09513590.2019.1683537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: To evaluate the alteration of plasma levels of signal peptide-CUB-EGF domain-containing protein (SCUBE)-1 as a marker of endothelial dysfunction and vascular injury in gestational diabetes mellitus (GDM) in comparison to healthy pregnant controls.Methods: A prospective study conducted at an antenatal outpatient clinic of a University hospital. Fifty pregnancies with GDM and thirty healthy pregnancies as controls were enrolled in the study.Results: There was no statistically significant difference between the groups in terms of age, gravidity, weight and BMI from pre-pregnancy until delivery, total weight gain, fetal weight and other hematological and biochemical parameters. SCUBE-1 levels were significantly higher in GDM patients (p = .007).Conclusions: Hyperglycemia predisposes to endothelial injury and vascular remodeling at GDM, and therefore, SCUBE-1 could be a predictor of vascular injury during pregnancy. Our study is the first to illustrate increased SCUBE-1 levels in GDM as a marker of placental endothelial dysfunction.
Collapse
Affiliation(s)
- Yesim Bayoglu Tekin
- Department of Gynecology and Obstetrics, Sağlık Bilimleri University, School of Medicine, İstanbul, Turkey
| | - Kübra Baki Erin
- Department of Gynecology and Obstetrics, Sağlık Bilimleri University, School of Medicine, İstanbul, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Recep Tayyip Erdogan University, School of Medicine, Rize, Turkey
| |
Collapse
|
24
|
Ali H. SCUBE2, vascular endothelium, and vascular complications: A systematic review. Biomed Pharmacother 2020; 127:110129. [PMID: 32278240 DOI: 10.1016/j.biopha.2020.110129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022] Open
Abstract
The vascular endothelium plays a vital role in regulating normal vascular function. Endothelial lining maintains the balance of thrombolytic and fibrinolytic microenvironment in the vasculature. Alterations of vascular endothelium referred to as endothelial dysfunction, caused the pathological changes in vessel wall such activation of proinflammatory and procoagulatory that initiate atherosclerosis. The concept that endothelial dysfunction plays a critical role in the initiation of atherosclerosis due to vascular inflammation gained tremendous attention. Diabetes mellitus is a metabolic-related disease that caused high mortality and morbidity, leading to its cardiovascular complication over the past decade. Atherosclerosis is the leading cardiovascular complication in diabetes mellitus. Despite metabolic and glycemic control, atherosclerotic plaque progression remains an enormous problem in diabetes mellitus complications. Thus, new inroads therapeutic approach in preventing complications that induced inflammation in endothelial cells could help prevent the disease progression. Signal peptide-CUB-EGF like domain-containing protein 2 (SCUBE2) expressed in vascular endothelium and reported to involve in inflammation. A recent study reported an increased SCUBE2 expression in diabetes mellitus and correlated with high expression of endothelin-1 (ET-1), a proinflammatory endothelial cell-derived peptide. Moreover, this gene showed to increase during atherosclerosis development. The present systematic review will summarize the involvement of SCUBE2 in vascular endothelium function changes and vascular complication, particularly in diabetes mellitus and atherosclerosis.
Collapse
Affiliation(s)
- Hirowati Ali
- Department of Biochemistry, Faculty of Medicine, Andalas University, Indonesia; Graduate School of Biomedical Sciences, Andalas University, Indonesia.
| |
Collapse
|
25
|
Investigation of SCUBE-1 levels in pediatric patients with beta-thalassemia. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.653402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
He W, Chen J, Gao S. Mammalian haploid stem cells: establishment, engineering and applications. Cell Mol Life Sci 2019; 76:2349-2367. [PMID: 30888429 PMCID: PMC11105600 DOI: 10.1007/s00018-019-03069-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Haploid embryonic stem cells (haESCs) contain only one set of genomes inherited from the sperm or egg and are termed AG- or PG-haESCs, respectively. Mammalian haESCs show genome-wide hypomethylation and dysregulated imprinting, whereas they can sustain genome integrity during derivation and long-term propagation. In addition, haESCs exhibit similar pluripotency to traditional diploid ESCs but are unique because they function as gametes and have been used to produce semi-cloned animals. More strikingly, unisexual reproduction has been achieved in mice by using haESCs. In combination with a gene editing or screening system, haESCs represent a powerful tool for studies of underlying gene functions and explorations of mechanisms of genetic and epigenetic regulation not only at the cellular level in vitro but also at the animal level in vivo. More importantly, genetically edited AG-haESC lines may further serve as an ideal candidate for the establishment of a sperm bank, which is a highly cost-effective approach, and a wide range of engineered semi-cloned mice have been produced. Here, we review the historical development, characteristics, advantages and disadvantages of haESCs. Additionally, we present an in-depth discussion of the recent advances in haESCs and their potential applications.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Liao WJ, Wu MY, Peng CC, Tung YC, Yang RB. Epidermal growth factor-like repeats of SCUBE1 derived from platelets are critical for thrombus formation. Cardiovasc Res 2019; 116:193-201. [DOI: 10.1093/cvr/cvz036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
SCUBE1 [signal peptide-CUB-epidermal growth factor (EGF) domain-containing protein 1], expressed in endothelial cells (ECs) and platelets, exists in soluble or membrane forms. We previously showed that soluble SCUBE1 is a biomarker for platelet activation and also an active participant of thrombosis. However, whether the adhesive module of its EGF-like repeats is essential and the specific contribution of SCUBE1 synthesized in ECs or platelets to thrombosis in vivo remain unclear.
Methods and results
We generated new mutant (Δ2) mice lacking the entire EGF-like repeats to evaluate the module’s functional importance during thrombogenesis in vivo. The Δ2 platelet-rich plasma showed markedly impaired platelet aggregation induced by agonists including adenosine diphosphate, collagen, the thrombin agonist PAR-4 peptide and the thromboxane A2 analogue U46619. Consistently, genetic ablation of the EGF-like repeats diminished arterial thrombosis and protected Δ2 mice against lethal thromboembolism. On flow chamber assay, whole blood isolated from Δ2 or wild-type (WT) mice pre-treated with blocking antibodies against the EGF-like repeats showed a significant decrease in platelet deposition and thrombus formation on collagen-coated surfaces under arterial shear rates. Moreover, we created animals expressing SCUBE1 only in ECs (S1-EC) or platelets (S1-PLT) by reciprocal bone-marrow transplantation between WT and Δ2 mice. The time of carotid arterial thrombosis induced by ferric chloride was normal in S1-PLT chimeric mice but much prolonged in S1-EC animals.
Conclusions
We demonstrate that platelet-derived SCUBE1 plays a critical role in arterial thrombosis via its adhesive EGF-like repeats in vivo and suggest targeting these adhesive motifs of SCUBE1 for potential anti-thrombotic strategy.
Collapse
Affiliation(s)
- Wei-Ju Liao
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Meng-Ying Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Chen-Chung Peng
- Research Center for Applied Sciences, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, 155 Linong Street, Sec. 2, Taipei 11221, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
28
|
SCUBE1-enhanced bone morphogenetic protein signaling protects against renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:329-338. [PMID: 30414502 DOI: 10.1016/j.bbadis.2018.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
We previously reported that the membrane-bound SCUBE1 (signal peptide-CUB-epithelial growth factor domain-containing protein 1) forms a complex with bone morphogenetic protein 2 (BMP2) ligand and its receptors, thus acting as a BMP co-receptor to augment BMP signal activity. However, whether SCUBE1 can bind to and facilitate signaling activity of BMP7, a renal protective molecule for ischemia-reperfusion (I/R) insult, and contribute to the proliferation and repair of renal tubular cells after I/R remains largely unknown. In this study, we first showed that I/R-induced SCUBE1 was expressed in proximal tubular cells, which coincided with the expression of renoprotective BMP7. Molecular and biochemical analyses revealed that SCUBE1 directly binds to BMP7 and its receptors, functioning as a BMP co-receptor to promote BMP7 signaling. Furthermore, we used a new Scube1 deletion (Δ2) mouse strain to further elucidate the renal pathophysiological function of SCUBE1 after I/R injury. As compared with wild-type littermates, Δ2 mice showed severe renal histopathologic features (extensive loss of brush border, tubular necrosis, and tubular dilation) and increased inflammation (neutrophil infiltrate and induction of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-6) during the resolution of I/R damage. They also showed reduced BMP signaling (phosphorylated Smad1/5/8) along with decreased proliferation and increased apoptosis of renal tubular cells. Importantly, lentivirus-mediated overexpression of SCUBE1 enhanced BMP signaling and conferred a concomitant survival outcome for Δ2 proximal tubular epithelial cells after hypoxia-reoxygenation treatment. The protective BMP7 signaling may be facilitated by stress-inducible SCUBE1 after renal I/R, which suggests potential targeted approaches for acute kidney injury.
Collapse
|
29
|
Pendleton AL, Shen F, Taravella AM, Emery S, Veeramah KR, Boyko AR, Kidd JM. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biol 2018; 16:64. [PMID: 29950181 PMCID: PMC6022502 DOI: 10.1186/s12915-018-0535-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Domesticated from gray wolves between 10 and 40 kya in Eurasia, dogs display a vast array of phenotypes that differ from their ancestors, yet mirror other domesticated animal species, a phenomenon known as the domestication syndrome. Here, we use signatures persisting in dog genomes to identify genes and pathways possibly altered by the selective pressures of domestication. RESULTS Whole-genome SNP analyses of 43 globally distributed village dogs and 10 wolves differentiated signatures resulting from domestication rather than breed formation. We identified 246 candidate domestication regions containing 10.8 Mb of genome sequence and 429 genes. The regions share haplotypes with ancient dogs, suggesting that the detected signals are not the result of recent selection. Gene enrichments highlight numerous genes linked to neural crest and central nervous system development as well as neurological function. Read depth analysis suggests that copy number variation played a minor role in dog domestication. CONCLUSIONS Our results identify genes that act early in embryogenesis and can confer phenotypes distinguishing domesticated dogs from wolves, such as tameness, smaller jaws, floppy ears, and diminished craniofacial development as the targets of selection during domestication. These differences reflect the phenotypes of the domestication syndrome, which can be explained by alterations in the migration or activity of neural crest cells during development. We propose that initial selection during early dog domestication was for behavior, a trait influenced by genes which act in the neural crest, which secondarily gave rise to the phenotypes of modern dogs.
Collapse
Affiliation(s)
- Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Taravella
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Bronze L. SCUBE 1: A novel biomarker related to platelet activation and atherothrombosis. Rev Port Cardiol 2018; 37:383-385. [PMID: 29776808 DOI: 10.1016/j.repc.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Luís Bronze
- Hospital das Forças Armadas, Polo de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Mestrado Integrado de Medicina, Universidade da Beira Interior, Covilhã, Portugal; Linha de Saúde, Centro de Investigação Naval (CINAV), Marinha Portuguesa, Lisboa, Portugal.
| |
Collapse
|
31
|
Diagnostic value of signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 on serum and tissue samples in non-small cell lung cancer. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 26:246-253. [PMID: 32082741 DOI: 10.5606/tgkdc.dergisi.2018.14600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
Abstract
Background This study aims to investigate whether there is any relationship between the type, stage and the extensiveness of lung cancer and levels of signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domaincontaining protein 1 in serum and lung tissues of non-small cell lung cancer patients and also whether there is any difference in signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 levels of patients with malignant or benign diseases. Methods The study included 55 subjects (45 males, 10 females; mean age 57.8±15.9 years; range 18 to 82 years) who were separated into three groups as 25 resectable non-small cell lung cancer patients (21 males, 4 females; mean age 64.6±9.4 years; range, 41 to 79 years) who were operated with the purpose of diagnosis and treatment (group 1), 15 unresectable non-small cell lung cancer patients (10 males, 5 females; mean age 61.8±9.6 years; range, 48 to 82 years) (group 2), and 15 patients (14 males, 1 females; mean age 42.5±19.5 years; range, 18 to 76 years) who were operated with non-cancer related reasons (group 3; control group). Results Preoperative serum signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 levels in groups 1 and 2 were significantly higher compared to control group (p=0.045). Serum signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 levels in group 2 were significantly higher compared to the other two groups (p=0.008). Levels of signal peptide- Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domaincontaining protein 1 in tissue samples were significantly higher in patients with non-small cell lung cancer and yielded a prognostic importance such that a 1 ng/mL rise in tissue signal peptide-Complement C1r/C1s, Uegf, and Bmp1- epidermal growth factor domain-containing protein 1 concentration caused a 1.4 fold increase in death risk (p=0.009). Conclusion Concentration of signal peptide-Complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 in serum and tumor tissue may be an important biomarker in determining the diagnosis and prognosis in non-small cell lung cancer patients.
Collapse
|
32
|
Uzun Ö, Kaban I, Midi A, Uysal H, Boran AB, Bacanakgil BH, Tarbaghia M. Diagnostic value of signal peptide-CUB-EGF domain-containing protein 1 as an early and late biochemical marker in the ovarian torsion rat model. J Obstet Gynaecol Res 2018; 44:1092-1099. [PMID: 29607598 DOI: 10.1111/jog.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/08/2018] [Indexed: 11/29/2022]
Abstract
AIMS Signal peptide-CUB-EGF (epidermal growth factor-like protein) domain-containing protein 1 (SCUBE1) is an experimental marker of ischemia that has been previously studied both in rat models and humans. In this study, we aim to investigate the importance of SCUBE1 levels in ovarian torsion using an ovarian torsion model in rats. METHODS A total of 18 Sprague-Dawley rats were equally divided into three groups. Group 1 (n = 6) was the Sham group and was only given a laparotomy procedure. Group 2 (n = 6) underwent bilateral ovarian torsion and ovarian ischemia lasting 8 h. Group 3 (n = 6) was subjected to bilateral ovarian torsion and ischemia lasting 24 h. Blood samples were collected from all three groups after the operations, and SCUBE1 levels were studied. Ovarian samples were collected, and microscopic evaluation was performed. The correlation of SCUBE1 levels and histopathological findings were investigated. RESULTS The mean SCUBE1 level of group 3 was statistically higher than other groups (P < 0.01). Follicular degeneration and infiltration of inflammatory cells were, respectively, statistically significant in groups 2 and 3 (P = 0.002 and P = 0.045, respectively). CONCLUSION SCUBE1 can be useful in diagnosing ovarian torsion during the first 24 h, but more randomized controlled studies are necessary in order to implement it in clinical settings.
Collapse
Affiliation(s)
- Özgür Uzun
- Gynecology and Obstetrics Clinic, Istanbul Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Işık Kaban
- Gynecology and Obstetrics Clinic, Istanbul Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Ahmet Midi
- Department of Pathology, Bahçeşehir University Medical Faculty, Istanbul, Turkey
| | - Hande Uysal
- Department of Medical Student, Bahçeşehir University Medical Faculty, Istanbul, Turkey
| | - Ahmet B Boran
- Gynecology and Obstetrics Clinic, Istanbul Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Besim H Bacanakgil
- Gynecology and Obstetrics Clinic, Istanbul Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Marwa Tarbaghia
- Department of Medical Student, Bahçeşehir University Medical Faculty, Istanbul, Turkey
| |
Collapse
|
33
|
Manikowski D, Kastl P, Grobe K. Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development. J Dev Biol 2018; 6:jdb6010003. [PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
34
|
Karagüzel E, Menteşe A, Kazaz İO, Demir S, Örem A, Okatan AE, Altay DU, Yaman SÖ. SCUBE1: a promising biomarker in renal cell cancer. Int Braz J Urol 2017; 43:638-643. [PMID: 28379666 PMCID: PMC5557438 DOI: 10.1590/s1677-5538.ibju.2016.0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To investigate the efficacy of signal peptide-CUB-EGF domain-containing protein 1 (SCUBE-1) as a novel biomarker of renal tumors. MATERIALS AND METHODS 48 individuals were included in the study. The patient group (Group-1) consisted of 23 subjects diagnosed with renal tumor, and the control group (Group-2) of 25 healthy individuals. Patients diagnosed with renal tumor received surgical treatment consisting of radical or partial nephrectomy. Blood specimens were collected following overnight fasting. Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE-1), soluble urokinase plasminogen activator receptor (suPAR) and carbonic anhydrase IX (CA IX) levels were measured from plasma samples. Patients in groups 1 and 2 were compared in terms of these biochemical parameters. RESULTS The 23-member renal tumor group was made up of 17 (73.91%) male and 6 (26.08%) female patients with a mean age of 58.5±15.7 years (range 25 to 80). The 24-member healthy control group was made up of 16 (64%) male and 9 (36%) female subjects with a mean age of 52.4±9.12 years (range 40 to 67). Analysis revealed significant elevation in SCUBE-1 levels in the renal tumor group (p=0.005). No significant differences were detected between the groups with regard to CA IX or suPAR measurements (p=0.062 vs. p=0.176). CONCLUSIONS SCUBE-1 appears to represent a promising biomarker in the diagnosis and follow-up of patients with renal tumor.
Collapse
Affiliation(s)
- Ersagun Karagüzel
- Department of Urology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Ahmet Menteşe
- Program of Medical Laboratory Techniques, Karadeniz Technical University, Vocational School of Health Sciences, Trabzon, Turkey
| | - İlke O Kazaz
- Department of Urology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Karadeniz Technical University, School of Medicine, Trabzon, Turkey
| | - Asım Örem
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Ali Ertan Okatan
- Department of Urology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Diler Us Altay
- Department of Chemistry and Chemical Processing Technology, Ordu University, Ulubey Vocational School, Ordu, Turkey
| | - Serap Özer Yaman
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
35
|
Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains. G3-GENES GENOMES GENETICS 2017; 7:3449-3457. [PMID: 28855285 PMCID: PMC5633393 DOI: 10.1534/g3.117.300213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s) regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15), has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4) on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.
Collapse
|
36
|
Orem A, Arıca DA, Mentese A, Yaman SO, Ural ZK, Bahadır S. Platelet-endothelial molecule SCUBE1 levels in patients with Behcet's disease: A preliminary study. Clin Chim Acta 2017; 473:157-159. [PMID: 28842176 DOI: 10.1016/j.cca.2017.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Asım Orem
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Deniz Aksu Arıca
- Department of Dermatology and Venereology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Ahmet Mentese
- Program of Medical Laboratory Techniques, Karadeniz Technical University, Vocational School of Health Sciences, Trabzon, Turkey.
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Zeynep Karaca Ural
- Department of Dermatology and Venereology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Sevgi Bahadır
- Department of Dermatology and Venereology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
37
|
Gluck C, Min S, Oyelakin A, Smalley K, Sinha S, Romano RA. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation. BMC Genomics 2016; 17:923. [PMID: 27852218 PMCID: PMC5112738 DOI: 10.1186/s12864-016-3228-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022] Open
Abstract
Background Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. Results To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. Conclusions Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at various stages. These RNA-seq datasets will complement pre-existing microarray based datasets, including the Salivary Gland Molecular Anatomy Project by offering a broader systems-biology based perspective rather than the classical gene-centric view. Ultimately such resources will be valuable in providing a useful toolkit to better understand how the diverse cell population of the SG are organized and controlled during development and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Sangwon Min
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Kirsten Smalley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
38
|
Lin YC, Chao TY, Yeh CT, Roffler SR, Kannagi R, Yang RB. Endothelial SCUBE2 Interacts With VEGFR2 and Regulates VEGF-Induced Angiogenesis. Arterioscler Thromb Vasc Biol 2016; 37:144-155. [PMID: 27834687 DOI: 10.1161/atvbaha.116.308546] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF), a major mediator of angiogenesis, exerts its proangiogenic action by binding to VEGFR2 (VEGF receptor 2), the activity of which is further modulated by VEGFR2 coreceptors such as neuropilins. However, whether VEGFR2 is regulated by additional coreceptors is not clear. To investigate whether SCUBE2 (signal peptide-CUB-EGF domain-containing protein 2), a peripheral membrane protein expressed in vascular endothelial cells (ECs) known to bind other signaling receptors, functions as a VEGFR2 coreceptor and to verify the role of SCUBE2 in the VEGF-induced angiogenesis. APPROACH AND RESULTS SCUBE2 lentiviral overexpression in human ECs increased and short hairpin RNA knockdown inhibited VEGF-induced EC growth and capillary-like network formation on Matrigel. Like VEGF, endothelial SCUBE2 was upregulated by hypoxia-inducible factor-1α at both mRNA and protein levels. EC-specific Scube2 knockout mice were not defective in vascular development but showed impaired VEGF-induced neovascularization in implanted Matrigel plugs and recovery of blood flow after hind-limb ischemia. Coimmunoprecipitation and ligand-binding assays showed that SCUBE2 forms a complex with VEGF and VEGFR2, thus acting as a coreceptor to facilitate VEGF binding and augment VEGFR2 signal activity. SCUBE2 knockdown or genetic knockout suppressed and its overexpression promoted the VEGF-induced activation of downstream proangiogenic and proliferating signals, including VEGFR2 phosphorylation and mitogen-activated protein kinase or AKT activation. CONCLUSIONS Endothelial SCUBE2 may be a novel coreceptor for VEGFR2 and potentiate VEGF-induced signaling in adult angiogenesis.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.-C.L., S.R.R., R.K., R.-B.Y.); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan (T.-Y.C., C.-T.Y.); Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-Y.C.); Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taiwan (C.-T.Y.); and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan (R.-B.Y.)
| | - Tsu-Yi Chao
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.-C.L., S.R.R., R.K., R.-B.Y.); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan (T.-Y.C., C.-T.Y.); Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-Y.C.); Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taiwan (C.-T.Y.); and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan (R.-B.Y.)
| | - Chi-Tai Yeh
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.-C.L., S.R.R., R.K., R.-B.Y.); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan (T.-Y.C., C.-T.Y.); Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-Y.C.); Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taiwan (C.-T.Y.); and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan (R.-B.Y.)
| | - Steve R Roffler
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.-C.L., S.R.R., R.K., R.-B.Y.); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan (T.-Y.C., C.-T.Y.); Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-Y.C.); Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taiwan (C.-T.Y.); and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan (R.-B.Y.)
| | - Reiji Kannagi
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.-C.L., S.R.R., R.K., R.-B.Y.); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan (T.-Y.C., C.-T.Y.); Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-Y.C.); Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taiwan (C.-T.Y.); and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan (R.-B.Y.)
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Y.-C.L., S.R.R., R.K., R.-B.Y.); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan (T.-Y.C., C.-T.Y.); Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (T.-Y.C.); Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, Taiwan (C.-T.Y.); and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan (R.-B.Y.).
| |
Collapse
|
39
|
Qiu SZ, Wang HX, Shen J, Zheng GR, Chen B, Huang JJ, Gao JB. The prognostic value of serum signal peptide-Cub-Egf domain-containing protein-1 concentrations in acute intracerebral hemorrhage. Clin Chim Acta 2016; 461:103-9. [DOI: 10.1016/j.cca.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
|
40
|
Ding YS, Sun B, Jiang JX, Zhang Q, Lu J, Gao GZ. Increased serum concentrations of signal peptide-Cub-Egf domain-containing protein-1 in patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2016; 459:117-122. [DOI: 10.1016/j.cca.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/26/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
|
41
|
Jeremias F, Pierri RAG, Souza JF, Fragelli CMB, Restrepo M, Finoti LS, Bussaneli DG, Cordeiro RCL, Secolin R, Maurer-Morelli CV, Scarel-Caminaga RM, Santos-Pinto L. Family-Based Genetic Association for Molar-Incisor Hypomineralization. Caries Res 2016; 50:310-8. [PMID: 27179118 DOI: 10.1159/000445726] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022] Open
Abstract
Despite some evidence of genetic and environmental factors on molar-incisor hypomineralization (MIH), its aetiology remains unclear. This family-based genetic association study aimed more comprehensively to investigate the genetic carriage potentially involved in MIH development. DNA was obtained from buccal cells of 391 individuals who were birth family members of 101 Brazilian nuclear families. Sixty-three single nucleotide polymorphisms (SNPs) were investigated in 21 candidate genes related to amelogenesis using the TaqMan™ OpenArray™ Genotyping platform. All SNPs were genotyped in 165 birth family members unaffected by MIH, 96 with unknown MIH status and 130 affected individuals (50.7% with severe MIH). Association analysis was performed by the transmission/disequilibrium test (TDT), and statistical results were corrected using the false discovery rate. Significant results were obtained for SNPs rs7821494 (FAM83H gene, OR = 3.7; 95% CI = 1.75-7.78), rs34367704 (AMBN gene, OR = 2.7; 95% CI = 1.16-6.58), rs3789334 (BMP2 gene, OR = 2.9; 95% CI = 1.34-6.35), rs6099486 (BMP7 gene, OR = 2.2; 95% CI = 1.14-4.38), rs762642 (BMP4 gene, OR = 2.3; 95% CI = 1.38-3.65), rs7664896 (ENAM gene, OR = 2.1; 95% CI = 1.19-3.51), rs1711399 (MMP20 gene, OR = 0.4; 95% CI = 0.20-0.72), rs1711423 (MMP20 gene, OR = 2.1; 95% CI = 1.18-3.61), rs2278163 (DLX3 gene, OR = 2.8; 95% CI = 1.26-6.41), rs6996321 (FGFR1 gene, OR = 2.7; 95% CI = 1.20-5.88), and rs5979395 (AMELX gene, OR = 11.7; 95% CI = 1.63-84.74). Through this family-based association study, we concluded that variations in genes related to amelogenesis were associated with the susceptibility to develop MIH. This result is in agreement with the multifactorial idea of the MIH aetiology, but further studies are necessary to investigate more thoroughly the factors that could influence MIH.
Collapse
Affiliation(s)
- Fabiano Jeremias
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, Universidade Estadual Paulista - UNESP, Araraquara, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen QH, Lin D, Zhou J, Deng G. Role of signal peptide-Cub-Egf domain-containing protein-1 in serum as a predictive biomarker of outcome after severe traumatic brain injury. Clin Chim Acta 2016; 456:63-66. [DOI: 10.1016/j.cca.2016.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 11/24/2022]
|
43
|
Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling. Biochem J 2016; 473:661-72. [DOI: 10.1042/bj20151041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022]
Abstract
We investigated the membrane-associating mechanisms of SCUBE1 (S1), a BMP co-receptor. Electrostatics and glycan-mediated membrane localization of S1 is essential for promoting BMP signalling and N-glycosylation is required for its function in zebrafish.
Collapse
|
44
|
Dirican N, Duman A, Sağlam G, Arslan A, Ozturk O, Atalay S, Bircan A, Akkaya A, Cakir M. The diagnostic significance of signal peptide-complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein-1 levels in pulmonary embolism. Ann Thorac Med 2016; 11:277-282. [PMID: 27803754 PMCID: PMC5070437 DOI: 10.4103/1817-1737.191876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Pulmonary embolism (PE) is a common and potentially life-threatening disorder. Patients with PE often have nonspecific symptoms, and the diagnosis is often delayed. AIM: The aim of our study was to investigate the role of signal peptide-complement C1r/C1s, Uegf, and Bmp1-epidermal growth factor domain-containing protein 1 (SCUBE1) used in the diagnosis of PE. METHODS: The study was designed prospectively. A total of 57 patients who were admitted to emergency service with clinically suspected PE were included in the study. The patients diagnosed with PE were defined as PE group (n = 32), and the patients with undetectable embolism on computerized tomographic pulmonary angiography were defined as non-PE group (n = 25). Twenty-five age- and sex-matched healthy cases were chosen for the study. Routine biochemical analysis, complete blood count, D-dimer, SCUBE1, and arterial blood gas analysis were performed early after admission. RESULTS: Mean SCUBE1 levels were higher in the PE group (0.90 ng/mL) than in the non-PE (0.38 ng/mL) and control groups (0.47 ng/mL) (P < 0.01). A cutoff point of 0.49 ng/mL for SCUBE1 indicated 100% sensitivity and 64% specificity in patients with PE. Mean D-dimer levels were not different between PE and non-PE groups (P = 0.591). A multivariable logistic regression analysis (with dichotomous PE groups as the response variable; age, gender, chest pain, syncope, diabetes mellitus, chronic obstructive pulmonary disease, hypertension, D-dimer, neutrophil-lymphocytes ratio, and SCUBE1 variables as predictors) showed that the significant and independent predictors of PE diagnosis were SCUBE1 and chest pain. CONCLUSION: This study suggests that serum SCUBE1 measurement might be used as a diagnostic biomarker in PE.
Collapse
Affiliation(s)
- Nigar Dirican
- Department of Chest Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ali Duman
- Department of Emergency Medicine, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Gülcan Sağlam
- Department of Biochemistry, Medical Park Hospital, Usak, Turkey
| | - Akif Arslan
- Department of Cardiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Onder Ozturk
- Department of Chest Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Sule Atalay
- Department of Chest Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ahmet Bircan
- Department of Chest Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ahmet Akkaya
- Department of Chest Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Munire Cakir
- Department of Chest Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
45
|
Topcu TO, Kavgaci H, Ozdemir F, Aksoy A, Erdem D, Mentese A, Yaman H, Tufan G, Orem A, Aydin F. Elevated Serum Levels of SCUBE1, a Marker for Coagulation, in Patients with Breast Cancer. TOHOKU J EXP MED 2015; 237:127-32. [PMID: 26438214 DOI: 10.1620/tjem.237.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Breast cancer (BC) is the most common cancer among women and a major cause of death. Signal Peptide-Cub-Epidermal growth factor domain-containing protein-1 (SCUBE1) is secreted under hypoxia and inflammatory conditions from platelet alpha granules. Its biological function is uncertain, although it may be a procoagulant substance in cancer patients. SCUBE1 is useful for identifying thrombotic diseases, including cancers and acute coronary syndromes. D-dimer reflects the relationship between coagulation activation and fibrinolysis; namely, thrombosis and D-dimer levels are closely linked. This is the first investigation of the potential diagnostic and prognostic value of SCUBE1 levels in patients with BC. Fifty patients and 33 age-matched and body mass index-matched healthy controls were enrolled. Blood samples were collected before chemotherapy regimens commenced. Serum SCUBE1 and D-dimer levels were measured before adjuvant chemotherapy and were compared to the healthy controls. SCUBE1 levels were determined using an enzyme-linked immunosorbent assay (ELISA) method. SCUBE1 and D-dimer levels were significantly higher in patients than in the controls (p = 0.03 and p < 0.001, respectively). A cut-off value of 1.55 ng/mL for SCUBE1 was associated with 62% sensitivity and 72.7% specificity and with positive predictive value of 77.5% and negative predictive value of 55.8%. Two patients with high SCUBE1 and D-dimer levels also developed pulmonary embolism. SCUBE1 may indicate hypercoagulability in patients with BC and thus help identify patients at greater risk of thrombosis and requiring anti-thrombosis treatment. SCUBE1 may also be used as an assistant test for identifying patients at risk of BC.
Collapse
Affiliation(s)
- Turkan Ozturk Topcu
- Division of Medical Oncology, Karadeniz Technical University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhong C, Yin Q, Xie Z, Bai M, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL, Bartolomei MS, Ferguson-Smith A, Li D, Yang L, Wu Y, Li J. CRISPR-Cas9-Mediated Genetic Screening in Mice with Haploid Embryonic Stem Cells Carrying a Guide RNA Library. Cell Stem Cell 2015; 17:221-32. [PMID: 26165924 DOI: 10.1016/j.stem.2015.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Mouse androgenetic haploid embryonic stem cells (AG-haESCs) can support full-term development of semi-cloned (SC) embryos upon injection into MII oocytes and thus have potential applications in genetic modifications. However, the very low birth rate of SC pups limits practical use of this approach. Here, we show that AG-haESCs carrying deletions in the DMRs (differentially DNA methylated regions) controlling two paternally repressed imprinted genes, H19 and Gtl2, can efficiently support the generation of SC pups. Genetic manipulation of these DKO-AG-haESCs in vitro using CRISPR-Cas9 can produce SC mice carrying multiple modifications with high efficiency. Moreover, transfection of DKO-AG-haESCs with a constitutively expressed sgRNA library and Cas9 allows functional mutagenic screening. DKO-AG-haESCs are therefore an effective tool for the introduction of organism-wide mutations in mice in a single generation.
Collapse
Affiliation(s)
- Cuiqing Zhong
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Xie
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meizhu Bai
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Rui Dong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Tang
- Animal Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Hang Xing
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongling Zhang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Suming Yang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Ling Chen
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dangsheng Li
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuxuan Wu
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jinsong Li
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China.
| |
Collapse
|
47
|
Turkmen S, Sahin A, Gunaydin M, Sahin S, Mentese A, Turedi S, Karahan SC, Ozsu S, Gunduz A. The value of signal peptide-CUB-EGF domain-containing protein-1 (SCUBE1) in the diagnosis of pulmonary embolism: a preliminary study. Acad Emerg Med 2015. [PMID: 26202675 DOI: 10.1111/acem.12721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The diagnosis of pulmonary embolism (PE) in the emergency department still poses difficulties because symptoms and signs are nonspecific. There is a need for more reliable noninvasive diagnostic tests to support clinical suspicion before the costly invasive procedures with complication risks still used in the diagnosis of PE. Signal peptide-CUB (complement C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor) domain-containing protein 1 (SCUBE1) is a novel, secreted cell surface protein expressed during early embryogenesis. The goal of this study was to compare the SCUBE1 levels between PE patients and healthy subjects and also investigate the value of SCUBE1 in the diagnosis of PE. METHODS Eleven patients diagnosed with PE using spiral computerized tomographic pulmonary angiography were included in the study. A control group of 23 age-matched, healthy volunteers served as a reference for biochemical parameters. RESULTS Mean (±SD) SCUBE1 levels were 72.0 (±32.6) ng/mL in the patients with PE and 31.4 (±13.8) ng/mL in the control group. SCUBE1 levels were significantly higher in the patients with PE (p = 0.001). Receiver operating characteristic (ROC) curve analysis was performed to determine cutoff thresholds in discriminating between PE and control group plasma SCUBE1 levels. Area under the ROC for that purpose was 0.862 (95% confidence interval [CI] = 0.70 to 1). A SCUBE1 cutoff point in patients with PE > 46 ng/mL had specificity and sensitivity of 91% (95% CI = 0.70% to 0.98%) and 82% (95% CI = 0.48% to 0.97%), respectively. CONCLUSIONS This preliminary study suggests that plasma SCUBE1 values have a good level of specificity for PE and may be of use in the diagnosis of PE. Further studies involving larger case series and also clinical studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- Suha Turkmen
- Department of Emergency Medicine; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - Aynur Sahin
- Department of Emergency Medicine; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - Mucahit Gunaydin
- Department of Emergency Medicine; Faculty of Medicine; Giresun University; Giresun Turkey
| | - Sinan Sahin
- Department of Cardiology; Kanuni Training and Research Hospital; Trabzon Turkey
| | - Ahmet Mentese
- Department of Biochemistry; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - Suleyman Turedi
- Department of Emergency Medicine; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - Suleyman Caner Karahan
- Department of Biochemistry; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - Savas Ozsu
- Department of Pulmonary Medicine; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - Abdulkadir Gunduz
- Department of Emergency Medicine; Faculty of Medicine; Karadeniz Technical University; Trabzon Turkey
| |
Collapse
|
48
|
Turedi S, Tatli O, Alver A, Karaguzel E, Karaca Y, Turkmen S, Yulug E, Sumer A, Altay DU, Mentese A. The Diagnostic Value of Plasma SCUBE1, a Novel Biomarker of Platelet Activation, in Testicular Torsion: A Randomized, Controlled, Experimental Study. Urology 2015; 86:516-20. [PMID: 26166673 DOI: 10.1016/j.urology.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the potential diagnostic value of plasma signal peptide, CUB (complement proteins C1r/C1s, Uegf, Bmp1) domain, epidermal growth factor (EGF)-like 1 (SCUBE1) protein in experimentally induced testicular torsion (TT). MATERIALS AND METHODS In this randomized, controlled, experimental study, 24 mature male Wistar rats were divided into four groups: 2- and 4-hour control (groups I and III, respectively), and 2- and 4-hour torsion (groups II and IV, respectively) groups. Torsion was performed by rotating the left testis 720° clockwise and maintained by fixing the testis. Plasma SCUBE1 levels and histopathological damage scores were compared. RESULTS There was significantly greater histopathological damage in the 4-hour torsion group compared with the other groups. SCUBE1 levels in this group were also higher than those in the other groups, and the difference was significant. There were significant correlations between histopathological scores and SCUBE1 levels. CONCLUSION SCUBE1, a novel marker of platelet activation, is elevated in TT. According to our results, platelet activation may play an important pathological role in tissue injury associated with testicular ischemia. Plasma SCUBE1 measurement may have diagnostic, therapeutic, or prognostic value in TT.
Collapse
Affiliation(s)
- Suleyman Turedi
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Ozgur Tatli
- Department of Emergency Medicine, Kanuni Training and Research Hospital, Trabzon, Turkey
| | - Ahmet Alver
- Department of Clinical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ersagun Karaguzel
- Department of Clinical Urology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Yunus Karaca
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Suha Turkmen
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Esin Yulug
- Department of Histology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Aysegul Sumer
- Department of Clinical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Diler Us Altay
- Department of Clinical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Mentese
- Department of Clinical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
49
|
Dincel GC, Kul O. Increased expressions of ADAMTS-13, neuronal nitric oxide synthase, and neurofilament correlate with severity of neuropathology in Border disease virus-infected small ruminants. PLoS One 2015; 10:e0120005. [PMID: 25799514 PMCID: PMC4370801 DOI: 10.1371/journal.pone.0120005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Border Disease (BD), caused by Pestivirus from the family Flaviviridae, leads to serious reproductive losses and brain anomalies such as hydranencephaly and cerebellar hypoplasia in aborted fetuses and neonatal lambs. In this report it is aimed to investigate the expression of neuronal nitric oxide synthase (nNOS), A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13 (ADAMTS-13), and neurofilament (NF) in the brain tissue in small ruminants infected with Border Disease Virus (BDV) and to identify any correlation between hypomyelinogenesis and BD neuropathology. Results of the study revealed that the levels of ADAMTS-13 (p<0.05), nNOS (p<0.05), and NF (p<0.05) were remarkably higher in BDV-infected brain tissue than in the uninfected control. It was suggested that L-arginine-NO synthase pathway is activated after infection by BDV and that the expression of NF and nNOS is associated with the severity of BD. A few studies have focused on ADAMTS-13 expression in the central nervous system, and its function continues to remain unclear. The most prominent finding from our study was that ADAMTS-13, which contain two CUB domains, has two CUB domains and its high expression levels are probably associated with the development of the central nervous system (CNS). The results also clearly indicate that the interaction of ADAMTS-13 and NO may play an important role in the regulation and protection of the CNS microenvironment in neurodegenerative diseases. In addition, NF expression might indicate the progress of the disease. To the best of the authors’knowledge, this is the first report on ADAMTS-13 expression in the CNS of BDV-infected small ruminants.
Collapse
Affiliation(s)
- Gungor Cagdas Dincel
- Laboratory and Veterinary Health Program, Siran Mustafa Beyaz Vocational School, University of Gumushane, Gumushane, Turkey
- * E-mail:
| | - Oguz Kul
- Department of Pathology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| |
Collapse
|
50
|
Tekin YB, Güvendağ Güven ES, Kirbas A, Üstüner I, Doğan OD, Balik G, Şahin FK. The role of hypoxia at primary dysmenorrhea, utilizing a novel hypoxia marker--SCUBE1. J Pediatr Adolesc Gynecol 2015; 28:63-65. [PMID: 25555303 DOI: 10.1016/j.jpag.2014.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 03/26/2014] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
STUDY OBJECTIVE To determine the SCUBE1 levels in adolescents with primary dysmenorrhea. DESIGN A prospective cross-sectional study. SETTING A university hospital outpatient clinic, Rize, Turkey. PARTICIPANTS A total of 40 adolescent girls, 15 on menses and 25 not on menses. INTERVENTIONS AND MAIN OUTCOME MEASURES Demographic features and menstrual history of the participants were assessed and blood samples were obtained for detecting the platelet volume, platelet counts, and SCUBE1 levels of the participants. RESULTS No difference was detected between the 2 groups in mean platelet volume, platelet count, and SCUBE1 levels. CONCLUSION Future trials are required to investigate the relation between SCUBE1 levels and primary dysmenorrhea.
Collapse
Affiliation(s)
- Yeşim Bayoğlu Tekin
- Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey.
| | - Emine Seda Güvendağ Güven
- Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey
| | - Aynur Kirbas
- Department of Biochemistry, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey
| | - Işık Üstüner
- Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey
| | - Osman Deniz Doğan
- Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey
| | - Gülşah Balik
- Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey
| | - Figen Kir Şahin
- Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Faculty of Medicine, Rize, Turkey
| |
Collapse
|