1
|
Pellowe AS, Wu MJ, Kang TY, Chung TD, Ledesma-Mendoza A, Herzog E, Levchenko A, Odell I, Varga J, Gonzalez AL. TGF-β1 Drives Integrin-Dependent Pericyte Migration and Microvascular Destabilization in Fibrotic Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1171-1184. [PMID: 38548268 PMCID: PMC11220919 DOI: 10.1016/j.ajpath.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor β1 (TGF-β1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-β1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-β1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-β1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tracy D Chung
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Erica Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Ian Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, Meador C, Correll K, Lili LN, Roybal HM, Rose KA, Ding S, Barnthaler T, Briones N, DeIuliis G, Schupp JC, Li Q, Omote N, Aschner Y, Sharma L, Kopf KW, Magnusson B, Hicks R, Backmark A, Dela Cruz CS, Rosas I, Cousens LP, Dudley JT, Kaminski N, Downey GP. Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1463-1479. [PMID: 35998281 PMCID: PMC9757097 DOI: 10.1164/rccm.202010-3832oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-β (adenovirus transforming growth factor-β) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-β-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-β, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christine Becker
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G. Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Xing Wang
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aurelien Justet
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Service de Pneumologie, UNICAEN, Normandie University, Caen, France
| | - Taylor Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin Readhead
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kelly Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Loukia N. Lili
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Helen M. Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kadi-Ann Rose
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuizi Ding
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas Barnthaler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Section of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Qin Li
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Norihito Omote
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Katrina W. Kopf
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Björn Magnusson
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- BioPharmaceuticals Research & Development Cell Therapy, Research, and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Anna Backmark
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ivan Rosas
- Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Leslie P. Cousens
- Emerging Innovations, Discovery Sciences, Research & Development, AstraZeneca, Boston, Massachusetts
| | - Joel T. Dudley
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
3
|
Sauge E, Pechkovsky D, Atmuri NDP, Tehrani AY, White Z, Dong Y, Cait J, Hughes M, Tam A, Donen G, Yuen C, Walker MJA, McNagny KM, Sin DD, Ciufolini MA, Bernatchez P. Losartan metabolite EXP3179 is a unique blood pressure-lowering AT1R antagonist with direct, rapid endothelium-dependent vasoactive properties. Vascul Pharmacol 2022; 147:107112. [PMID: 36179789 DOI: 10.1016/j.vph.2022.107112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE Losartan is an anti-hypertensive angiotensin II (ANGII) type 1 receptor (AT1R) blocker (ARB) with many unexpected therapeutic properties, even in non-blood pressure (BP)-related diseases. Administered as a prodrug, losartan undergoes serial metabolism into EXP3179, a metabolite alleged to lack AT1R-blocking properties, and EXP3174, the dominant AT1R antagonist. Having observed that losartan can decrease vascular tone in mice with low AT1R expression and inhibit Marfan aortic widening at very high doses, we investigated whether EXP3179 may have unique, AT1R-independent effects on vascular tone and endothelial function. EXPERIMENTAL APPROACH We compared the AT1R blocking capabilities of EXP3179 and EXP3174 using AT1R-expressing cell lines. Their BP lowering and vasoactive properties were studied in normal, hypertensive and transgenic rodents, and ex vivo wire myography. KEY RESULTS We observed that both EXP3179 and EXP3174 can fully block (100%) AT1R signaling in vitro and significantly decrease BP in normotensive and spontaneously hypertensive rats. Only EXP3179 prevented PE-induced contraction by up to 65% (p < 0.01) in L-NAME and endothelium removal-sensitive fashion. Use of transgenic mice revealed that these effects involve the eNOS/caveolin-1 axis and the endothelium-dependent hyperpolarization factor (EDHF). CONCLUSION AND IMPLICATIONS We provide direct structure-activity evidence that EXP3179 is a BP-lowering AT1R blocker with unique endothelial function-enhancing properties not shared with losartan or EXP3174. The major pharmacological effects of losartan in patients are therefore likely more complex than simple blockade of AT1R by EXP3174, which helps rationalize its therapeutic and prophylactic properties, especially at very high doses. Reports relying on EXP3179 as an AT1R-independent losartan analogue may require careful re-evaluation.
Collapse
Affiliation(s)
- Elodie Sauge
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Dmitri Pechkovsky
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - N D Prasad Atmuri
- Department of Chemistry, University of British Columbia (UBC), Vancouver, Canada
| | - Arash Y Tehrani
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Ying Dong
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada
| | - Jessica Cait
- Biomedical Research Centre, University of British Columbia (UBC), Vancouver, Canada
| | - Michael Hughes
- Biomedical Research Centre, University of British Columbia (UBC), Vancouver, Canada
| | - Anthony Tam
- Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Graham Donen
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Christopher Yuen
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Michael J A Walker
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia (UBC), Vancouver, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia (UBC), Vancouver, Canada.
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, Canada; Centre for Heart Lung Innovation, University of British Columbia (UBC), Vancouver, Canada.
| |
Collapse
|
4
|
Ma B, Ni N, Shao W, Xu J, Ji J, Luo M. Bit1 is involved in regulation between integrin and TGFβ signaling in lens epithelial cells. Cell Cycle 2022; 21:2283-2297. [PMID: 35737738 PMCID: PMC9586669 DOI: 10.1080/15384101.2022.2092818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/03/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022] Open
Abstract
Bit1, as an integrin-specific effector, is specifically expressed in lens epithelial cells (LECs) and may be essential to maintain the normal function of LECs. The present study investigated the function of Bit1 and its regulatory mechanism in LECs. Knockdown of Bit1 was mediated by a lentivirus with a specific short-hairpin RNA against Bit1 in SRA01/04 cells. Cell proliferation ability was measured by CCK-8 assay. Cell migration was examined by transwell and wound-healing assays. The effect of Bit1 knockdown on genome-wide expression patterns was studied via a GeneChip® PrimeView™ Human Gene Expression Array. Based on the ingenuity pathway analysis (IPA), Bit1's regulation of target pathways and genes was verified by real-time qPCR and Western blotting. Bit1 knockdown inhibited proliferation, migration, and regulated cell cycle and apoptosis of LECs. Microarray gene expression analysis and IPA assays revealed that integrin and TGFβ signaling pathways were remarkably impacted by Bit1 expression. FAK, PAK2, ITGA5, and ITGB1 were identified as core node molecules under the control of Bit1. Bit1 participates in integrin and TGFβ signaling via regulating downstream FAK and PAK2 and subsequently affecting EMT-related gene expression including ITGA5, ITGB1, and αSMA. In conclusion, Bit1 plays as an important role in the regulation between integrin and TGFβ signaling, which affects cell survival, migration, and EMT of LECs.
Collapse
Affiliation(s)
- Bo Ma
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanyu Shao
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiali Ji
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
6
|
Wilson SE. TGF beta -1, -2 and -3 in the modulation of fibrosis in the cornea and other organs. Exp Eye Res 2021; 207:108594. [PMID: 33894227 DOI: 10.1016/j.exer.2021.108594] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
The TGF beta-1, -2 and -3 isoforms are transcribed from different genes but bind to the same receptors and signal through the same canonical and non-canonical signal transduction pathways. There are numerous regulatory mechanisms controlling the action of each isoform that include the organ-specific cells producing latent TGF beta growth factors, multiple effectors that activate the isoforms, ECM-associated SLRPs and basement membrane components that modulate the activity and localization of the isoforms, other interactive cytokine-growth factor receptor systems, such as PDGF and CTGF, TGF beta receptor expression on target cells, including myofibroblast precursors, receptor binding competition, positive and negative signal transduction effectors, and transcription and translational regulatory mechanisms. While there has long been the view that TGF beta-1and TGF beta-2 are pro-fibrotic, while TGF beta-3 is anti-fibrotic, this review suggests that view is too simplistic, at least in adult tissues, since TGF beta-3 shares far more similarities in its modulation of fibrotic gene expression with TGF beta-1 and TGF beta-2, than it does differences, and often the differences are subtle. Rather, TGF beta-3 should be seen as a fibro-modulatory partner to the other two isoforms that modulates a nuanced and better controlled response to injury. The complex interplay between the three isoforms and numerous interactive proteins, in the context of the cellular milieu, controls regenerative non-fibrotic vs. fibrotic healing in a response to injury in a particular organ, as well as the resolution of fibrosis, when that occurs.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Du C, Li Y, Xia X, Du E, Lin Y, Lian J, Ren C, Li S, Wei W, Qin Y. Identification of a novel collagen-like peptide by high-throughput screening for effective wound-healing therapy. Int J Biol Macromol 2021; 173:541-553. [PMID: 33493562 DOI: 10.1016/j.ijbiomac.2021.01.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Tissue regeneration and wound healing are still serious clinical complications globally and lack satisfactory cures. Inspired by the impressive regeneration ability of the post-injury earthworms and their widely accepted medicinal properties, we screened and identified a novel collagen-like peptide from the amputated earthworms using high-throughput techniques, including transcriptomics, proteomics, and mass spectrum. The identified collagen-like peptide col4a1 was cloned and expressed to comprehensively investigate the wound healing effect and underlying mechanism. It exerted significant effects on wound healing both in vitro and in vivo, including enhanced viability, proliferation, migration of fibroblasts, granulation, and collagen deposition. Moreover, the col4a1 functioned via binding with integrin α2β1 and upregulating the RAS/MAPK signaling pathway. This work demonstrates that the novel collagen-like peptide col4a1 obtained from the amputated earthworms enables enhanced wound healing and provides new opportunities for wound care.
Collapse
Affiliation(s)
- Chunyu Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Xiaoling Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Erxia Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yuhua Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Junyi Lian
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
8
|
Aujla PK, Kassiri Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell Signal 2020; 78:109869. [PMID: 33278559 DOI: 10.1016/j.cellsig.2020.109869] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (cFBs) have emerged as a heterogenous cell population. Fibroblasts are considered the main cell source for synthesis of the extracellular matrix (ECM) and as such a dysregulation in cFB function, activity, or viability can lead to disrupted ECM structure or fibrosis. Fibrosis can be initiated in response to different injuries and stimuli, and can be reparative (beneficial) or reactive (damaging). FBs need to be activated to myofibroblasts (MyoFBs) which have augmented capacity in synthesizing ECM proteins, causing fibrosis. In addition to the resident FBs in the myocardium, a number of other cells (pericytes, fibrocytes, mesenchymal, and hematopoietic cells) can transform into MyoFBs, further driving the fibrotic response. Multiple molecules including hormones, cytokines, and growth factors stimulate this process leading to generation of activated MyoFBs. Contribution of different cell types to cFBs and MyoFBs can result in an exponential increase in the number of MyoFBs and an accelerated pro-fibrotic response. Given the diversity of the cell sources, and the array of interconnected signalling pathways that lead to formation of MyoFBs and subsequently fibrosis, identifying a single target to limit the fibrotic response in the myocardium has been challenging. This review article will delineate the importance and relevance of fibroblast heterogeneity in mediating fibrosis in different models of heart failure and will highlight important signalling pathways implicated in myofibroblast activation.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Aschner Y, Nelson M, Brenner M, Roybal H, Beke K, Meador C, Foster D, Correll KA, Reynolds PR, Anderson K, Redente EF, Matsuda J, Riches DWH, Groshong SD, Pozzi A, Sap J, Wang Q, Rajshankar D, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2020; 319:L294-L311. [PMID: 32491951 PMCID: PMC7473933 DOI: 10.1152/ajplung.00235.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-β (TGF-β), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-β signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-β signaling and downstream TGF-β-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-β-induced tyrosine phosphorylation of TGF-β type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-β-dependent pathway signaling in lung fibroblasts.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Matthew Brenner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Helen Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelly A Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Paul R Reynolds
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
| | - Jennifer Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Steve D Groshong
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jan Sap
- Epigenetics and Cell Fate, Université Paris, Paris, France
| | - Qin Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| |
Collapse
|
10
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
11
|
Shochet GE, Brook E, Bardenstein-Wald B, Grobe H, Edelstein E, Israeli-Shani L, Shitrit D. Integrin alpha-5 silencing leads to myofibroblastic differentiation in IPF-derived human lung fibroblasts. Ther Adv Chronic Dis 2020; 11:2040622320936023. [PMID: 32637060 PMCID: PMC7315658 DOI: 10.1177/2040622320936023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background and objective: The term ‘fibroblast’ covers a heterogeneous cell population in idiopathic pulmonary fibrosis (IPF). The fibroblasts are considered as main effector cells, because they promote disease progression by releasing exaggerated amounts of extracellular matrix proteins and modifying cell microenvironment. As IPF-derived human lung fibroblasts (IPF-HLFs) were shown to express higher levels of integrin alpha-5 (ITGA5) than normal derived HLFs (N-HLFs), we explored the importance of ITGA5 to IPF progression. Methods: IPF-HLF and N-HLF primary cultures were established. ITGA5 was silenced by specific small interfering RNA (siRNA)s and its effects on cell phenotype (e.g. cell number, size, cell death, migration) and gene expression (e.g. RNA sequencing, quantitative polymerase chain reaction [qPCR], western blot and immunofluorescence) were tested. Specific integrin expression was evaluated in IPF patient formalin-fixed paraffin embedded sections by immunohistochemistry (IHC). Results: ITGA5-silencing resulted in reduced IPF-HLF proliferation rates and cell migration (p < 0.05), as well as elevated cell death. transforming growth factor beta (TGF-β) targets (e.g. Fibronectin (FN1), Matrix metalloproteinase 2 (MMP2), TGFB1) were surprisingly elevated following ITGA5 silencing (p < 0.05). N-HLFs, however, were only slightly affected. Interestingly, ITGA5-silenced cells differentiated into myofibroblasts (e.g. elevated alpha-smooth muscle actin [αSMA], collagen1a, large cell size). RNA-sequencing revealed that following differentiation on 3D-Matrigel for 24 h, ITGA5 levels are reduced while integrin alpha-8 (ITGA8) are elevated in IPF-HLFs. This was confirmed in IPF patients, in which ITGA5 was mainly found in fibroblastic foci, while ITGA8 was mostly observed in old fibrous tissue in the same patient. Conclusions: ITGA5 expression facilitates a more aggressive proliferative phenotype. Downregulation of this integrin results in myofibroblastic differentiation, which is accompanied by elevated ITGA8. Specific targeting could present a therapeutic benefit.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Medicine Department, Meir Medical Department, 59 Tchernichovsky St., Kfar Saba 44281, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabetha Brook
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Hanna Grobe
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Edelstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - Lilach Israeli-Shani
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Shitrit
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Src family kinases and pulmonary fibrosis: A review. Biomed Pharmacother 2020; 127:110183. [PMID: 32388241 DOI: 10.1016/j.biopha.2020.110183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 01/15/2023] Open
Abstract
Src family kinases (SFKs) is a non-receptor protein tyrosine kinases family. They are crucial in signal transduction and regulation of various cell biological processes, such as proliferation, differentiation and apoptosis. The role and mechanism of SFKs in tumorigenesis have been widely studied. However, more and more studies have also shown that SFKs are involved in the pathogenesis of pulmonary fibrosis (PF). Myofibroblasts activation, epithelial-mesenchymal transition and inflammation response are three pivotal pathomechanisms in the development of pulmonary fibrotic disease. In this article, we summarize the roles of SFKs in these biological processes. SFKs play a crucial role in the pathogenesis of PF, making it a promising molecular target for the treatment of these diseases. We will pay special attention to the role of SFKs in idiopathic pulmonary fibrosis (IPF), and also emphasize the important findings in other pulmonary fibrotic diseases because their pathological mechanisms are similar. We will then describe the translation results obtained with SFKs inhibitors in basic and clinical studies.
Collapse
|
13
|
Kiepas A, Voorand E, Senecal J, Ahn R, Annis MG, Jacquet K, Tali G, Bisson N, Ursini-Siegel J, Siegel PM, Brown CM. The SHCA adapter protein cooperates with lipoma-preferred partner in the regulation of adhesion dynamics and invadopodia formation. J Biol Chem 2020; 295:10535-10559. [PMID: 32299913 DOI: 10.1074/jbc.ra119.011903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada
| | - Ryuhjin Ahn
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada
| | - George Tali
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada.,PROTEO Network and Cancer Research Centre, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Oncology, McGill University, Montréal H4A 3T2, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada .,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada .,Advanced BioImaging Facility (ABIF), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
14
|
Role of fibrillin-2 in the control of TGF-β activation in tumor angiogenesis and connective tissue disorders. Biochim Biophys Acta Rev Cancer 2020; 1873:188354. [PMID: 32119940 DOI: 10.1016/j.bbcan.2020.188354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Fibrillins constitute a family of large extracellular glycoproteins which multimerize to form microfibrils, an important structure in the extracellular matrix. It has long been assumed that fibrillin-2 was barely present during postnatal life, but it is now clear that fibrillin-2 molecules form the structural core of microfibrils, and are masked by an outer layer of fibrillin-1. Mutations in fibrillins give rise to heritable connective tissue disorders, including Marfan syndrome and congenital contractural arachnodactyly. Fibrillins also play an important role in matrix sequestering of members of the transforming growth factor-β family, and in context of Marfan syndrome excessive TGF-β activation has been observed. TGF-β activation is highly dependent on integrin binding, including integrin αvβ8 and αvβ6, which are upregulated upon TGF-β exposure. TGF-β is also involved in tumor progression, metastasis, epithelial-to-mesenchymal transition and tumor angiogenesis. In several highly vascularized types of cancer such as hepatocellular carcinoma, a positive correlation was found between increased TGF-β plasma concentrations and tumor vascularity. Interestingly, fibrillin-1 has a higher affinity to TGF-β and, therefore, has a higher capacity to sequester TGF-β compared to fibrillin-2. The previously reported downregulation of fibrillin-1 in tumor endothelium affects the fibrillin-1/fibrillin-2 ratio in the microfibrils, exposing the normally hidden fibrillin-2. We postulate that fibrillin-2 exposure in the tumor endothelium directly stimulates tumor angiogenesis by influencing TGF-β sequestering by microfibrils, leading to a locally higher active TGF-β concentration in the tumor microenvironment. From a therapeutic perspective, fibrillin-2 might serve as a potential target for future anti-cancer therapies.
Collapse
|
15
|
Filla MS, Faralli JA, Desikan H, Peotter JL, Wannow AC, Peters DM. Activation of αvβ3 Integrin Alters Fibronectin Fibril Formation in Human Trabecular Meshwork Cells in a ROCK-Independent Manner. Invest Ophthalmol Vis Sci 2020; 60:3897-3913. [PMID: 31529121 PMCID: PMC6750892 DOI: 10.1167/iovs.19-27171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Fibronectin fibrillogenesis is an integrin-mediated process that may contribute to the pathogenesis of primary open-angle glaucoma (POAG). Here, we examined the effects of αvβ3 integrins on fibrillogenesis in immortalized TM-1 cells and human trabecular meshwork (HTM) cells. Methods TM-1 cells overexpressing wild-type β3 (WTβ3) or constitutively active β3 (CAβ3) integrin subunits were generated. Control cells were transduced with an empty vector (EV). Deoxycholic acid (DOC) extraction of monolayers, immunofluorescence microscopy, and On-cell western analyses were used to determine levels of fibronectin fibrillogenesis and fibronectin fibril composition (EDA+ and EDB+ fibronectins) and conformation. αvβ3 and α5β1 Integrin levels were determined using fluorescence-activated cell sorting (FACS). Cilengitide and an adenovirus vector expressing WTβ3 or CAβ3 integrin subunits were used to examine the role of αvβ3 integrin in HTM cells. The role of the canonical α5β1 integrin–mediated pathway in fibrillogenesis was determined using the fibronectin-binding peptide FUD, the β1 integrin function-blocking antibody 13, and the Rho kinase (ROCK) inhibitor Y27632. Results Activation of αvβ3 integrin enhanced the assembly of fibronectin into DOC-insoluble fibrils in both TM-1 and HTM cells. The formation of fibronectin fibrils was dependent on α5β1 integrin and could be inhibited by FUD. However, fibrillogenesis was unaffected by Y27632. Fibrils assembled by CAβ3 cells also contained high levels of EDA+ and EDB+ fibronectin and fibronectin that was stretched. Conclusions αvβ3 Integrin signaling altered the deposition and structure of fibronectin fibrils using a β1 integrin/ROCK-independent mechanism. Thus, αvβ3 integrins could play a significant role in altering the function of fibronectin matrices in POAG.
Collapse
Affiliation(s)
- Mark S Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer A Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Harini Desikan
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Abigail C Wannow
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
16
|
Lin Y, Zhang Y, Yu H, Tian R, Wang G, Li F. Identification of unique key genes and miRNAs in latent tuberculosis infection by network analysis. Mol Immunol 2019; 112:103-114. [PMID: 31082644 DOI: 10.1016/j.molimm.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M.tb). New cases are now mainly caused by the progression of latent tuberculosis infection (LTBI). Thus, methods to diagnose and treat LTBI are urgently needed to prevent the development of active TB in infected individuals and the subsequent spread of the disease. In this study, a systems biology approach was utilized to obtain numerous microarray data sets for mRNAs and microRNAs (miRNAs) expressed in the peripheral blood mononuclear cells (PBMCs) of TB patients and individuals with LTBI. Within these data sets, we identified the differentially expressed mRNAs and miRNAs and further investigated which differentially expressed genes and miRNAs were uniquely expressed during LTBI. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was employed to analyze the functional annotations and pathway classifications of the identified genes. To further understand the unique miRNA-gene regulatory network of LTBI, we constructed a protein-protein interaction (PPI) network for the targeted genes. The PPI network included 39 genes that were differentially and uniquely expressed in PBMCs of individuals with LTBI, and KEGG pathway enrichment analysis showed that these genes were predominantly involved in the PI3K-Akt signaling pathway, which plays an important role in chronic inflammation. DIANA TOOLs-mirPath analysis revealed that the identified miRNAs in the miRNA-gene regulatory network for LTBI were mainly associated with the Hippo signaling pathway, which functions in the development of inflammation. Quantitative real-time PCR verified the up expression of hsa-miR-212-3p and its predicted target gene -MAPK1 which had low expression and was a major component of the PPI network, and MAPK1 expression was correlated with the clinicopathological characteristics of LTBI by receiver operating characteristic (ROC) curve analysis. Therefore, MAPK1 has potential to be a new investigable marker during LTBI, which merits our further study and solution. The unique aberrant miRNA-gene regulatory network and the related PPI network identified in this study provide insight into the molecular mechanisms of the immune response to LTBI, and thus, may aid in the development of a novel treatment strategy.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Yuwei Zhang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Huiyuan Yu
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Ruonan Tian
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China; The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, Jilin, 130021, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China; The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, Jilin, 130021, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, Jilin, 130021, China; Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, Jilin, 130021, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.
| |
Collapse
|
17
|
Wu CH, Ko JL, Pan HH, Chiu LY, Kang YT, Hsiao YP. Ni-induced TGF-β signaling promotes VEGF-a secretion via integrin β3 upregulation. J Cell Physiol 2019; 234:22093-22102. [PMID: 31066035 DOI: 10.1002/jcp.28772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Nickel compounds are associated with lung and skin cancer incidence increase and accumulation of nickel in the body contributes to carcinogenesis. Upregulation of certain integrins in the primary tumor is associated with cancer metastasis and poor prognosis. However, the molecular mechanisms of nickel-induced cancer metastasis are still unclear. The purpose of the present study was to investigate the effects of nickel chloride (NiCl2 ) on the progression of cancer during metastasis. The results of showed that NiCl2 induces the expression of integrin β3 mRNA and protein in a dose- and time-dependent manner. Inhibition of integrin αvβ3 activation by ITGB3 ligand mimetics and GR144053, as well as downregulation of ITGB3 by lentiviral shRNA gene silencing, diminished NiCl2 -induced secretion of vascular endothelial growth factor-a (VEGF-a). Furthermore, pretreatment with type I TGF-β receptor inhibitor, SB525334, suppressed the expression of ITGB3 at cell surface and secretion of VEGF-a in NiCl2 -treated cells. In conclusion, NiCl2 induces the expression of ITGB3 through TGF-β signaling activation, followed by increasing VEGF-a secretion, revealing a novel role for ITGB3 in nickel compound-induced cancer metastasis and tumor angiogenesis.
Collapse
Affiliation(s)
- Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsien Pan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Liao SJ, Luo J, Li D, Zhou YH, Yan B, Wei JJ, Tu JC, Li YR, Zhang GM, Feng ZH. TGF-β1 and TNF-α synergistically induce epithelial to mesenchymal transition of breast cancer cells by enhancing TAK1 activation. J Cell Commun Signal 2019; 13:369-380. [PMID: 30739244 DOI: 10.1007/s12079-019-00508-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
TGF-β1 is a main inducer of epithelial to mesenchymal transition (EMT). However, many breast cancer cells are not sensitive to the EMT induction by TGF-β1 alone. So far, the mechanisms underlying the induction of TGF-β1-insensitive breast cancer cells remains unclear. Here we report that TNF-α can induce EMT and invasiveness of breast cancer cells which are insensitive to TGF-β1. Intriguingly, TGF-β1 could cooperate with TNF-α to promote the EMT and invasiveness of breast cancer cells. The prolonged co-stimulation with TGF-β1 and TNF-α could enhance the sustained activation of Smad2/3, p38 MAPK, ERK, JNK and NF-κB pathways by enhancing the activation of TAK1, which was mediated by the gradually up-regulated TβRs. Except for JNK, all of these pathways were required for the effects of TGF-β1 and TNF-α. Importantly, the activation of p38 MAPK and ERK pathways resulted in a positive feed-back effect on TAK1 activation by up-regulating the expression of TβRs, favoring the activation of multiple signaling pathways. Moreover, SLUG was up-regulated and required for the TGF-β1/TNF-α-induced EMT and invasiveness. In addition, SLUG could also enhance the activation of signaling pathways by promoting TβRII expression. These findings suggest that the up-regulation of TβRs contributes to the sustained activation of TAK1 induced by TGF-β1/TNF-α and the following activation of multiple signaling pathways, resulting in EMT and invasiveness of breast cancer cells.
Collapse
Affiliation(s)
- Sheng-Jun Liao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China. .,Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China.
| | - Jing Luo
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuan-Hong Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Bin Yan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing-Jing Wei
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jian-Cheng Tu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yi-Rong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Wan H, Xie T, Xu Q, Hu X, Xing S, Yang H, Gao Y, He Z. Thy-1 depletion and integrin β3 upregulation-mediated PI3K-Akt-mTOR pathway activation inhibits lung fibroblast autophagy in lipopolysaccharide-induced pulmonary fibrosis. J Transl Med 2019; 99:1636-1649. [PMID: 31249375 PMCID: PMC7102294 DOI: 10.1038/s41374-019-0281-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced autophagy inhibition in lung fibroblasts is closely associated with the activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-Akt-mTOR) pathway. However, the underlying mechanism remains unknown. In this study, we demonstrated that LPS activated the PI3K-Akt-mTOR pathway and inhibited lung fibroblast autophagy by depleting thymocyte differentiation antigen-1 (Thy-1) and upregulating integrin β3 (Itgb3). Challenge of the human lung fibroblast MRC-5 cell line with LPS resulted in significant upregulation of integrin β3, activation of the PI3K-Akt-mTOR pathway and inhibition of autophagy, which could be abolished by integrin β3 silencing by specific shRNA or treatment with the integrin β3 inhibitor cilengitide. Meanwhile, LPS could inhibit Thy-1 expression accompanied with PI3K-Akt-mTOR pathway activation and lung fibroblast autophagy inhibition; these effects could be prevented by Thy-1 overexpression. Meanwhile, Thy-1 downregulation with Thy-1 shRNA could mimic the effects of LPS, inducing the activation of PI3K-Akt-mTOR pathway and inhibiting lung fibroblast autophagy. Furthermore, protein immunoprecipitation analysis demonstrated that LPS reduced the binding of Thy-1 to integrin β3. Thy-1 downregulation, integrin β3 upregulation and autophagy inhibition were also detected in a mouse model of LPS-induced pulmonary fibrosis, which could be prohibited by intratracheal injection of Thy-1 overexpressing adeno-associated virus (AAV) or intraperitoneal injection of the integrin β3 inhibitor cilengitide. In conclusion, this study demonstrated that Thy-1 depletion and integrin β3 upregulation are involved in LPS-induced pulmonary fibrosis, and may serve as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hanxi Wan
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Tingting Xie
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Qiaoyi Xu
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Xiaoting Hu
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Shunpeng Xing
- 0000 0004 0368 8293grid.16821.3cDepartment of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127 Shanghai, China
| | - Hao Yang
- 0000000123704535grid.24516.34Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433 Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127, Shanghai, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 200127, Shanghai, China.
| |
Collapse
|
20
|
Lee MJ, Lee D, Jung HS. Wound healing mechanism in Mongolian gerbil skin. Histochem Cell Biol 2018; 151:229-238. [DOI: 10.1007/s00418-018-1752-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
21
|
Chen CA, Chang JM, Chang EE, Chen HC, Yang YL. TGF-β1 modulates podocyte migration by regulating the expression of integrin-β1 and -β3 through different signaling pathways. Biomed Pharmacother 2018; 105:974-980. [DOI: 10.1016/j.biopha.2018.06.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
|
22
|
Knüppel L, Heinzelmann K, Lindner M, Hatz R, Behr J, Eickelberg O, Staab-Weijnitz CA. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis. Respir Res 2018; 19:67. [PMID: 29673351 PMCID: PMC5909279 DOI: 10.1186/s12931-018-0768-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Methods Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. Results FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. Conclusions These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.
Collapse
Affiliation(s)
- Larissa Knüppel
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany.,Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jürgen Behr
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany.,Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany.,Colorado Anschutz Medical Campus, Pulmonary and Critical Care Medicine University, Denver, Colorado, USA
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany. .,Member of the German Center of Lung Research (DZL), Munich, Germany.
| |
Collapse
|
23
|
Lamprecht S, Sigal-Batikoff I, Shany S, Abu-Freha N, Ling E, Delinasios GJ, Moyal-Atias K, Delinasios JG, Fich A. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts. Cancers (Basel) 2018; 10:cancers10030061. [PMID: 29495500 PMCID: PMC5876636 DOI: 10.3390/cancers10030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs—the most abundant cell population of the tumor microenvironment (TME)—as target cells.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Ina Sigal-Batikoff
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Shraga Shany
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
| | - Naim Abu-Freha
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Pediatrics Department B, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - George J Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Keren Moyal-Atias
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| | - John G Delinasios
- International Institute of Anticancer Research, Kapandriti, Athens 19014, Greece.
| | - Alexander Fich
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva 8410500, Israel.
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beersheva 8410100, Israel.
| |
Collapse
|
24
|
El Moussawi L, Chakkour M, Kreydiyyeh SI. Epinephrine modulates Na+/K+ ATPase activity in Caco-2 cells via Src, p38MAPK, ERK and PGE2. PLoS One 2018; 13:e0193139. [PMID: 29466417 PMCID: PMC5821373 DOI: 10.1371/journal.pone.0193139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 01/23/2023] Open
Abstract
Epinephrine, a key stress hormone, is known to affect ion transport in the colon. Stress has been associated with alterations in colonic functions leading to changes in water movements manifested as diarrhea or constipation. Colonic water movement is driven by the Na+-gradient created by the Na+/K+-ATPase. Whether epinephrine acts via an effect on the Na+/K+-ATPase hasn’t been studied before. The aim of this work was to investigate the effect of epinephrine on the Na+/K+-ATPase and to elucidate the signaling pathway involved using CaCo-2 cells as a model. The activity of the Na+/K+-ATPase was assayed by measuring the amount of inorganic phosphate released in presence and absence of ouabain, a specific inhibitor of the enzyme. Epinephrine, added for 20 minutes, decreased the activity of the Na+/K+-ATPase by around 50%. This effect was found to be mediated by α2 adrenergic receptors as it was fully abolished in the presence of yohimbine an α2-blocker, but persisted in presence of other adrenergic antagonists. Furthermore, treatment with Rp-cAMP, a PKA inhibitor, mimicked epinephrine’s negative effect and didn’t result in any additional inhibition when both were added simultaneously. Treatment with indomethacin, PP2, SB202190, and PD98059, respective inhibitors of COX enzymes, Src, p38MAPK, and ERK completely abrogated the effect of epinephrine. The effect of epinephrine did not appear also in presence of inhibitors of all four different types of PGE2 receptors. Western blot analysis revealed an epinephrine-induced increase in the phosphorylation of p38 MAPK and ERK that disappeared in presence of respectively PP2 and SB2020190. In addition, an inhibitory effect, similar to that of epinephrine’s, was observed upon incubation with PGE2. It was concluded that epinephrine inhibits the Na+/K+-ATPase by the sequential activation of α2 adrenergic receptors, Src, p38MAPK, and ERK leading to PGE2 release.
Collapse
Affiliation(s)
- Layla El Moussawi
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Chakkour
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Sawsan I. Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
25
|
Aeroallergen Der p 2 promotes motility of human non-small cell lung cancer cells via toll-like receptor-mediated up-regulation of urokinase-type plasminogen activator and integrin/focal adhesion kinase signaling. Oncotarget 2017; 8:11316-11328. [PMID: 28076322 PMCID: PMC5355267 DOI: 10.18632/oncotarget.14514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/27/2016] [Indexed: 01/18/2023] Open
Abstract
House dust mite (HDM) allergens are one of the major causes leading to respiratory hypersensitiveness and airway remodeling. Here we hypothesized that a major HDM allergen Der p 2 could increase cell motility and invasiveness of non-small cell lung cancer (NSCLC) cells. Our results showed that low dose (1 and 3 μg/mL) recombinant Der p 2 protein (DP2) enhanced the migration and invasiveness of human NSCLC cell A549, H1299 and CL1-5, but nonsignificantly altered their growth. Further investigation revealed that integrin αV level was increased and its downstream signaling including focal adhesion kinase (FAK) and paxillin were activated in A549 cells exposed to DP2. In parallel, DP2 also activated the FAK-associated signaling effectors such as Src, phosphatidyl inositol 3-kinase (PI3K), AKT, p38 mitogen-activated protein kinase (P38), extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Our findings also revealed that DP2 increased expression level of urokinase type plasminogen-activated kinase (uPA) and uPA receptor (uPAR), and subsequently enhanced the binding of uPAR to integrin αV. Moreover, the involvement of toll-like receptor 2/4 (TLR2/4)-triggered ERK1/2 activation in the increased expression of uPA and uPAR was also demonstrated. Collectively, these findings indicate that DP2 can enhance cell motility and invasiveness of NSCLC cells, attributing to TLR2/4-ERK1/2 activation, increased uPA and uPAR expression, enhanced binding of uPAR to integrin αV, and the consequent FAK signaling cascades. Thus, we suggest that DP2 may exacerbate NSCLC via promoting metastatic ability of carcinoma cell.
Collapse
|
26
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
27
|
Zhang GY, Liu AH, Li GM, Wang JR. HPIP Silencing Prevents Epithelial-Mesenchymal Transition Induced by TGF-β1 in Human Ovarian Cancer Cells. Oncol Res 2017; 24:33-9. [PMID: 27178820 PMCID: PMC7838700 DOI: 10.3727/096504016x14575597858654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP/PBXIP1) is a nucleo-cytoplasmic shuttling protein, and its expression is associated with cancer aggressiveness. However, the role of HPIP in ovarian cancer is still unclear. Here, we aimed to clarify the role of HPIP in epithelial–mesenchymal transition (EMT) process of ovarian cancer cells, stimulated by transforming growth factor (TGF)-β1. In this study, we found that HPIP was highly expressed in ovarian cancer cells, and TGF-β1 treatment induced HPIP expression in ovarian cancer cells. In addition, knockdown of HPIP suppressed TGF-β1-induced EMT and migration/invasion in ovarian cancer cells. Moreover, knockdown of HPIP significantly blocked the phosphorylated pattern of both PI3K and Akt induced by TGF-β1 in SKOV3 cells. In conclusion, the present study showed that HPIP silencing might prevent TGF-β1-induced EMT in ovarian cancer cells. Thus, HPIP may be a potential therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Guo-Ying Zhang
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, China
| | | | | | | |
Collapse
|
28
|
Kim JM, Kim MY, Lee K, Jeong D. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration. Mol Cell Endocrinol 2016; 437:261-267. [PMID: 27576187 DOI: 10.1016/j.mce.2016.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/17/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023]
Abstract
Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses.
Collapse
Affiliation(s)
- Jin-Man Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea
| | - Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea.
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea.
| |
Collapse
|
29
|
Bianchini F, Peppicelli S, Fabbrizzi P, Biagioni A, Mazzanti B, Menchi G, Calorini L, Pupi A, Trabocchi A. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells. Mol Cell Biochem 2016; 424:99-110. [PMID: 27761847 PMCID: PMC5219041 DOI: 10.1007/s11010-016-2847-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022]
Abstract
Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.
Collapse
Affiliation(s)
- Francesca Bianchini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy.
| | - Silvia Peppicelli
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | | | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | | | - Gloria Menchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Alberto Pupi
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Florence, Italy
| |
Collapse
|
30
|
Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins (Basel) 2016; 8:toxins8100284. [PMID: 27690102 PMCID: PMC5086644 DOI: 10.3390/toxins8100284] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Snake venom metalloproteases, in addition to their contribution to the digestion of the prey, affect various physiological functions by cleaving specific proteins. They exhibit their activities through activation of zymogens of coagulation factors, and precursors of integrins or receptors. Based on their structure–function relationships and mechanism of action, we have defined classification and nomenclature of functional sites of proteases. These metalloproteases are useful as research tools and in diagnosis and treatment of various thrombotic and hemostatic conditions. They also contribute to our understanding of molecular details in the activation of specific factors involved in coagulation, platelet aggregation and matrix biology. This review provides a ready reference for metalloproteases that interfere in blood coagulation, fibrinolysis and platelet aggregation.
Collapse
|
31
|
Chai SD, Liu T, Dong MF, Li ZK, Tang PZ, Wang JT, Ma SJ. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling. ACTA ACUST UNITED AC 2016; 49:e5526. [PMID: 27580007 PMCID: PMC5007076 DOI: 10.1590/1414-431x20165526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA) have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β) signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH) rat model. Sprague Dawley rats (n=40) were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP) and the right ventricle (RV) to left ventricle plus the interventricular septum (LV+S) mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs) were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA), TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling.
Collapse
Affiliation(s)
- S D Chai
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - T Liu
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - M F Dong
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - Z K Li
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - P Z Tang
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - J T Wang
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - S J Ma
- Department of Cardiac Surgery, Liaocheng People's Hospital, Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| |
Collapse
|
32
|
Xiong S, Klausen C, Cheng JC, Zhu H, Leung PCK. Activin B induces human endometrial cancer cell adhesion, migration and invasion by up-regulating integrin β3 via SMAD2/3 signaling. Oncotarget 2016; 6:31659-73. [PMID: 26384307 PMCID: PMC4741631 DOI: 10.18632/oncotarget.5229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/09/2015] [Indexed: 11/30/2022] Open
Abstract
Endometrial cancer is the fourth most common female cancer and the most common gynecological malignancy. Although it comprises only ~10% of all endometrial cancers, the serous histological subtype accounts for ~40% of deaths due to its aggressive behavior and propensity to metastasize. Histopathological studies suggest that elevated expression of activin/inhibin βB subunit is associated with reduced survival in non-endometrioid endometrial cancers (type II, mostly serous). However, little is known about the specific roles and mechanisms of activin (βB dimer) in serous endometrial cancer growth and progression. In the present study, we examined the biological functions of activin B in type II endometrial cancer cell lines, HEC-1B and KLE. Our results demonstrate that treatment with activin B increases cell migration, invasion and adhesion to vitronectin, but does not affect cell viability. Moreover, we show that activin B treatment increases integrin β3 mRNA and protein levels via SMAD2/3-SMAD4 signaling. Importantly, siRNA knockdown studies revealed that integrin β3 is required for basal and activin B-induced cell migration, invasion and adhesion. Our results suggest that activin B-SMAD2/3-integrin β3 signaling could contribute to poor patient survival by promoting the invasion and/or metastasis of type II endometrial cancers.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Nik AM, Johansson JA, Ghiami M, Reyahi A, Carlsson P. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme. Dev Biol 2016; 415:14-23. [DOI: 10.1016/j.ydbio.2016.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023]
|
34
|
Hong SK, Park JR, Kwon OS, Kim KT, Bae GY, Cha HJ. Induction of integrin β3 by sustained ERK activity promotes the invasiveness of TGFβ-induced mesenchymal tumor cells. Cancer Lett 2016; 376:339-46. [DOI: 10.1016/j.canlet.2016.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/16/2016] [Accepted: 04/09/2016] [Indexed: 11/28/2022]
|
35
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
36
|
Konishi A, Takeda K, Fujita T, Kajiya M, Matsuda S, Kittaka M, Shiba H, Kurihara H. Sequential process in brain-derived neurotrophic factor-induced functional periodontal tissue regeneration. Eur J Oral Sci 2016; 124:141-50. [DOI: 10.1111/eos.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Akihiro Konishi
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Katsuhiro Takeda
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Tsuyoshi Fujita
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Mikihito Kajiya
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Shinji Matsuda
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Mizuho Kittaka
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Hideki Shiba
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| | - Hidemi Kurihara
- Division of Frontier Medical Science; Department of Periodontal Medicine; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima Japan
| |
Collapse
|
37
|
Toba-Ichihashi Y, Yamaoka T, Ohmori T, Ohba M. Up-regulation of Syndecan-4 contributes to TGF-β1-induced epithelial to mesenchymal transition in lung adenocarcinoma A549 cells. Biochem Biophys Rep 2015; 5:1-7. [PMID: 28955801 PMCID: PMC5600357 DOI: 10.1016/j.bbrep.2015.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/02/2015] [Accepted: 11/19/2015] [Indexed: 01/29/2023] Open
Abstract
Syndecan-4 (SDC4) is a cell-surface proteoglycan associated with cell adhesion, motility, and intracellular signaling. Here, we present that SDC4 functions as a positive regulator of the transforming growth factor (TGF)-β1-induced epithelial to mesenchymal transition (EMT) via Snail in lung adenocarcinoma, A549 cells. TGF-β1 up-regulated the expression of SDC4, accompanied by the induction of EMT. Wound-healing and transwell chemotaxis assay revealed that SDC4 promoted cell migration and invasion. SDC4 knockdown recovered the E-cadherin and decreased vimentin and Snail expression in EMT-induced A549 cells. However, depletion of SDC4 resulted in little change of the Slug protein expression and mesenchymal cell morphology induced by TGF-β1. The double knockdown of SDC-4 and Slug was required for reversal of epithelial morphology; it did not occur from the SDC4 single knockdown. These findings suggest that Snail is a transcriptional factor downstream of SDC4, and SDC4 regulates TGF-β1-induced EMT by cooperating with Slug. Our data provide a novel insight into cellular mechanisms, whereby the cell-surface proteoglycan modulated TGF-β1-induced EMT in lung adenocarcinoma, A549 cells. TGF β1 induced to increase SDC-4 expression with cells undergo EMT in A549 cells. SDC-4 up-regulation leads to decreased E-cadherin expression via Snail. Slug suppresses E-cadherin expression, independent from SDC-4 expression. SDC-4 and Slug knockdown conserved an epithelial morphology in TGF-β exposure. TGF-β induced β1 and β3 integrin alteration under SDC-4 and Slug knockdown.
Collapse
Affiliation(s)
- Yoko Toba-Ichihashi
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshimitsu Yamaoka
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Tohru Ohmori
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Motoi Ohba
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
38
|
Abdalla M, Thompson L, Gurley E, Burke S, Ujjin J, Newsome R, Somanath PR. Dasatinib inhibits TGFβ-induced myofibroblast differentiation through Src-SRF Pathway. Eur J Pharmacol 2015; 769:134-42. [PMID: 26548624 DOI: 10.1016/j.ejphar.2015.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/02/2023]
Abstract
Persistent myofibroblast differentiation is a hallmark of fibrotic diseases. Myofibroblasts are characterized by de novo expression of alpha smooth muscle actin (αSMA) and excess fibronectin assembly. Recent studies provide conflicting reports on the effects of tyrosine kinase inhibitor dasatinib on myofibroblast differentiation and fibrosis. Also, it is not fully understood whether dasatinib modulates myofibroblast differentiation by targeting Src kinase. Herein, we investigated the effect of dasatinib on cSrc and transforming growth factor-β (TGFβ)-induced myofibroblast differentiation in vitro. Our results indicated that selective Src kinase inhibition using PP2 mimicked the effect of dasatinib in attenuating myofibroblast differentiation as evident by blunted αSMA expression and modest, but significant inhibition of fibronectin assembly in both NIH 3T3 and fibrotic human lung fibroblasts. Mechanistically, our data showed that dasatinib modulates αSMA synthesis through Src kinase-mediated modulation of serum response factor expression. Collectively, our results demonstrate that dasatinib modulates myofibroblast differentiation through Src-SRF pathway. Thus, dasatinib could potentially be a therapeutic option in fibrotic diseases.
Collapse
Affiliation(s)
- Maha Abdalla
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Pharmaceutical Sciences, South College School of Pharmacy, Knoxville, TN, United States
| | - LeeAnn Thompson
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Erin Gurley
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Samantha Burke
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Jessica Ujjin
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Robert Newsome
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Medicine and Vascular Biology Center, Augusta, GA, United States; Cancer Center, Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
39
|
Grella A, Kole D, Holmes W, Dominko T. FGF2 Overrides TGFβ1-Driven Integrin ITGA11 Expression in Human Dermal Fibroblasts. J Cell Biochem 2015; 117:1000-8. [PMID: 26403263 DOI: 10.1002/jcb.25386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
Abstract
Deposition of collagen-based extracellular matrix by fibroblasts during wound healing leads to scar formation--a typical outcome of the healing process in soft tissue wounds. The process can, however, be skewed in favor of tissue regeneration by manipulation of wound environment. Low oxygen conditions and supplementation with FGF2 provide extracellular cues that drive wound fibroblasts towards a pro-regenerative phenotype. Under these conditions, fibroblasts dramatically alter expression of many genes among which the most significantly deregulated are extracellular matrix and adhesion molecules. Here we investigate the mechanism of a collagen I binding integrin α11 (ITGA11) deregulation in response to low oxygen-mediated FGF2 effects in dermal fibroblasts. Using RT-PCR, qRT-PCR, Western blotting, and immunocytochemistry, we describe significant down-regulation of ITGA11. Decrease in ITGA11 is associated with its loss from focal adhesions. We show that loss of ITGA11 requires FGF2 induced ERK1/2 activity and in the presence of FGF2, ITGA11 expression cannot be rescued by TGFβ1, a potent activator of ITGA11. Our results indicate that FGF2 may be redirecting fibroblasts towards an anti-fibrotic phenotype by overriding TGFβ1 mediated ITGA11 expression.
Collapse
Affiliation(s)
- Alexandra Grella
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - Denis Kole
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - William Holmes
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609.,Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica 5000, Slovenia
| |
Collapse
|
40
|
Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet 2015; 24:6769-87. [PMID: 26376865 PMCID: PMC4634379 DOI: 10.1093/hmg/ddv382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disorder caused by loss-of-function mutations in SLC2A10, which encodes facilitative glucose transporter 10 (GLUT10). The role of GLUT10 in ATS pathogenesis remains an enigma, and the transported metabolite(s), i.e. glucose and/or dehydroascorbic acid, have not been clearly elucidated. To discern the molecular mechanisms underlying the ATS aetiology, we performed gene expression profiling and biochemical studies on skin fibroblasts. Transcriptome analyses revealed the dysregulation of several genes involved in TGFβ signalling and extracellular matrix (ECM) homeostasis as well as the perturbation of specific pathways that control both the cell energy balance and the oxidative stress response. Biochemical and functional studies showed a marked increase in ROS-induced lipid peroxidation sustained by altered PPARγ function, which contributes to the redox imbalance and the compensatory antioxidant activity of ALDH1A1. ATS fibroblasts also showed activation of a non-canonical TGFβ signalling due to TGFBRI disorganization, the upregulation of TGFBRII and connective tissue growth factor, and the activation of the αvβ3 integrin transduction pathway, which involves p125FAK, p60Src and p38 MAPK. Stable GLUT10 expression in patients' fibroblasts normalized redox homeostasis and PPARγ activity, rescued canonical TGFβ signalling and induced partial ECM re-organization. These data add new insights into the ATS dysregulated biological pathways and definition of the pathomechanisms involved in this disorder.
Collapse
Affiliation(s)
- Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Mori S, Kodaira M, Ito A, Okazaki M, Kawaguchi N, Hamada Y, Takada Y, Matsuura N. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells. PLoS One 2015; 10:e0137486. [PMID: 26334633 PMCID: PMC4559424 DOI: 10.1371/journal.pone.0137486] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGF) secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2). We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.
Collapse
Affiliation(s)
- Seiji Mori
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Moe Kodaira
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Ayano Ito
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Mika Okazaki
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Naomasa Kawaguchi
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Yoshinosuke Hamada
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
| | - Yoshikazu Takada
- Departments of Dermatology, Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, 95817, United States of America
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 520 Wu-Hsing Street, Taipei, 11031, Taiwan, R.O.C
- * E-mail: (YT); (NM)
| | - Nariaki Matsuura
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Sciences, 1–7 Yamada-oka, Suita-shi, Osaka, 565–0871, Japan
- * E-mail: (YT); (NM)
| |
Collapse
|
42
|
Cichon MA, Radisky DC. Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adh Migr 2015; 8:588-94. [PMID: 25482625 PMCID: PMC4594483 DOI: 10.4161/19336918.2014.972788] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.
Collapse
|
43
|
Abstract
Fibrotic cardiac disease, a leading cause of death worldwide, manifests as substantial loss of function following maladaptive tissue remodeling. Fibrosis can affect both the heart valves and the myocardium and is characterized by the activation of fibroblasts and accumulation of extracellular matrix. Valvular interstitial cells and cardiac fibroblasts, the cell types responsible for maintenance of cardiac extracellular matrix, are sensitive to changing mechanical environments, and their ability to sense and respond to mechanical forces determines both normal development and the progression of disease. Recent studies have uncovered specific adhesion proteins and mechano-sensitive signaling pathways that contribute to the progression of fibrosis. Integrins form adhesions with the extracellular matrix, and respond to changes in substrate stiffness and extracellular matrix composition. Cadherins mechanically link neighboring cells and are likely to contribute to fibrotic disease propagation. Finally, transition to the active myofibroblast phenotype leads to maladaptive tissue remodeling and enhanced mechanotransductive signaling, forming a positive feedback loop that contributes to heart failure. This Commentary summarizes recent findings on the role of mechanotransduction through integrins and cadherins to perpetuate mechanically induced differentiation and fibrosis in the context of cardiac disease.
Collapse
Affiliation(s)
- Alison K Schroer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
44
|
Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T, Erez N. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res 2015; 75:963-73. [PMID: 25600648 DOI: 10.1158/0008-5472.can-14-1990] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast tumors are characterized by an extensive desmoplastic stroma, abundantly populated by fibroblasts. Cancer-associated fibroblasts (CAF) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation, and invasion. CAF also orchestrate tumor-promoting inflammation in multiple tumor types, including breast cancer. However, the mechanisms through which normal tissue fibroblasts are reprogrammed to tumor-promoting CAFs are mainly obscure. Here, we show that mammary fibroblasts can be educated by breast cancer cells to become activated to a proinflammatory state that supports malignant progression. Proteomic analysis of breast cancer cell-secreted factors identified the secreted proinflammatory mediator osteopontin, which has been implicated in inflammation, tumor progression, and metastasis. Osteopontin was highly secreted by mouse and human breast cancer cells, and tumor cell-secreted osteopontin activated a CAF phenotypes in normal mammary fibroblasts in vitro and in vivo. Osteopontin was sufficient to induce fibroblast reprogramming and neutralizing antibodies against osteopontin-blocked fibroblast activation induced by tumor cells. The ability of secreted osteopontin to activate mammary fibroblasts relied upon its known receptors CD44 and αVβ3 integrin. Strikingly, osteopontin silencing in tumor cells in vivo attenuated stromal activation and inhibited tumor growth. Our findings establish a critical functional role for paracrine signaling by tumor-derived osteopontin in reprograming normal fibroblasts into tumor-promoting CAFs.
Collapse
Affiliation(s)
- Yoray Sharon
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Raz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ben-Shmuel
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Schwartz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Ren P, Sun D, Xin D, Ma W, Chen P, Gao H, Zhang S, Gong M. Serum amyloid A promotes osteosarcoma invasion via upregulating αvβ3 integrin. Mol Med Rep 2014; 10:3106-12. [PMID: 25323768 DOI: 10.3892/mmr.2014.2635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/22/2014] [Indexed: 11/05/2022] Open
Abstract
Serum amyloid A (SAA) is regarded as an important acute phase protein involved in tumor progression and metastasis. However, at present there is no evidence of its involvement in osteosarcoma. The present study aimed to investigate the effect of SAA on the invasion of osteosarcoma cells. The effects of SAA on the migration and invasion of osteosarcoma cells were detected using scratch wound healing and transwell assays, respectively. The expression of αvβ3 integrin was detected at the protein and mRNA levels in U2OS cells. Agonists, inhibitors or siRNA of formyl peptide receptor like‑1 (FPRL‑1), mitogen‑activated protein kinases and αvβ3 integrin were used to investigate the mechanism underlying the effects of SAA on the regulation of U2OS cell migration and invasion. The present study revealed that SAA promoted osteosarcoma cell migration and invasion. SAA upregulated the expression of αvβ3 integrin in a concentration‑ and time‑dependent manner. When inhibiting αvβ3 integrin with its antagonist, the migration and invasion abilities of the U2OS cells were markedly inhibited. SAA‑induced αvβ3 integrin production was significantly downregulated by inhibiting FPRL‑1 with siRNA and inhibitors. The present study also found that extracellular signal‑regulated kinase (ERK) 1/2, but not c‑Jun N‑terminal kinase or p38, was important in this process. These findings demonstrated that SAA regulated osteosarcoma cell migration and invasion via the FPRL‑1/ERK/αvβ3 integrin pathway.
Collapse
Affiliation(s)
- Peng Ren
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Deshun Sun
- Department of Osteology, Zhangqiu City Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Dajiang Xin
- Department of Osteology, Mount Yantai Hospital, Yantai, Shandong 264000, P.R. China
| | - Wanli Ma
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Peng Chen
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongwei Gao
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shouqiang Zhang
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Mingzhi Gong
- Department of Osteology, The Second Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
46
|
Li LF, Liu YY, Kao KC, Wu CT, Chang CH, Hung CY, Yang CT. Mechanical ventilation augments bleomycin-induced epithelial-mesenchymal transition through the Src pathway. J Transl Med 2014; 94:1017-29. [PMID: 24955896 DOI: 10.1038/labinvest.2014.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/20/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022] Open
Abstract
Mechanical ventilation used in patients with acute respiratory distress syndrome (ARDS) can damage pulmonary epithelial cells by producing inflammatory cytokines and depositing excess collagen. Src participates in plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1(TGF-β1) production during the fibroproliferative phase of ARDS, which involves a process of epithelial-mesenchymal transition (EMT). The mechanisms regulating interactions between mechanical ventilation and EMT are unclear. We hypothesized that EMT induced by high-tidal volume (VT) mechanical stretch-augmented lung inflammation occurs through upregulation of the Src pathway. Five days after administering bleomycin to simulate acute lung injury (ALI), male C57BL/6 mice, either wild-type or Src-deficient, aged 3 months, weighing between 25 and 30 g, were exposed to low-VT (6 ml/kg) or high-VT (30 ml/kg) mechanical ventilation with room air for 1-5 h. Nonventilated mice were used as control subjects. We observed that high-VT mechanical ventilation increased microvascular permeability, PAI-1 and TGF-β1 protein levels, Masson's trichrome staining, extracellular collagen levels, collagen gene expression, fibroblast accumulation, positive staining of α-smooth muscle actin and type I collagen, activation of Src signaling and epithelial apoptotic cell death in wild-type mice (P<0.05). Decreased staining of the epithelial marker, Zonula occludents-1, was also observed. Mechanical stretch-augmented EMT and epithelial apoptosis were attenuated in Src-deficient mice and pharmacological inhibition of Src activity by PP2 (P<0.05). Our data suggest that high-VT mechanical ventilation-augmented EMT after bleomycin-induced ALI partially depends on the Src pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Yang Liu
- 1] Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan [2] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Chin Kao
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Te Wu
- 1] Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hao Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yiu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
47
|
Chen KS, Shi MD, Chien CS, Shih YW. Pinocembrin suppresses TGF-β1-induced epithelial-mesenchymal transition and metastasis of human Y-79 retinoblastoma cells through inactivating αvβ3 integrin/FAK/p38α signaling pathway. Cell Biosci 2014; 4:41. [PMID: 25949790 PMCID: PMC4422197 DOI: 10.1186/2045-3701-4-41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/21/2014] [Indexed: 01/18/2023] Open
Abstract
Background Pinocembrin is the most abundant flavonoid in propolis. In this study, we investigated the antimetastatic effect of pinocembrin on TGF-β1-induced epithelial-mesenchymal transition (EMT) and metastasis of human Y-79 retinoblastoma cells. Results Firstly, the results showed that pinocembrin significantly suppresses the TGF-β1-induced abilities of the invasion and migration of Y-79 cells under non-cytotoxic concentration. Pinocembrin decreased TGF-β1-induced expression of vimentin, N-cadherin, αv and β3 integrin in Y-79 cells. Molecular data also showed pinocembrin inhibits the activation of focal adhesion kinase (FAK) and p38α signal involved in the downregulation of enzyme activities, protein and messenger RNA levels of matrix metalloproteinase-2/9 (MMP-2/-9) induced by TGF-β1. Next, pinocembrin also strongly inhibited the degradation of inhibitor of kappaBα (IκBα) and the nuclear levels of nuclear factor kappa B (NF-κB). Also, a dose-dependent inhibition on the binding ability of NF-κB was further observed under pinocembrin treatment. Conclusions Presented results indicated that pinocembrin inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) and metastasis of Y-79 cells by inactivating the αvβ3 integrin/FAK/p38α signaling pathway. Thus, our findings point to the anticancer potential of pinocembrin against retinoblastoma cells.
Collapse
Affiliation(s)
- Kun-Shiang Chen
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Ming-Der Shi
- Department of Medical Technology, Kaohsiung Veterans General Hospital Tainan Branch, Tainan 71051, Taiwan ; Department of Medical Laboratory Science and Biotechnology and Graduate Institute of Biological Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Chi-Sheng Chien
- Department of Orthopaedic Surgery, Chi Mei Medical Center, Tainan 71067, Taiwan
| | - Yuan-Wei Shih
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan ; Department of Biological Science and Technology and Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| |
Collapse
|
48
|
Schroer AK, Ryzhova LM, Merryman WD. Network Modeling Approach to Predict Myofibroblast Differentiation. Cell Mol Bioeng 2014; 7:446-459. [PMID: 33072223 DOI: 10.1007/s12195-014-0344-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibrotic disease is a major cause of morbidity and mortality and is characterized by the transition of resident fibroblast cells into active myofibroblasts, identified by their expression of alpha smooth muscle actin. Myofibroblast differentiation is regulated by growth factor signaling and mechanical signals transduced through integrins, which converge at focal adhesion proteins (Src and FAK) and MAPK signaling, but lead to divergent outcomes. While details are known about individual pathways, little is known about their interactions. To this end, an ODE-based model of this cell signaling network was developed in parallel with in vitro experiments to analyze potential mechanisms of crosstalk and regulation of αSMA production. We found that cells lacking Src or FAK produce significantly less or more αSMA than wild type cells, respectively. Transforming growth factor beta 1 and fibroblast growth factor signal through ERK and MAPK p38 with different dynamic profiles to increase or decrease αSMA expression, respectively. Our model effectively recreated αSMA expression levels across a set of 22 experimental conditions and matched some features of transient phosphorylation of ERK and p38. These results support a potential mechanism for regulation of fibroblast differentiation: αSMA production is promoted by active p38 and Src and opposed by ERK.
Collapse
Affiliation(s)
- Alison K Schroer
- Department of Biomedical Engineering, Vanderbilt University, Room 9445D, MRB4 2213 Garland Ave, Nashville, TN 37232, USA
| | - Larisa M Ryzhova
- Department of Biomedical Engineering, Vanderbilt University, Room 9445D, MRB4 2213 Garland Ave, Nashville, TN 37232, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Room 9445D, MRB4 2213 Garland Ave, Nashville, TN 37232, USA
| |
Collapse
|
49
|
Salvo E, Garasa S, Dotor J, Morales X, Peláez R, Altevogt P, Rouzaut A. Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol Cancer 2014; 13:112. [PMID: 24884715 PMCID: PMC4049383 DOI: 10.1186/1476-4598-13-112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Background Transforming Growth Factor beta (TGF-β) acts as a tumor suppressor early in carcinogenesis but turns into tumor promoter in later disease stages. In fact, TGF-β is a known inducer of integrin expression by tumor cells which contributes to cancer metastatic spread and TGF-β inhibition has been shown to attenuate metastasis in mouse models. However, carcinoma cells often become refractory to TGF-β-mediated growth inhibition. Therefore identifying patients that may benefit from anti-TGF-β therapy requires careful selection. Methods We performed in vitro analysis of the effects of exposure to TGF-β in NSCLC cell chemotaxis and adhesion to lymphatic endothelial cells. We also studied in an orthotopic model of NSCLC the incidence of metastases to the lymph nodes after inhibition of TGF-β signaling, β3 integrin expression or both. Results We offer evidences of increased β3-integrin dependent NSCLC adhesion to lymphatic endothelium after TGF-β exposure. In vivo experiments show that targeting of TGF-β and β3 integrin significantly reduces the incidence of lymph node metastasis. Even more, blockade of β3 integrin expression in tumors that did not respond to TGF-β inhibition severely impaired the ability of the tumor to metastasize towards the lymph nodes. Conclusion These findings suggest that lung cancer tumors refractory to TGF-β monotherapy can be effectively treated using dual therapy that combines the inhibition of tumor cell adhesion to lymphatic vessels with stromal TGF-β inhibition.
Collapse
|
50
|
Gardner A, Borthwick LA, Fisher AJ. Lung epithelial wound healing in health and disease. Expert Rev Respir Med 2014; 4:647-60. [DOI: 10.1586/ers.10.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|