1
|
Expression, purification and characterization of the full-length SmpB protein from Mycobacterium tuberculosis. Protein Expr Purif 2018; 151:9-17. [DOI: 10.1016/j.pep.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
|
2
|
Shasmal M, Dey S, Shaikh TR, Bhakta S, Sengupta J. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed. Sci Rep 2016; 6:19936. [PMID: 26822933 PMCID: PMC4731797 DOI: 10.1038/srep19936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome.
Collapse
Affiliation(s)
- Manidip Shasmal
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Sandip Dey
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Tanvir R Shaikh
- Structural Biology Programme, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sayan Bhakta
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Jayati Sengupta
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| |
Collapse
|
3
|
Ranaei-Siadat E, Mérigoux C, Seijo B, Ponchon L, Saliou JM, Bernauer J, Sanglier-Cianférani S, Dardel F, Vachette P, Nonin-Lecomte S. In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution. RNA (NEW YORK, N.Y.) 2014; 20:1607-20. [PMID: 25135523 PMCID: PMC4174442 DOI: 10.1261/rna.045674.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg(2+) drives compaction of the RNA structure and that, in the absence of Mg(2+), SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule.
Collapse
Affiliation(s)
- Ehsan Ranaei-Siadat
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Cécile Mérigoux
- Université Paris-Sud, IBBMC, UMR8619, 91405 Orsay, France CNRS, 91405 Orsay, France
| | - Bili Seijo
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Luc Ponchon
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Jean-Michel Saliou
- CNRS, IPHC-LSMBO, Université Louis Pasteur Bât, 67087 Strasbourg, France
| | - Julie Bernauer
- AMIB, INRIA Saclay-Île de France, 91120 Palaiseau, France LIX, CNRS UMR 7161, École Polytechnique, 91120 Palaiseau, France
| | | | - Fréderic Dardel
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Patrice Vachette
- Université Paris-Sud, IBBMC, UMR8619, 91405 Orsay, France CNRS, 91405 Orsay, France
| | - Sylvie Nonin-Lecomte
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| |
Collapse
|
4
|
Miller MR, Buskirk AR. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes. Front Microbiol 2014; 5:462. [PMID: 25228900 PMCID: PMC4151336 DOI: 10.3389/fmicb.2014.00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
In bacteria, transfer-messenger RNA (tmRNA) and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.
Collapse
Affiliation(s)
- Mickey R Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
5
|
Hudson CM, Lau BY, Williams KP. Ends of the line for tmRNA-SmpB. Front Microbiol 2014; 5:421. [PMID: 25165464 PMCID: PMC4131195 DOI: 10.3389/fmicb.2014.00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/24/2014] [Indexed: 11/22/2022] Open
Abstract
Genes for the RNA tmRNA and protein SmpB, partners in the trans-translation process that rescues stalled ribosomes, have previously been found in all bacteria and some organelles. During a major update of The tmRNA Website (relocated to http://bioinformatics.sandia.gov/tmrna), including addition of an SmpB sequence database, we found some bacteria that lack functionally significant regions of SmpB. Three groups with reduced genomes have lost the central loop of SmpB, which is thought to improve alanylation and EF-Tu activation: Carsonella, Hodgkinia, and the hemoplasmas (hemotropic Mycoplasma). Carsonella has also lost the SmpB C-terminal tail, thought to stimulate the decoding center of the ribosome. We validate recent identification of tmRNA homologs in oomycete mitochondria by finding partner genes from oomycete nuclei that target SmpB to the mitochondrion. We have moreover identified through exhaustive search a small number of complete, but often highly derived, bacterial genomes that appear to lack a functional copy of either the tmRNA or SmpB gene (but not both). One Carsonella isolate exhibits complete degradation of the tmRNA gene sequence yet its smpB shows no evidence for relaxed selective constraint, relative to other genes in the genome. After loss of the SmpB central loop in the hemoplasmas, one subclade apparently lost tmRNA. Carsonella also exhibits gene overlap such that tmRNA maturation should produce a non-stop smpB mRNA. At least some of the tmRNA/SmpB-deficient strains appear to further lack the ArfA and ArfB backup systems for ribosome rescue. The most frequent neighbors of smpB are the tmRNA gene, a ratA/rnfH unit, and the gene for RNaseR, a known physical and functional partner of tmRNA-SmpB.
Collapse
Affiliation(s)
- Corey M Hudson
- Sandia National Laboratories, Department of Systems Biology Livermore, CA, USA
| | - Britney Y Lau
- Sandia National Laboratories, Department of Systems Biology Livermore, CA, USA
| | - Kelly P Williams
- Sandia National Laboratories, Department of Systems Biology Livermore, CA, USA
| |
Collapse
|
6
|
Abstract
Problems during gene expression can result in a ribosome that has translated to the 3' end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.
Collapse
|
7
|
Liang W, Deutscher MP. Ribosomes regulate the stability and action of the exoribonuclease RNase R. J Biol Chem 2013; 288:34791-8. [PMID: 24133211 DOI: 10.1074/jbc.m113.519553] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleases play an important role in RNA metabolism. Yet, they are also potentially destructive enzymes whose activity must be controlled. Here we describe a novel regulatory mechanism affecting RNase R, a 3' to 5' exoribonuclease able to act on essentially all RNAs including those with extensive secondary structure. Most RNase R is sequestered on ribosomes in growing cells where it is stable and participates in trans-translation. In contrast, the free form of the enzyme, which is deleterious to cells, is extremely unstable, turning over with a half-life of 2 min. RNase R binding to ribosomes is dependent on transfer-messenger RNA (tmRNA)-SmpB, nonstop mRNA, and the modified form of ribosomal protein S12. Degradation of the free form of RNase R also requires tmRNA-SmpB, but this process is independent of ribosomes, indicating two distinct roles for tmRNA-SmpB. Inhibition of RNase R binding to ribosomes leads to slower growth and a massive increase in RNA degradation. These studies indicate a previously unknown role for ribosomes in cellular homeostasis.
Collapse
Affiliation(s)
- Wenxing Liang
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101
| | | |
Collapse
|
8
|
Camenares D, Dulebohn DP, Svetlanov A, Karzai AW. Active and accurate trans-translation requires distinct determinants in the C-terminal tail of SmpB protein and the mRNA-like domain of transfer messenger RNA (tmRNA). J Biol Chem 2013; 288:30527-30542. [PMID: 23986442 DOI: 10.1074/jbc.m113.503896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unproductive ribosome stalling in eubacteria is resolved by the actions of SmpB protein and transfer messenger (tm) RNA. We examined the functional significance of conserved regions of SmpB and tmRNA to the trans-translation process. Our investigations reveal that the N-terminal 20 residues of SmpB, which are located near the ribosomal decoding center, are dispensable for all known SmpB activities. In contrast, a set of conserved residues that reside at the junction between the tmRNA-binding core and the C-terminal tail of SmpB play an important role in tmRNA accommodation. Our data suggest that the highly conserved glycine 132 acts as a flexible hinge that enables movement of the C-terminal tail, thus permitting proper positioning and establishment of the tmRNA open reading frame (ORF) as the surrogate template. To gain further insights into the function of the SmpB C-terminal tail, we examined the tagging activity of hybrid variants of tmRNA and the SmpB protein, in which the tmRNA ORF or the SmpB C-terminal tail was substituted with the equivalent but highly divergent sequences from Francisella tularensis. We observed that the hybrid tmRNA was active but resulted in less accurate selection of the resume codon. Cognate hybrid SmpB was necessary to restore activity. Furthermore, accurate tagging was observed when the identity of the resume codon was reverted from GGC to GCA. Taken together, these data suggest that the engagement of the tmRNA ORF and the selection of the correct translation resumption point are distinct activities that are influenced by independent tmRNA and SmpB determinants.
Collapse
Affiliation(s)
- Devin Camenares
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | | | - Anton Svetlanov
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - A Wali Karzai
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794.
| |
Collapse
|
9
|
Schaub RE, Poole SJ, Garza-Sánchez F, Benbow S, Hayes CS. Proteobacterial ArfA peptides are synthesized from non-stop messenger RNAs. J Biol Chem 2012; 287:29765-75. [PMID: 22791716 DOI: 10.1074/jbc.m112.374074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation of non-stop mRNA (which lack in-frame stop codons) represents a significant quality control problem for all organisms. In eubacteria, the transfer-messenger RNA (tmRNA) system facilitates recycling of stalled ribosomes from non-stop mRNA in a process termed trans-translation or ribosome rescue. During rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which promotes polypeptide degradation after release from the stalled ribosome. Escherichia coli possesses an additional ribosome rescue pathway mediated by the ArfA peptide. The E. coli arfA message contains a hairpin structure that is cleaved by RNase III to produce a non-stop transcript. Therefore, ArfA levels are controlled by tmRNA through ssrA-peptide tagging and proteolysis. Here, we examine whether ArfA homologues from other bacteria are also regulated by RNase III and tmRNA. We searched 431 arfA coding sequences for mRNA secondary structures and found that 82.8% of the transcripts contain predicted hairpins in their 3'-coding regions. The arfA hairpins from Haemophilus influenzae, Proteus mirabilis, Vibrio fischeri, and Pasteurella multocida are all cleaved by RNase III as predicted, whereas the hairpin from Neisseria gonorrhoeae functions as an intrinsic transcription terminator to generate non-stop mRNA. Each ArfA homologue is ssrA-tagged and degraded when expressed in wild-type E. coli cells, but accumulates in mutants lacking tmRNA. Together, these findings show that ArfA synthesis from non-stop mRNA is a conserved mechanism to regulate the alternative ribosome rescue pathway. This strategy ensures that ArfA homologues are only deployed when the tmRNA system is incapacitated or overwhelmed by stalled ribosomes.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | | | | | | | | |
Collapse
|
10
|
Ribosome purification approaches for studying interactions of regulatory proteins and RNAs with the ribosome. Methods Mol Biol 2012; 905:273-89. [PMID: 22736011 PMCID: PMC4607317 DOI: 10.1007/978-1-61779-949-5_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ribosomes are large complexes of RNA and protein that perform the essential task of protein synthesis in the cell. Ribosomes also serve as the initiation point for several translation-associated functions. To perform these tasks efficiently, ribosomes interact with a myriad of nonribosomal proteins and RNAs. Given that most of these interactions are transient, purification of the interacting factors in complex with the ribosome can be a challenging undertaking. Here, we review methods commonly used to isolate ribosomes and study ribosome-associated factors. We also discuss crucial parameters for designing and executing ribosome association studies. Finally, we present a detailed protocol for reporter based enrichment assays that are employed to selectively isolate ribosomes translating a particular message of interest. These protocols can be used to study a wide range of ribosome-associated functions.
Collapse
|
11
|
Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:151-91. [PMID: 22243584 DOI: 10.1016/b978-0-12-386497-0.00005-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed "ribosome rescue." During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets tagged peptides for proteolysis, ensuring rapid degradation of potentially deleterious truncated polypeptides. Ribosome rescue also facilitates turnover of the damaged messages responsible for translational arrest. Thus, tmRNA increases the fidelity of gene expression by promoting the synthesis of full-length proteins. In addition to serving as a global quality control system, tmRNA also plays important roles in bacterial development, pathogenesis, and environmental stress responses. This review focuses on the mechanism of tmRNA-mediated ribosome rescue and the role of tmRNA in bacterial physiology.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | | |
Collapse
|
12
|
Kurita D, Muto A, Himeno H. tRNA/mRNA Mimicry by tmRNA and SmpB in Trans-Translation. J Nucleic Acids 2011; 2011:130581. [PMID: 21253384 PMCID: PMC3022190 DOI: 10.4061/2011/130581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022] Open
Abstract
Since accurate translation from mRNA to protein is critical to survival, cells have developed translational quality control systems. Bacterial ribosomes stalled on truncated mRNA are rescued by a system involving tmRNA and SmpB referred to as trans-translation. Here, we review current understanding of the mechanism of trans-translation. Based on results obtained by using directed hydroxyl radical probing, we propose a new type of molecular mimicry during trans-translation. Besides such chemical approaches, biochemical and cryo-EM studies have revealed the structural and functional aspects of multiple stages of trans-translation. These intensive works provide a basis for studying the dynamics of tmRNA/SmpB in the ribosome.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
13
|
Abstract
The translation machinery deciphers genetic information encoded within mRNAs to synthesize proteins needed for various cellular functions. Defective mRNAs that lack in-frame stop codons trigger non-productive stalling of ribosomes. We investigated how cells deal with such defective mRNAs, and present evidence to demonstrate that RNase R, a processive 3'-to-5' exoribonuclease, is recruited to stalled ribosomes for the specific task of degrading defective mRNAs. The recruitment process is selective for non-stop mRNAs and is dependent on the activities of SmpB protein and tmRNA. Most intriguingly, our analysis reveals that a unique structural feature of RNase R, the C-terminal lysine-rich (K-rich) domain, is required both for productive ribosome engagement and targeted non-stop mRNA decay activities of the enzyme. These findings provide new insights into how a general RNase is recruited to the translation machinery and highlight a novel role for the ribosome as a platform for initiating non-stop mRNA decay.
Collapse
Affiliation(s)
- Zhiyun Ge
- Center for Infectious Diseases, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
14
|
Shpanchenko OV, Bugaeva EY, Golovin AV, Dontsova OA. Trans-translation: Findings and hypotheses. Mol Biol 2010. [DOI: 10.1134/s0026893310040011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kurita D, Muto A, Himeno H. Role of the C-terminal tail of SmpB in the early stage of trans-translation. RNA (NEW YORK, N.Y.) 2010; 16:980-990. [PMID: 20348441 PMCID: PMC2856891 DOI: 10.1261/rna.1916610] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 02/11/2010] [Indexed: 05/29/2023]
Abstract
Trans-translation relieves a stalled translation on the bacterial ribosome by transfer-messenger RNA (tmRNA) with the help of SmpB, an essential cofactor of tmRNA. Here, we examined the role of the unstructured C-terminal tail of SmpB using an in vitro trans-translation system. It was found that truncation of the C-terminal tail or substitution of tryptophan residue at 147 in the middle of the C-terminal tail affected the activity in the early stage of trans-translation. Our investigations also revealed that the C-terminal tail is not required for the events until GTP is hydrolyzed by EF-Tu in complex with tmRNA-SmpB. A synthetic peptide corresponding to the C-terminal tail of SmpB inhibited peptidyl-transfer of alanyl-tmRNA and A-site binding of SmpB, but not GTP hydrolysis. These results suggest that the C-terminal tail has a role in the step of accommodation of alanyl-tmRNA-SmpB into the A-site. Directed hydroxyl radical probing indicated that tryptophan residue at 147 is located just downstream of the decoding center in the mRNA path when SmpB is in the A-site.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Binding Sites/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Kinetics
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Peptide Elongation Factor Tu/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/metabolism
- Sequence Deletion
- Tryptophan/chemistry
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
16
|
Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett 2009; 584:413-9. [PMID: 19914241 DOI: 10.1016/j.febslet.2009.11.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/23/2022]
Abstract
tmRNA is a unique bi-functional RNA that acts as both a tRNA and an mRNA to enter stalled ribosomes and direct the addition of a peptide tag to the C terminus of nascent polypeptides. Despite a reasonably clear understanding of tmRNA activity, the reason for its absolute conservation throughout the eubacteria is unknown. Although tmRNA plays many physiological roles in different bacterial systems, recent studies suggest a general role for trans-translation in monitoring protein folding and perhaps other co-translational processes. This review will focus on these new hypotheses and the data that support them.
Collapse
|
17
|
Bugaeva EY, Surkov S, Golovin AV, Ofverstedt LG, Skoglund U, Isaksson LA, Bogdanov AA, Shpanchenko OV, Dontsova OA. Structural features of the tmRNA-ribosome interaction. RNA (NEW YORK, N.Y.) 2009; 15:2312-2320. [PMID: 19861420 PMCID: PMC2779675 DOI: 10.1261/rna.1584209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.
Collapse
MESH Headings
- Base Sequence
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Elizaveta Y Bugaeva
- Belozersky Institute, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Janssen BD, Hayes CS. Kinetics of paused ribosome recycling in Escherichia coli. J Mol Biol 2009; 394:251-67. [PMID: 19761774 DOI: 10.1016/j.jmb.2009.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/09/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022]
Abstract
The bacterial tmRNA.SmpB system recycles stalled translation complexes in a process termed 'ribosome rescue.' tmRNA.SmpB specifically recognizes ribosomes that are paused at or near the 3' end of truncated mRNA; therefore, nucleolytic mRNA processing is required before paused ribosomes can be rescued from full-length transcripts. Here, we examine the recycling of ribosomes paused on both full-length and truncated mRNAs. Peptidyl-tRNAs corresponding to each paused translation complex were identified, and their turnover kinetics was used to estimate the half-lives of paused ribosomes in vivo. Ribosomes were paused at stop codons on full-length mRNA using a nascent peptide motif that interferes with translation termination and elicits tmRNA.SmpB activity. Peptidyl-tRNA turnover from these termination-paused ribosomes was slightly more rapid in tmRNA(+) cells (T(1/2)=22+/-2.2 s) than in DeltatmRNA cells (T(1/2)=32+/-1.6 s). Overexpression of release factor (RF) 1 greatly accelerated peptidyl-tRNA turnover from termination-paused ribosomes in both tmRNA(+) and DeltatmRNA cells, whereas other termination factors had little or no effect on recycling. In contrast to inefficient translation termination, ribosome recycling from truncated transcripts lacking in-frame stop codons was dramatically accelerated by tmRNA.SmpB. However, peptidyl-tRNA still turned over from nonstop-paused ribosomes at a significant rate (t(1/2)=61+/-7.3 s) in DeltatmRNA cells. Overexpression of RF-1, RF-3, and ribosome recycling factor in DeltatmRNA cells failed to accelerate ribosome recycling from nonstop mRNA. These results indicate that tmRNA.SmpB activity is rate limited by mRNA cleavage, and that RF-3 and ribosome recycling factor do not constitute a tmRNA-independent rescue pathway, as previously suggested. Peptidyl-tRNA turnover from nonstop-paused ribosomes in DeltatmRNA cells suggests the existence of another uncharacterized ribosome rescue pathway.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
19
|
Wower IK, Zwieb C, Wower J. Escherichia coli tmRNA lacking pseudoknot 1 tags truncated proteins in vivo and in vitro. RNA (NEW YORK, N.Y.) 2009; 15:128-137. [PMID: 19001120 PMCID: PMC2612775 DOI: 10.1261/rna.1192409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
Transfer-messenger RNA (tmRNA) and protein SmpB facilitate trans-translation, a quality-control process that tags truncated proteins with short peptides recognized by a number of proteases and recycles ribosomes stalled at the 3' end of mRNA templates lacking stop codons. The tmRNA molecule is a hybrid of tRNA- and mRNA-like domains that are usually connected by four pseudoknots (pk1-pk4). Replacement of pk1 with a single-stranded RNA yields pk1L, a mutant tmRNA that tags truncated proteins very poorly in vitro but very efficiently in vivo. However, deletion of the whole pk1 is deleterious for protein tagging. In contrast, deletion of helix 4 yields Deltah4, a fully functional tmRNA derivative containing a single hairpin instead of pk1. Further deletions in the pk1 segment yield two subclasses of mutant tmRNAs that are unable to tag truncated proteins, but some of them bind to stalled ribosomes. Our studies demonstrate that pk1 is not essential for tmRNA functions but contributes to the stability of the tmRNA structure. Our studies also indicate that the length of this RNA segment is critical for both tmRNA binding to the ribosome and resumption of translation.
Collapse
Affiliation(s)
- Iwona K Wower
- Department of Animal Sciences, Auburn University, Auburn, Alabama 36849-5415, USA
| | | | | |
Collapse
|
20
|
Abstract
The trans-translation mechanism is a key component of multiple quality control pathways in bacteria that ensure proteins are synthesized with high fidelity in spite of challenges such as transcription errors, mRNA damage, and translational frameshifting. trans-Translation is performed by a ribonucleoprotein complex composed of tmRNA, a specialized RNA with properties of both a tRNA and an mRNA, and the small protein SmpB. tmRNA-SmpB interacts with translational complexes stalled at the 3' end of an mRNA to release the stalled ribosomes and target the nascent polypeptides and mRNAs for degradation. In addition to quality control pathways, some genetic regulatory circuits use trans-translation to control gene expression. Diverse bacteria require trans-translation when they execute large changes in their genetic programs, including responding to stress, pathogenesis, and differentiation.
Collapse
Affiliation(s)
- Kenneth C Keiler
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
21
|
Bugaeva EY, Shpanchenko OV, Felden B, Isaksson LA, Dontsova OA. One SmpB molecule accompanies tmRNA during its passage through the ribosomes. FEBS Lett 2008; 582:1532-6. [PMID: 18396159 DOI: 10.1016/j.febslet.2008.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/19/2008] [Accepted: 03/21/2008] [Indexed: 11/17/2022]
Abstract
tmRNA and SmpB are the main participants of trans-translation, a process which rescues the ribosome blocked during translation of non-stop mRNA. While a one-to-one stoichiometry of tmRNA to the ribosome is generally accepted, the number of SmpB molecules in the complex is still under question. We have isolated tmRNA-ribosome complexes blocked at different steps of the tmRNA path through the ribosome and analyzed the stoichiometry of the complexes. Ribosome, tmRNA and SmpB were found in equimolar amount in the tmRNA-ribosome complexes stopped at the position of the 2nd, 4th, 5th or the 11th codons of the coding part of the tmRNA.
Collapse
Affiliation(s)
- Elizaveta Y Bugaeva
- Belozersky Institute, Build. A, Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
22
|
Richards J, Sundermeier T, Svetlanov A, Karzai AW. Quality control of bacterial mRNA decoding and decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:574-82. [PMID: 18342642 DOI: 10.1016/j.bbagrm.2008.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
Abstract
Studies in eukaryotes and prokaryotes have revealed that gene expression is not only controlled through altering the rate of transcription but also through varying rates of translation and mRNA decay. Indeed, the expression level of a protein is strongly affected by the steady state level of its mRNA. RNA decay can, along with transcription, play an important role in regulating gene expression by fine-tuning the steady state level of a given transcript and affecting its subsequent decoding during translation. Alterations in mRNA stability can in turn have dramatic effects on cell physiology and as a consequence the fitness and survival of the organism. Recent evidence suggests that mRNA decay can be regulated in response to environmental cues in order to enable the organism to adapt to its changing surroundings. Bacteria have evolved unique post transcriptional control mechanisms to enact such adaptive responses through: 1) general mRNA decay, 2) differential mRNA degradation using small non-coding RNAs (sRNAs), and 3) selective mRNA degradation using the tmRNA quality control system. Here, we review our current understanding of these molecular mechanisms, gleaned primarily from studies of the model gram negative organism Escherichia coli, that regulate the stability and degradation of normal and defective transcripts.
Collapse
Affiliation(s)
- Jamie Richards
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases of Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
23
|
Abstract
In bacteria, ribosomes stalled at the 3'-end of nonstop or defective mRNAs are rescued by the action of a specialized ribonucleoprotein complex composed of tmRNA and SmpB protein in a process known as trans-translation; for recent reviews see Dulebohn et al. [2007], Keiler [2007], and Moore and Sauer [2007]. tmRNA is a bifunctional RNA that acts as both a tRNA and an mRNA. SmpB-bound tmRNA is charged with alanine by alanyl-tRNA synthetase and recognized by EF-Tu (GTP). The quaternary complex of tmRNA-SmpB-EF-Tu and GTP recognizes stalled ribosomes and transfers the nascent polypeptide to the tRNA-like domain of tmRNA. A specialized reading frame within tmRNA is then engaged as a surrogate mRNA to append a 10 amino acid (ANDENYALAA) tag to the C-terminus of the nascent polypeptide. A stop codon at the end of the tmRNA reading frame then facilitates normal termination and recycling of the translation machinery. Through this surveillance mechanism, stalled ribosomes are rescued, and nascent polypeptides bearing the C-terminal tmRNA-tag are directed for proteolysis. Several proteases (ClpXP, ClpAP, Lon, FtsH, and Tsp) are known to be involved in the degradation of tmRNA-tagged proteins (Choy et al., 2007; Farrell et al., 2005; Gottesman et al., 1998; Herman et al., 1998, 2003; Keiler et al., 1996). In addition to its ribosome rescue and peptide tagging activities, trans-translation also facilitates the selective decay of nonstop mRNAs in a process that is dependent on the activities of SmpB protein, tmRNA, and the 3' to 5'-exonuclease, RNase R (Mehta et al., 2006; Richards et al., 2006; Yamamoto et al., 2003). Here, we describe methods and strategies for the purification of tmRNA, SmpB, Lon, and RNase R from Escherichia coli that are likely to be applicable to other bacterial species. Protocols for the purification of the Clp proteases, Tsp, and FtsH, as well as EF-Tu and other essential E. coli translation factors may be found elsewhere (Joshi et al., 2003; Kihara et al., 1996; Makino et al., 1999; Maurizi et al., 1990; Shotland et al., 2000). In addition, we present biochemical and genetic assays to study the various aspects of the trans-translation mechanism.
Collapse
|