1
|
Lin H, Ramanan S, Kaplan S, King DH, Bunn D, Johnson GV. One BAG doesn't fit all: the differences and similarities of BAG family members in mediating CNS homeostasis. Biol Psychiatry 2025:S0006-3223(25)00020-4. [PMID: 39793689 DOI: 10.1016/j.biopsych.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis, and that their dysregulation contributes to neurological disorders. This protein family of nine members is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Heat Shock Protein (Hsp) 70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS). Although there are numerous studies that focus on a specific BAG protein, an understanding of how BAG family members may act cooperatively to maintain cellular homeostasis is needed. In this review, we give an overview of the BAG domain interactors, Hsp72, Hsp70.2, CHIP and METTL3 which are common to all BAG family members. This is followed by a concise description of each BAG family member, with a focus on its function in the CNS and dysfunction in neurological conditions. Finally, we discuss the intersection of the molecular functions of the different BAG family proteins by delineating differences and similarities, and describing how their functions can be either complementary or competing. The information in this review provides a basic conceptual framework for analyzing the roles of a particular BAG family member in the CNS and neurological conditions. This review also provides a basis for examining how BAG family members can play either redundant or antagonistic roles that may modulate experimental outcomes.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sudarshan Ramanan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sofia Kaplan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Dominic Bunn
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Gail Vw Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA.
| |
Collapse
|
2
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
5
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
6
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
7
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
8
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
9
|
Can ND, Basturk E, Kizilboga T, Akcay IM, Dingiloglu B, Tatli O, Acar S, Ozfiliz Kilbas P, Elbeyli E, Muratcioglu S, Jannuzzi AT, Gursoy A, Keskin O, Doganay HL, Karademir Yilmaz B, Dinler Doganay G. Interactome analysis of Bag-1 isoforms reveals novel interaction partners in endoplasmic reticulum-associated degradation. PLoS One 2021; 16:e0256640. [PMID: 34428256 PMCID: PMC8384158 DOI: 10.1371/journal.pone.0256640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Nisan Denizce Can
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ezgi Basturk
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Kizilboga
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Izzet Mehmet Akcay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Baran Dingiloglu
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Tatli
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sevilay Acar
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Pelin Ozfiliz Kilbas
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Efe Elbeyli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | | | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
10
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
11
|
Al Mamun A, Uddin MS, Kabir MT, Khanum S, Sarwar MS, Mathew B, Rauf A, Ahmed M, Ashraf GM. Exploring the Promise of Targeting Ubiquitin-Proteasome System to Combat Alzheimer’s Disease. Neurotox Res 2020; 38:8-17. [DOI: 10.1007/s12640-020-00185-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
|
12
|
Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020; 209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
The members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance. In addition to BAG overexpression, BAG members are also involved in many oncogenic protein-protein interactions (PPIs). As such, either the inhibition of overloading BAGs or of specific BAG-client protein interactions could have paramount therapeutic value. In this review, we will examine the role of each BAG family member in different malignancies, focusing on their modular structure, which enables interaction with a variety of proteins to exert their pro-tumorigenic role. Lastly, critical remarks on the unmet needs for proposing effective BAG inhibitors will be pointed out.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy.
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
13
|
The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Cells 2019; 8:cells8010040. [PMID: 30634694 PMCID: PMC6357184 DOI: 10.3390/cells8010040] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are the two major intracellular protein quality control (PQC) pathways that are responsible for cellular proteostasis (homeostasis of the proteome) by ensuring the timely degradation of misfolded, damaged, and unwanted proteins. Ubiquitination serves as the degradation signal in both these systems, but substrates are precisely targeted to one or the other pathway. Determining how and when cells target specific proteins to these two alternative PQC pathways and control the crosstalk between them are topics of considerable interest. The ubiquitin (Ub) recognition code based on the type of Ub-linked chains on substrate proteins was believed to play a pivotal role in this process, but an increasing body of evidence indicates that the PQC pathway choice is also made based on other criteria. These include the oligomeric state of the Ub-binding protein shuttles, their conformation, protein modifications, and the presence of motifs that interact with ATG8/LC3/GABARAP (autophagy-related protein 8/microtubule-associated protein 1A/1B-light chain 3/GABA type A receptor-associated protein) protein family members. In this review, we summarize the current knowledge regarding the Ub recognition code that is bound by Ub-binding proteasomal and autophagic receptors. We also discuss how cells can modify substrate fate by modulating the structure, conformation, and physical properties of these receptors to affect their shuttling between both degradation pathways.
Collapse
|
14
|
Pace MC, Xu G, Fromholt S, Howard J, Crosby K, Giasson BI, Lewis J, Borchelt DR. Changes in proteome solubility indicate widespread proteostatic disruption in mouse models of neurodegenerative disease. Acta Neuropathol 2018; 136:919-938. [PMID: 30140941 DOI: 10.1007/s00401-018-1895-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
The deposition of pathologic misfolded proteins in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis is hypothesized to burden protein homeostatic (proteostatic) machinery, potentially leading to insufficient capacity to maintain the proteome. This hypothesis has been supported by previous work in our laboratory, as evidenced by the perturbation of cytosolic protein solubility in response to amyloid plaques in a mouse model of Alzheimer's amyloidosis. In the current study, we demonstrate changes in proteome solubility are a common pathology to mouse models of neurodegenerative disease. Pathological accumulations of misfolded tau, α-synuclein and mutant superoxide dismutase 1 in CNS tissues of transgenic mice were associated with changes in the solubility of hundreds of CNS proteins in each model. We observed that changes in proteome solubility were progressive and, using the rTg4510 model of inducible tau pathology, demonstrated that these changes were dependent upon sustained expression of the primary pathologic protein. In all of the models examined, changes in proteome solubility were robust, easily detected, and provided a sensitive indicator of proteostatic disruption. Interestingly, a subset of the proteins that display a shift towards insolubility were common between these different models, suggesting that a specific subset of the proteome is vulnerable to proteostatic disruption. Overall, our data suggest that neurodegenerative proteinopathies modeled in mice impose a burden on the proteostatic network that diminishes the ability of neural cells to prevent aberrant conformational changes that alter the solubility of hundreds of abundant cellular proteins.
Collapse
Affiliation(s)
- Michael C Pace
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Susan Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - John Howard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Keith Crosby
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA.
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, 32610-0244, USA.
- SantaFe Healthcare Alzheimer's Disease Research Center, Gainesville, FL, USA.
| |
Collapse
|
15
|
Myers N, Olender T, Savidor A, Levin Y, Reuven N, Shaul Y. The Disordered Landscape of the 20S Proteasome Substrates Reveals Tight Association with Phase Separated Granules. Proteomics 2018; 18:e1800076. [PMID: 30039638 DOI: 10.1002/pmic.201800076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Proteasomal degradation is the main route of regulated proteostasis. The 20S proteasome is the core particle (CP) responsible for the catalytic activity of all proteasome complexes. Structural constraints mean that only unfolded, extended polypeptide chains may enter the catalytic core of the 20S proteasome. It has been previously shown that the 20S CP is active in degradation of certain intrinsically disordered proteins (IDP) lacking structural constrains. Here, a comprehensive analysis of the 20S CP substrates in vitro is conducted. It is revealed that the 20S CP substrates are highly disordered. However, not all the IDPs are 20S CP substrates. The group of the IDPs that are 20S CP substrates, termed 20S-IDPome are characterized by having significantly more protein binding partners, more posttranslational modification sites, and are highly enriched for RNA binding proteins. The vast majority of them are involved in splicing, mRNA processing, and translation. Remarkably, it is found that low complexity proteins with prion-like domain (PrLD), which interact with GR or PR di-peptide repeats, are the most preferential 20S CP substrates. The finding suggests roles of the 20S CP in gene transcription and formation of phase-separated granules.
Collapse
Affiliation(s)
- Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| |
Collapse
|
16
|
Young ZT, Mok SA, Gestwicki JE. Therapeutic Strategies for Restoring Tau Homeostasis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024612. [PMID: 28159830 DOI: 10.1101/cshperspect.a024612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Normal tau homeostasis is achieved when the synthesis, processing, and degradation of the protein is balanced. Together, the pathways that regulate tau homeostasis ensure that the protein is at the proper levels and that its posttranslational modifications and subcellular localization are appropriately controlled. These pathways include the enzymes responsible for posttranslational modifications, those systems that regulate mRNA splicing, and the molecular chaperones that control tau turnover and its binding to microtubules. In tauopathies, this delicate balance is disturbed. Tau becomes abnormally modified by posttranslational modification, it loses affinity for microtubules, and it accumulates in proteotoxic aggregates. How and why does this imbalance occur? In this review, we discuss how molecular chaperones and other components of the protein homeostasis (e.g., proteostasis) network normally govern tau quality control. We also discuss how aging might reduce the capacity of these systems and how tau mutations might further affect this balance. Finally, we discuss how small-molecule inhibitors are being used to probe and perturb the tau quality-control systems, playing a particularly prominent role in revealing the logic of tau homeostasis. As such, there is now interest in developing these chemical probes into therapeutics, with the goal of restoring normal tau homeostasis to treat disease.
Collapse
Affiliation(s)
- Zapporah T Young
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Sue Ann Mok
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
17
|
Ciechanover A, Kwon YT. Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front Neurosci 2017; 11:185. [PMID: 28428740 PMCID: PMC5382173 DOI: 10.3389/fnins.2017.00185] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins and their aggregates by protein quality control (PQC), of which molecular chaperones are an essential component. Compared with other cell types, PQC in neurons is particularly challenging because they have a unique cellular structure with long extensions. Making it worse, neurons are postmitotic, i.e., cannot dilute toxic substances by division, and, thus, are highly sensitive to misfolded proteins, especially as they age. Failure in PQC is often associated with neurodegenerative diseases, such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), and prion disease. In fact, many neurodegenerative diseases are considered to be protein misfolding disorders. To prevent the accumulation of disease-causing aggregates, neurons utilize a repertoire of chaperones that recognize misfolded proteins through exposed hydrophobic surfaces and assist their refolding. If such an effort fails, chaperones can facilitate the degradation of terminally misfolded proteins through either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). If soluble, the substrates associated with chaperones, such as Hsp70, are ubiquitinated by Ub ligases and degraded through the proteasome complex. Some misfolded proteins carrying the KFERQ motif are recognized by the chaperone Hsc70 and delivered to the lysosomal lumen through a process called, chaperone-mediated autophagy (CMA). Aggregation-prone misfolded proteins that remain unprocessed are directed to macroautophagy in which cargoes are collected by adaptors, such as p62/SQSTM-1/Sequestosome-1, and delivered to the autophagosome for lysosomal degradation. The aggregates that have survived all these refolding/degradative processes can still be directly dissolved, i.e., disaggregated by chaperones. Studies have shown that molecular chaperones alleviate the pathogenic symptoms by neurodegeneration-causing protein aggregates. Chaperone-inducing drugs and anti-aggregation drugs are actively exploited for beneficial effects on symptoms of disease. Here, we discuss how chaperones protect misfolded proteins from aggregation and mediate the degradation of terminally misfolded proteins in collaboration with cellular degradative machinery. The topics also include therapeutic approaches to improve the expression and turnover of molecular chaperones and to develop anti-aggregation drugs.
Collapse
Affiliation(s)
- Aaron Ciechanover
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Technion Integrated Cancer Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of TechnologyHaifa, Israel
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
18
|
Yagi H, Takabayashi T, Xie MJ, Kuroda K, Sato M. Subcellular distribution of non-muscle myosin IIb is controlled by FILIP through Hsc70. PLoS One 2017; 12:e0172257. [PMID: 28234934 PMCID: PMC5325215 DOI: 10.1371/journal.pone.0172257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
The neuronal spine is a small, actin-rich dendritic or somatic protrusion that serves as the postsynaptic compartment of the excitatory synapse. The morphology of the spine reflects the activity of the synapse and is regulated by the dynamics of the actin cytoskeleton inside, which is controlled by actin binding proteins such as non-muscle myosin. Previously, we demonstrated that the subcellular localization and function of myosin IIb are regulated by its binding partner, filamin-A interacting protein (FILIP). However, how the subcellular distribution of myosin IIb is controlled by FILIP is not yet known. The objective of this study was to identify potential binding partners of FILIP that contribute to its regulation of non-muscle myosin IIb. Pull-down assays detected a 70-kDa protein that was identified by mass spectrometry to be the chaperone protein Hsc70. The binding of Hsc70 to FILIP was controlled by the adenosine triphosphatase (ATPase) activity of Hsc70. Further, FILIP bound to Hsc70 via a domain that was not required for binding non-muscle myosin IIb. Inhibition of ATPase activity of Hsc70 impaired the effect of FILIP on the subcellular distribution of non-muscle myosin IIb. Further, in primary cultured neurons, an inhibitor of Hsc70 impeded the morphological change in spines induced by FILIP. Collectively, these results demonstrate that Hsc70 interacts with FILIP to mediate its effects on non-muscle myosin IIb and to regulate spine morphology.
Collapse
Affiliation(s)
- Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, Hyogo, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Min-Jue Xie
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kazuki Kuroda
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Makoto Sato
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Angeletti M, Keller JN, Eleuteri AM. The fine-tuning of proteolytic pathways in Alzheimer's disease. Cell Mol Life Sci 2016; 73:3433-51. [PMID: 27120560 PMCID: PMC11108445 DOI: 10.1007/s00018-016-2238-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Several integrated proteolytic systems contribute to the maintenance of cellular homeostasis through the continuous removal of misfolded, aggregated or oxidized proteins and damaged organelles. Among these systems, the proteasome and autophagy play the major role in protein quality control, which is a fundamental issue in non-proliferative cells such as neurons. Disturbances in the functionality of these two pathways are frequently observed in neurodegenerative diseases, like Alzheimer's disease, and reflect the accumulation of protease-resistant, deleterious protein aggregates. In this review, we explored the sophisticated crosstalk between the ubiquitin-proteasome system and autophagy in the removal of the harmful structures that characterize Alzheimer's disease neurons. We also dissected the role of the numerous shuttle factors and chaperones that, directly or indirectly interacting with ubiquitin and LC3, are used for cargo selection and delivery to one pathway or the other.
Collapse
Affiliation(s)
- Valentina Cecarini
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy.
| | - Laura Bonfili
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Matteo Mozzicafreddo
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Mauro Angeletti
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Jeffrey N Keller
- Pennington Biomedical Research Centre, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Anna Maria Eleuteri
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| |
Collapse
|
20
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
21
|
Stabilizing the Hsp70-Tau Complex Promotes Turnover in Models of Tauopathy. Cell Chem Biol 2016; 23:992-1001. [PMID: 27499529 DOI: 10.1016/j.chembiol.2016.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/23/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) is a chaperone that normally scans the proteome and initiates the turnover of some proteins (termed clients) by linking them to the degradation pathways. This activity is critical to normal protein homeostasis, yet it appears to fail in diseases associated with abnormal protein accumulation. It is not clear why Hsp70 promotes client degradation under some conditions, while sparing that protein under others. Here, we used a combination of chemical biology and genetic strategies to systematically perturb the affinity of Hsp70 for the model client, tau. This approach revealed that tight complexes between Hsp70 and tau were associated with enhanced turnover while transient interactions favored tau retention. These results suggest that client affinity is one important parameter governing Hsp70-mediated quality control.
Collapse
|
22
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
23
|
Piedrahita D, Castro-Alvarez JF, Boudreau RL, Villegas-Lanau A, Kosik KS, Gallego-Gomez JC, Cardona-Gómez GP. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci 2016; 9:498. [PMID: 26778963 PMCID: PMC4705306 DOI: 10.3389/fncel.2015.00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
β-site APP cleaving enzyme 1 (BACE1) initiates APP cleavage, which has been reported to be an inducer of tau pathology by altering proteasome functions in Alzheimer’s disease (AD). However, the exact relationship between BACE1 and PHF (Paired Helical Filaments) formation is not clear. In this study, we confirm that BACE1 and Hsc70 are upregulated in the brains of AD patients, and we demonstrate that both proteins show enhanced expression in lipid rafts from AD-affected triple transgenic mouse brains. BACE1 targeting increased Hsc70 levels in the membrane and cytoplasm fractions and downregulated Hsp90 and CHIP in the nucleus in the hippocampi of 3xTg-AD mice. However, these observations occurred in a proteasome-independent manner in vitro. The BACE1miR-induced reduction of soluble hyperphosphorylated tau was associated with a decrease in MAPK activity. However, the BACE1 RNAi-mediated reduction of hyperphosphorylated tau was only blocked by 3-MA (3-methyladenine) in vitro, and it resulted in the increase of Hsc70 and LAMP2 in lipid rafts from hippocampi of 3xTg-AD mice, and upregulation of survival and homeostasis signaling. In summary, our findings suggest that BACE1 silencing neuroprotects reducing soluble hyperphosphorylated tau, modulating certain autophagy-related proteins in aged 3xTg-AD mice.
Collapse
Affiliation(s)
- Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | - John Fredy Castro-Alvarez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | | | - Andres Villegas-Lanau
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, SIU, University of Antioquia Medellín, Colombia
| | - Kenneth S Kosik
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara Santa Barbara, CA, USA
| | - Juan Carlos Gallego-Gomez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, University of Antioquia Medellin, Antioquia, Colombia
| |
Collapse
|
24
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
25
|
Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 2015; 6:46. [PMID: 26273428 PMCID: PMC4535255 DOI: 10.1186/s13229-015-0040-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/04/2015] [Indexed: 12/03/2022] Open
Abstract
Background MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. Methods Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. Results We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in the human autism brain. Conclusions Our data suggests that dysregulation of microRNAs may play a biological role in the brain of individuals of autism. In addition, we suggest an interaction between epigenetic mechanisms and microRNA dysregulation in the brain. Overall, this data adds an important link in our understanding of the molecular events that are dysregulated in the brain of individuals diagnosed with autism. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0040-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Mor
- Bar Ilan University Faculty of Medicine, Hanrieta Sold 8, Safed, 13215 Israel
| | - Stefano Nardone
- Bar Ilan University Faculty of Medicine, Hanrieta Sold 8, Safed, 13215 Israel
| | - Dev Sharan Sams
- Bar Ilan University Faculty of Medicine, Hanrieta Sold 8, Safed, 13215 Israel
| | - Evan Elliott
- Bar Ilan University Faculty of Medicine, Hanrieta Sold 8, Safed, 13215 Israel
| |
Collapse
|
26
|
Smith HL, Li W, Cheetham ME. Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol 2015; 40:142-52. [PMID: 25770416 PMCID: PMC4471145 DOI: 10.1016/j.semcdb.2015.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms.
Collapse
Affiliation(s)
- Heather L Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
27
|
Fontaine SN, Sabbagh JJ, Baker J, Martinez-Licha CR, Darling A, Dickey CA. Cellular factors modulating the mechanism of tau protein aggregation. Cell Mol Life Sci 2015; 72:1863-79. [PMID: 25666877 DOI: 10.1007/s00018-015-1839-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 01/12/2023]
Abstract
Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bcl-2-Associated Athanogene 2 Prevents the Neurotoxicity of MPP+ via Interaction with DJ-1. J Mol Neurosci 2015; 55:798-802. [DOI: 10.1007/s12031-014-0481-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
29
|
Deffit SN, Blum JS. Macronutrient deprivation modulates antigen trafficking and immune recognition through HSC70 accessibility. THE JOURNAL OF IMMUNOLOGY 2015; 194:1446-53. [PMID: 25589076 DOI: 10.4049/jimmunol.1402472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocytes exploit macroautophagy to capture cytoplasmic and nuclear proteins within autophagosomes. Fusion of autophagosomes with lysosomes and endosomes facilitates content proteolysis, with the resulting peptides selectively binding MHC class II (MHC II) molecules, which are displayed for recognition by T lymphocytes. Nutrient deprivation or stress amplified this pathway, favoring increased MHC II presentation of cytoplasmic Ags targeted to autophagosomes. By contrast, this stress diminished MHC II presentation of membrane Ags including the BCR and cytoplasmic proteins that use the chaperone-mediated autophagy pathway. Whereas intracellular protease activity increased with nutrient stress, endocytic trafficking and proteolytic turnover of the BCR was impaired. Addition of macronutrients such as high molecular mass proteins restored endocytosis and Ag presentation, evidence of tightly regulated membrane trafficking dependent on macronutrient status. Altering cellular levels of the cytosolic chaperone HSC70 was sufficient to overcome the inhibitory effects of nutritional stress on BCR trafficking and Ag presentation. Together, these results reveal a key role for macronutrient sensing in regulating immune recognition and the importance of HSC70 in modulating membrane trafficking pathways during cellular stress.
Collapse
Affiliation(s)
- Sarah N Deffit
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
30
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
31
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
32
|
Che XQ, Tang BS, Wang HF, Yan XX, Jiang H, Shen L, Xu Q, Wang GH, Zhang HN, Wang CY, Guo JF. The BAG2 and BAG5 proteins inhibit the ubiquitination of pathogenic ataxin3-80Q. Int J Neurosci 2014; 125:390-4. [DOI: 10.3109/00207454.2014.940585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Lei Z, Brizzee C, Johnson GVW. BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiol Aging 2014; 36:241-8. [PMID: 25212465 DOI: 10.1016/j.neurobiolaging.2014.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022]
Abstract
Tau is a microtubule associated protein that is found primarily in neurons, and in pathologic conditions, such as Alzheimer's disease (AD) it accumulates and contributes to the disease process. Because tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here, we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD.
Collapse
Affiliation(s)
- Zhinian Lei
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Corey Brizzee
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
34
|
Huang B, Zhou H, Lang X, Liu Z, Xiong F, Wang S. Expression of BAG-1 is closely related to cell differentiation and TNM stage in esophageal cancer and its downregulation inhibits the proliferation and invasion of human esophageal carcinoma cells. Oncol Rep 2014; 32:1441-6. [PMID: 25069471 DOI: 10.3892/or.2014.3356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the correlation of BAG-1 with clinical characteristics of esophageal cancer and its effects on the proliferation, invasion and apoptosis of the esophageal carcinoma cell line Eca109. Therefore, the expression of BAG-1 was assessed in esophageal carcinoma tumor tissues and adjacent normal esophageal tissues. The siRNA vector of BAG-1 was constructed and transfected into the Eca109 cell line, and then fluorescence microscopy was used to evaluate the transfection efficiency. MTT and Transwell assays were used to study cell proliferation and invasive activity, and the apoptosis rate was assessed by flow cytometry. Western blotting was adopted to assess the silencing efficiency and expression of related gene bcl-2. The results revealed that BAG-1 expression was low in the adjacent normal esophageal tissues while expression was high in the esophageal carcinoma tissues. After Eca109 cells were transfected with BAG-1-siRNA, the proliferation and invasive capabilities of the cells were significantly decreased while the apoptosis rate was greatly enhanced (P<0.01). When the expression of BAG-1 in the Eca109 cells was downregulated, the expression of bcl-2 was significantly abated (P<0.05). In conclusion, BAG-1 is closely connected with the pathogenesis and development of esophageal carcinoma, which may act through affecting bcl-2.
Collapse
Affiliation(s)
- Bo Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Hongli Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xianping Lang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zhiliang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Fei Xiong
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Siwang Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
35
|
Hadley D, Wu ZL, Kao C, Kini A, Mohamed-Hadley A, Thomas K, Vazquez L, Qiu H, Mentch F, Pellegrino R, Kim C, Connolly J, Glessner J, Hakonarson H. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nat Commun 2014; 5:4074. [PMID: 24927284 PMCID: PMC4059929 DOI: 10.1038/ncomms5074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/07/2014] [Indexed: 01/19/2023] Open
Abstract
Although multiple reports show that defective genetic networks underlie the aetiology
of autism, few have translated into pharmacotherapeutic opportunities. Since drugs
compete with endogenous small molecules for protein binding, many successful drugs
target large gene families with multiple drug binding sites. Here we search for
defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs
relative to 12,544 neurologically normal controls, to find potentially druggable
genetic targets. We find significant enrichment of structural defects
(P≤2.40E−09, 1.8-fold enrichment) in the metabotropic
glutamate receptor (GRM) GFIN, previously observed to impact attention deficit
hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is
significantly enriched (P≤3.83E−23, 2.5-fold
enrichment), as is the calmodulin 1
(CALM1) gene interaction
network (P≤4.16E−04, 14.4-fold enrichment), which
regulates voltage-independent calcium-activated action potentials at the neuronal
synapse. We find that multiple defective gene family interactions underlie autism,
presenting new translational opportunities to explore for therapeutic
interventions. The autism spectrum disorders are complex genetic traits characterized
by various neurodevelopmental deficits. Here, the authors analyse defective gene family
interaction networks in autism cases and healthy controls and identify potential gene
family interactions that may contribute to autism aetiology.
Collapse
Affiliation(s)
- Dexter Hadley
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Zhi-Liang Wu
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Akshata Kini
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Alisha Mohamed-Hadley
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kelly Thomas
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Lyam Vazquez
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Haijun Qiu
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Frank Mentch
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Renata Pellegrino
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Cecilia Kim
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - John Connolly
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | - Joseph Glessner
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Hakon Hakonarson
- 1] The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA [2] Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, Salas PJ. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci 2014; 127:3568-77. [PMID: 24876225 DOI: 10.1242/jcs.151084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical PKC (ι/λ and ζ; hereafter referred to as aPKC) is a key player in the acquisition of epithelial polarity and participates in other signaling cascades including the control of NF-κB signaling. This kinase is post-translationally regulated through Hsp70-mediated refolding. Previous work has shown that such a chaperoning activity is specifically localized to keratin intermediate filaments. Our work was performed with the goal of identifying the molecule(s) that block Hsp70 activity on keratin filaments during inflammation. A transcriptional screen allowed us to focus on BAG-1, a multi-functional protein that assists Hsp70 in nucleotide exchange but also blocks its activity at higher concentrations. We found the BAG-1 isoform BAG-1M upregulated threefold in human Caco-2 cells following stimulation with tumor necrosis factor receptor α (TNFα) to induce a pro-inflammatory response, and up to sixfold in mouse enterocytes following treatment with dextran sodium sulfate (DSS) to induce colitis. BAG-1M, but no other isoform, was found to co-purify with intermediate filaments and block Hsp70 activity in the keratin fraction but not in the soluble fraction within the range of concentrations found in epithelial cells cultured under control and inflammation conditions. Constitutive expression of BAG-1M decreased levels of phosphorylated aPKC. By contrast, knockdown of BAG-1, blocked the TNFα-induced decrease of phosphorylated aPKC. We conclude that BAG-1M mediates Hsp70 inhibition downstream of NF-κB.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Nova Southeastern University, Department of Physiology, Fort Lauderdale, FL 33314, USA University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Zhanna Kozhekbaeva
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Radia Forteza
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Vipin Dulam
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Yolanda Figueroa
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Robert Warren
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Pedro J Salas
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| |
Collapse
|
37
|
|
38
|
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2013; 2:a006247. [PMID: 22762014 DOI: 10.1101/cshperspect.a006247] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume.
Collapse
Affiliation(s)
- Eva-Maria Mandelkow
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany; DZNE, German Center for Neurodegenerative Diseases, and CAESAR Research Center, 53175 Bonn, Germany.
| | | |
Collapse
|
39
|
van der Putten H, Lotz GP. Opportunities and challenges for molecular chaperone modulation to treat protein-conformational brain diseases. Neurotherapeutics 2013; 10:416-28. [PMID: 23536253 PMCID: PMC3701765 DOI: 10.1007/s13311-013-0186-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A common pathological hallmark of protein-conformational brain diseases is the formation of disease-specific protein aggregates. In Alzheimer's disease, these are comprised of amyloid-β and Tau as opposed to α-synuclein in Parkinson's disease and N-terminal fragments of mutant huntingtin in Huntington's disease. Most aggregates also sequester molecular chaperones, a protein family that assists in the folding, refolding, stabilization, and processing of client proteins, including misfolded proteins in brain diseases. Molecular chaperone modulation has achieved remarkable therapeutic effects in some cellular and preclinical animal models of protein-conformational diseases. This has raised hope for chaperone-based strategies to combat these diseases. Here, we review briefly the functional diversity and medical significance of molecular chaperones, their therapeutic potential, and common and specific challenges towards clinical application.
Collapse
Affiliation(s)
- Herman van der Putten
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Gregor P. Lotz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| |
Collapse
|
40
|
Lin Z, Zhao D, Yang L. Interaction between misfolded PrP and the ubiquitin-proteasome system in prion-mediated neurodegeneration. Acta Biochim Biophys Sin (Shanghai) 2013; 45:477-84. [PMID: 23449072 DOI: 10.1093/abbs/gmt020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases are associated with the conformational conversion of cellular prion protein (PrP(C)) to pathological β-sheet isoforms (PrP(Sc)), which is the infectious agent beyond comprehension. Increasing evidence indicated that an unknown toxic gain of function of PrP(sc) underlies neuronal death. Conversely, strong evidence indicated that cellular prion protein might be directly cytotoxic by mediating neurotoxic signaling of β-sheet-rich conformers independent of prion replication. Furthermore, the common properties of β-sheet-rich isoform such as PrP(Sc) and β amyloid protein become the lynchpin that interprets the general pathological mechanism of protein misfolding diseases. Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in various protein misfolding diseases. However, the mechanisms of this impairment remain unknown in many cases. In prion disease, prion-infected mouse brains have increased levels of ubiquitin conjugates, which correlate with decreased proteasome function. Both PrP(C) and PrP(Sc) accumulate in cells after proteasome inhibition, which leads to increased cell death. A direct interaction between 20S core particle and PrP isoforms was demonstrated. Here we review the ability of misfolded PrP and UPS to affect each other, which might contribute to the pathological features of prion-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhu Lin
- State Key Laboratories for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
41
|
|
42
|
Malyshev I. The Role of HSP70 in the Protection of: (A) The Brain in Alzheimer’s Disease and (B) The Heart in Cardiac Surgery. IMMUNITY, TUMORS AND AGING: THE ROLE OF HSP70 2013. [DOI: 10.1007/978-94-007-5943-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Assimon VA, Gillies AT, Rauch JN, Gestwicki JE. Hsp70 protein complexes as drug targets. Curr Pharm Des 2013; 19:404-17. [PMID: 22920901 PMCID: PMC3593251 DOI: 10.2174/138161213804143699] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/15/2012] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70's interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, including roles in pro-folding, pro-degradation and pro-trafficking pathways. Thus, a promising strategy may be to block protein- protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to these goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology.
Collapse
Affiliation(s)
- Victoria A Assimon
- Department of Pathology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109-2216, USA
| | | | | | | |
Collapse
|
44
|
Carman A, Kishinevsky S, Koren J, Lou W, Chiosis G. Chaperone-dependent Neurodegeneration: A Molecular Perspective on Therapeutic Intervention. ACTA ACUST UNITED AC 2013; 2013. [PMID: 25258700 PMCID: PMC4172285 DOI: 10.4172/2161-0460.s10-007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of cellular homeostasis is regulated by the molecular chaperones. Under pathogenic conditions, aberrant proteins are triaged by the chaperone network. These aberrant proteins, known as "clients," have major roles in the pathogenesis of numerous neurological disorders, including tau in Alzheimer's disease, α-synuclein and LRRK2 in Parkinson's disease, SOD-1, TDP-43 and FUS in amyotrophic lateral sclerosis, and polyQ-expanded proteins such as huntingtin in Huntington's disease. Recent work has demonstrated that the use of chemical compounds which inhibit the activity of molecular chaperones subsequently alter the fate of aberrant clients. Inhibition of Hsp90 and Hsc70, two major molecular chaperones, has led to a greater understanding of how chaperone triage decisions are made and how perturbing the chaperone system can promote clearance of these pathogenic clients. Described here are major pathways and components of several prominent neurological disorders. Also discussed is how treatment with chaperone inhibitors, predominately Hsp90 inhibitors which are selective for a diseased state, can relieve the burden of aberrant client signaling in these neurological disorders.
Collapse
Affiliation(s)
- Aaron Carman
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - Sarah Kishinevsky
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - John Koren
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| | - Wenjie Lou
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | - Gabriela Chiosis
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Centre, New York, NY, USA
| |
Collapse
|
45
|
Abstract
Tau aggregates are present in several neurodegenerative diseases and correlate with the severity of memory deficit in AD (Alzheimer's disease). However, the triggers of tau aggregation and tau-induced neurodegeneration are still elusive. The impairment of protein-degradation systems might play a role in such processes, as these pathways normally keep tau levels at a low level which may prevent aggregation. Some proteases can process tau and thus contribute to tau aggregation by generating amyloidogenic fragments, but the complete clearance of tau mainly relies on the UPS (ubiquitin-proteasome system) and the ALS (autophagy-lysosome system). In the present paper, we focus on the regulation of the degradation of tau by the UPS and ALS and its relation to tau aggregation. We anticipate that stimulation of these two protein-degradation systems might be a potential therapeutic strategy for AD and other tauopathies.
Collapse
|
46
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
47
|
Abisambra JF, Jinwal UK, Jones JR, Blair LJ, Koren J, Dickey CA. Exploiting the diversity of the heat-shock protein family for primary and secondary tauopathy therapeutics. Curr Neuropharmacol 2012; 9:623-31. [PMID: 22654720 PMCID: PMC3263456 DOI: 10.2174/157015911798376226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strategies are emerging that target this family of chaperones to modulate their pathobiology. This article focuses on the use of Hsp-based therapeutics for treating primary and secondary tauopathies like Alzheimer’s disease. It will particularly focus on the pharmacological targeting of the Hsp70/90 system and the value of manipulating Hsp27 for treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Jose F Abisambra
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Alzheimer’s disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.
Collapse
|
49
|
Mendes F, Farinha CM, Felício V, Alves PC, Vieira I, Amaral MD. BAG-1 Stabilizes Mutant F508del-CFTR in a Ubiquitin-Like-Domain-Dependent Manner. Cell Physiol Biochem 2012. [DOI: 10.1159/000343303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Gestwicki JE, Garza D. Protein quality control in neurodegenerative disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:327-53. [PMID: 22482455 DOI: 10.1016/b978-0-12-385883-2.00003-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The accumulation of misfolded proteins is a common feature of many neurodegenerative diseases. These observations suggest a potential link between these disorders and protein quality control, a collection of cellular pathways that sense damage to proteins and facilitate their turnover. Consistent with this idea, activation of quality control components, such as molecular chaperones, has been shown to be protective in multiple neurodegenerative disease models. In addition, key studies have suggested that quality control deteriorates with age, further supporting a relationship between these processes. In this chapter, we discuss the evidence linking neurodegeneration to quality control and present the emerging models. We also speculate on why proper quality control is so difficult for certain proteins.
Collapse
Affiliation(s)
- Jason E Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|