1
|
Xiong XS, Zhang XD, Yan JW, Huang TT, Liu ZZ, Li ZK, Wang L, Li F. Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques. Infect Drug Resist 2024; 17:1491-1506. [PMID: 38628245 PMCID: PMC11020249 DOI: 10.2147/idr.s457308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an essential cause of tuberculosis treatment failure and death of tuberculosis patients. The rapid and reliable profiling of Mycobacterium tuberculosis (MTB) drug resistance in the early stage is a critical research area for public health. Then, most traditional approaches for detecting MTB are time-consuming and costly, leading to the inappropriate therapeutic schedule resting on the ambiguous information of MTB drug resistance, increasing patient economic burden, morbidity, and mortality. Therefore, novel diagnosis methods are frequently required to meet the emerging challenges of MTB drug resistance distinguish. Considering the difficulty in treating MDR-TB, it is urgently required for the development of rapid and accurate methods in the identification of drug resistance profiles of MTB in clinical diagnosis. This review discussed recent advances in MTB drug resistance detection, focusing on developing emerging approaches and their applications in tangled clinical situations. In particular, a brief overview of antibiotic resistance to MTB was present, referred to as intrinsic bacterial resistance, consisting of cell wall barriers and efflux pumping action and acquired resistance caused by genetic mutations. Then, different drug susceptibility test (DST) methods were described, including phenotype DST, genotype DST and novel DST methods. The phenotype DST includes nitrate reductase assay, RocheTM solid ratio method, and liquid culture method and genotype DST includes fluorescent PCR, GeneXpert, PCR reverse dot hybridization, ddPCR, next-generation sequencing and gene chips. Then, novel DST methods were described, including metabolism testing, cell-free DNA probe, CRISPR assay, and spectral analysis technique. The limitations, challenges, and perspectives of different techniques for drug resistance are also discussed. These methods significantly improve the detection sensitivity and accuracy of multidrug-resistant tuberculosis (MRT) and can effectively curb the incidence of drug-resistant tuberculosis and accelerate the process of tuberculosis eradication.
Collapse
Affiliation(s)
- Xue-Song Xiong
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Xue-Di Zhang
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Jia-Wei Yan
- Department of Laboratory Medicine, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Ting-Ting Huang
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| | - Zhan-Zhong Liu
- Department of Pharmacy, Xuzhou Infectious Diseases Hospital, Xuzhou, Jiangsu Province, People’s Republic of China
| | - Zheng-Kang Li
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Liang Wang
- Department of Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Fen Li
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Yangzhou University, Huai’an, Jiangsu Province, People’s Republic of China
- Department of Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, People’s Republic of China
| |
Collapse
|
2
|
Djorić D, Atkinson SN, Kristich CJ. Reciprocal regulation of enterococcal cephalosporin resistance by products of the autoregulated yvcJ-glmR-yvcL operon enhances fitness during cephalosporin exposure. PLoS Genet 2024; 20:e1011215. [PMID: 38512984 PMCID: PMC10986989 DOI: 10.1371/journal.pgen.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Chen JY, Liu S, Deng WK, Niu SH, Liao XD, Xiang L, Xing SC. The effect of manure-borne doxycycline combined with different types of oversized microplastic contamination layers on carbon and nitrogen metabolism in sandy loam. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131612. [PMID: 37245359 DOI: 10.1016/j.jhazmat.2023.131612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The different forms and properties of microplastics (MPs) have different effects on the elemental cycles in soil ecosystems, and this is further complicated when the soil contains antibiotics; meanwhile, oversized microplastic (OMP) in soil is always ignored in studies of environmental behavior. In the context of antibiotic action, the effects of OMP on soil carbon (C) and nitrogen (N) cycling have rarely been explored. In this study, we created four types of oversized microplastic (thick fibers, thin fibers, large debris, and small debris) composite doxycycline (DOX) contamination layers (5-10 cm) in sandy loam, hoping to reveal the effects on soil C and N cycling and potential microbial mechanisms when exposed to the combination of manure-borne DOX and different types of OMP from the perspective of metagenomics in the longitudinal soil layer (0-30 cm). The results showed that all different forms of OMP, when combined with DOX, reduced the soil C content in each layer, but only reduced the soil N content in the upper layer of the OMP contamination layer. The microbial structure of the surface soil (0-10 cm) was more noteworthy than that of the deeper soil (10-30 cm). The genera Chryseolinea and Ohtaekwangia were key microbes involved in C and N cycling in the surface layer and regulated carbon fixation in photosynthetic organisms (K00134), carbon fixation pathways in prokaryotes (K00031), methane metabolism (K11212 and K14941), assimilatory nitrate reduction (K00367), and denitrification (K00376 and K04561). The present study is the first to reveal the potential microbial mechanism of C and N cycling under OMP combined with DOX in different layers, mainly the OMP contamination layer and its upper layer, and the OMP shape plays an important role in this process.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Lei Xiang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
4
|
Ismail N, Dippenaar A, Warren RM, Peters RPH, Omar SV. Emergence of Canonical and Noncanonical Genomic Variants following In Vitro Exposure of Clinical Mycobacterium tuberculosis Strains to Bedaquiline or Clofazimine. Antimicrob Agents Chemother 2023; 67:e0136822. [PMID: 36892309 PMCID: PMC10112258 DOI: 10.1128/aac.01368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
In Mycobacterium tuberculosis, bedaquiline and clofazimine resistance occurs primarily through Rv0678 variants, a gene encoding a repressor protein that regulates mmpS5/mmpL5 efflux pump gene expression. Despite the shared effect of both drugs on efflux, little else is known about other pathways affected. We hypothesized that in vitro generation of bedaquiline- or clofazimine-resistant mutants could provide insight into additional mechanisms of action. We performed whole-genome sequencing and determined phenotypic MICs for both drugs on progenitor and mutant progenies. Mutants were induced through serial passage on increasing concentrations of bedaquiline or clofazimine. Rv0678 variants were identified in both clofazimine- and bedaquiline-resistant mutants, with concurrent atpE SNPs occurring in the latter. Of concern was the acquisition of variants in the F420 biosynthesis pathway in clofazimine-resistant mutants obtained from either a fully susceptible (fbiD: del555GCT) or rifampicin mono-resistant (fbiA: 283delTG and T862C) progenitor. The acquisition of these variants possibly implicates a shared pathway between clofazimine and nitroimidazoles. Pathways associated with drug tolerance and persistence, F420 biosynthesis, glycerol uptake and metabolism, efflux, and NADH homeostasis appear to be affected following exposure to these drugs. Shared genes affected by both drugs include Rv0678, glpK, nuoG, and uvrD1. Genes with variants in the bedaquiline resistant mutants included atpE, fadE28, truA, mmpL5, glnH, and pks8, while clofazimine-resistant mutants displayed ppsD, fbiA, fbiD, mutT3, fadE18, Rv0988, and Rv2082 variants. These results show the importance of epistatic mechanisms as a means of responding to drug pressure and highlight the complexity of resistance acquisition in M. tuberculosis.
Collapse
Affiliation(s)
- N. Ismail
- SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa
| | - A. Dippenaar
- Global Health Institute, Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - R. M. Warren
- SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - R. P. H. Peters
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa
- Department of Medical Microbiology, School CAPHRI (Care and Public Health Research Institute), Maastricht University, Maastricht, The Netherlands
| | - S. V. Omar
- Department of Medical Microbiology, School CAPHRI (Care and Public Health Research Institute), Maastricht University, Maastricht, The Netherlands
- National Institute for Communicable Diseases/National Health Laboratory Service, Centre for Tuberculosis, National TB Reference Laboratory & WHO Supranational TB Reference Laboratory, Johannesburg, Gauteng, South Africa
| |
Collapse
|
5
|
Petushkov VN, Vavilov MV, Ivanov IA, Ziganshin RH, Rodionova NS, Yampolsky IV, Tsarkova AS, Dubinnyi MA. Deazaflavin cofactor boosts earthworms Henlea bioluminescence. Org Biomol Chem 2023; 21:415-427. [PMID: 36530053 DOI: 10.1039/d2ob01946a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bioluminescence of Siberian earthworms Henlea sp. was found to be enhanced by two low molecular weight activators, termed ActH and ActS, found in the hot extracts. The fluorescence emission maximum of the activators matches the bioluminescence spectrum that peaks at 464 nm. We purified 4.3 and 8.8 micrograms of ActH and ActS from 200 worms and explored them using orbitrap HRMS with deep fragmentation and 1D/2D NMR equipped with cryoprobes. Their chemical structures were ascertained using chemical shift prediction services, structure elucidation software and database searches. ActH was identified as the riboflavin analoge archaeal cofactor F0, namely 7,8-didemethyl-8-hydroxy-5-deazariboflavin. ActS is a novel compound, namely ActH sulfated at the 3' ribityl hydroxyl. We designed and implemented a new four step synthesis strategy forActH that outperformed previous synthetic approaches. The synthetic ActH was identical to the natural one and activated Henlea sp. bioluminescence. The bioluminescence enhancement factor X was measured at different ActH concentrations and the Michaelis constant Km = 0.22 ± 0.01 μM was obtained by nonlinear regression. At an excess of synthetic ActH, the factor X was saturated at Xmax = 33.3 ± 0.5, thus opening an avenue to further characterisation of the Henlea sp. bioluminescence system. ActH did not produce bioluminescence without the luciferin with an as yet unknown chemical structure. We propose that ActH and the novel sulfated deazariboflavin ActS either emit the light of the Henlea sp. bioluminescence and/or accept hydride(s) donor upon luciferin oxidation.
Collapse
Affiliation(s)
- Valentin N Petushkov
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia
| | - Matvey V Vavilov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia.
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia.
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia.
| | - Natalia S Rodionova
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia
| | - Ilia V Yampolsky
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia.
| | - Aleksandra S Tsarkova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia. .,Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maxim A Dubinnyi
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia. .,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
6
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
7
|
Jaan S, Shah M, Ullah N, Amjad A, Javed MS, Nishan U, Mustafa G, Nawaz H, Ahmed S, Ojha SC. Multi-epitope chimeric vaccine designing and novel drug targets prioritization against multi-drug resistant Staphylococcus pseudintermedius. Front Microbiol 2022; 13:971263. [PMID: 35992654 PMCID: PMC9386485 DOI: 10.3389/fmicb.2022.971263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Biofilm synthesizing multi-drug resistant Staphylococcus pseudintermedius bacteria has been recognized as the human infectious agent. It has been detected in the diseases of skin, ear, and postoperative infections. Its infections are becoming a major health problem due to its multi-drug resistance capabilities. However, no commercial vaccine for the treatment of its infections is currently available in the market. Here we employed the subtractive proteomics and reverse vaccinology approach to determine the potential novel drug and vaccine targets against S. pseudintermedius infections in humans. After screening the core-proteome of the 39 complete genomes of S. pseudintermedius, 2 metabolic pathways dependent and 34 independent proteins were determined as novel potential drug targets. Two proteins were found and used as potential candidates for designing the chimeric vaccine constructs. Depending on the properties such as antigenicity, toxicity and solubility, multi-epitope based vaccines constructs were designed. For immunogenicity enhancement, different specific sequences like linkers, PADRE sequences and molecular adjuvants were added. Molecular docking and molecular dynamic simulation analyses were performed to evaluate the prioritized vaccine construct’s interactions with human immune cells HLA and TLR4. Finally, the cloning and expression ability of the vaccine construct was determined in the bacterial cloning system and human body immune response was predicted through immune simulation analysis. In conclusion, this study proposed the potential drug and vaccine targets and also designed a chimera vaccine to be tested and validated against infectious S. pseudintermedius species.
Collapse
Affiliation(s)
- Samavia Jaan
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Mohibullah Shah, ;
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Sameem Javed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Suvash Chandra Ojha,
| |
Collapse
|
8
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
9
|
Liang C, Rios-Miguel AB, Jarick M, Neurgaonkar P, Girard M, François P, Schrenzel J, Ibrahim ES, Ohlsen K, Dandekar T. Staphylococcusaureus Transcriptome Data and Metabolic Modelling Investigate the Interplay of Ser/Thr Kinase PknB, Its Phosphatase Stp, the glmR/yvcK Regulon and the cdaA Operon for Metabolic Adaptation. Microorganisms 2021; 9:microorganisms9102148. [PMID: 34683468 PMCID: PMC8537086 DOI: 10.3390/microorganisms9102148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB−) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.
Collapse
Affiliation(s)
- Chunguang Liang
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
| | - Ana B. Rios-Miguel
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
- Department of Environmental Microbiology, Institute of Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Marcel Jarick
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
| | - Priya Neurgaonkar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Eslam S. Ibrahim
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
- Correspondence: (K.O.); (T.D.); Tel.: +49-931-31-82155 (K.O.); +49-931-31-84551 (T.D.)
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
- Correspondence: (K.O.); (T.D.); Tel.: +49-931-31-82155 (K.O.); +49-931-31-84551 (T.D.)
| |
Collapse
|
10
|
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021. [PMID: 33851978 PMCID: PMC8498797 DOI: 10.1093/femsre/fuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Many bacteria and archaea produce the redox cofactor F420. F420 is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F420 to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F420 was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F420 was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F420-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F420 and identified enantioselective F420H2-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F420 to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F420 have shifted, and new F420-dependent organisms and processes continue to be discovered.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
11
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
12
|
Nguyen TVA, Anthony RM, Cao TTH, Bañuls AL, Nguyen VAT, Vu DH, Nguyen NV, Alffenaar JWC. Delamanid Resistance: Update and Clinical Management. Clin Infect Dis 2021; 71:3252-3259. [PMID: 32521000 DOI: 10.1093/cid/ciaa755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Delamanid, a-first-in-class bicyclic nitroimidazole, was recently approved for multidrug-resistant tuberculosis treatment. Pitted against the hope for improving treatment outcomes is the threat of the rapid resistance emergence. This review provides information on the mechanisms of action, resistance emergence, and drug susceptibility testing (DST) for delamanid. Delamanid resistance has already been reported in both in vitro experiments and clinical settings. Although mutations conferring delamanid resistance have been identified in fbiA, fbiB, fbiC, ddn, and fgd1 genes of Mycobacterium tuberculosis, knowledge about the molecular resistance mechanisms is limited, and there remains no standardized DST method. The rapid acquisition of delamanid resistance emphasizes the need for optimal use of new drugs, the need for drug resistance surveillance, and a comprehensive understanding of drug resistance mechanisms. Further studies are necessary to investigate genetic and phenotypic changes that determine clinically relevant delamanid resistance to help develop a rapid delamanid DST.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.,LMI Drug Resistance in South East Asia, Hanoi, Vietnam
| | - Richard M Anthony
- Tuberculosis reference laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thi Thu Huyen Cao
- The National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Anne-Laure Bañuls
- LMI Drug Resistance in South East Asia, Hanoi, Vietnam.,MIVEGEC, University of Montpellier-IRD-CNRS, Montpellier, France
| | - Van Anh Thi Nguyen
- Laboratory of Tuberculosis, Department of Bacteriology, National Institute of Hygiene and Epidemiology of Vietnam, Hanoi, Vietnam
| | - Dinh Hoa Vu
- The National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis. Sci Rep 2020; 10:15938. [PMID: 32994436 PMCID: PMC7525490 DOI: 10.1038/s41598-020-72854-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, glucosamine-6-phosphate (GlcN6P) synthase, GlmS, is an enzyme required for the synthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a precursor of peptidoglycan. In Bacillus subtilis, an UDP-GlcNAc binding protein, GlmR (formerly YvcK), essential for growth on non-glycolytic carbon sources, has been proposed to stimulate GlmS activity; this activation could be antagonized by UDP-GlcNAc. Using purified proteins, we demonstrate that GlmR directly stimulates GlmS activity and the presence of UDP-GlcNAc (at concentrations above 0.1 mM) prevents this regulation. We also showed that YvcJ, whose gene is associated with yvcK (glmR), interacts with GlmR in an UDP-GlcNAc dependent manner. Strains producing GlmR variants unable to interact with YvcJ show decreased transformation efficiency similar to that of a yvcJ null mutant. We therefore propose that, depending on the intracellular concentration of UDP-GlcNAc, GlmR interacts with either YvcJ or GlmS. When UDP-GlcNAc concentration is high, this UDP-sugar binds to YvcJ and to GlmR, blocking the stimulation of GlmS activity and driving the interaction between GlmR and YvcJ to probably regulate the cellular role of the latter. When the UDP-GlcNAc level is low, GlmR does not interact with YvcJ and thus does not regulate its cellular role but interacts with GlmS to stimulate its activity.
Collapse
|
14
|
Jeong YC, Lee KS. A proposed carbon-utilization and virulence protein A, CuvA (Rv1422), from Mycobacterium tuberculosis H37Rv: crystallization, X-ray diffraction analysis and ligand binding. Acta Crystallogr F Struct Biol Commun 2020; 76:314-319. [PMID: 32627747 PMCID: PMC7336361 DOI: 10.1107/s2053230x20008626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium tuberculosis possesses the ability to undergo physiological adaptations in order to persist during the prolonged course of infection despite the active immune response of the host and in order to overcome multiple environmental changes. Previous studies have proposed that M. tuberculosis CuvA (Rv1422; MtCuvA) might play a critical role in the adaptation of the bacterium to environmental changes, such as nutrient utilization and alteration of the growth rate. However, the detailed function of MtCuvA still remains unclear owing to a lack of structural information. To better understand its role in host adaptation, MtCuvA was purified to homogeneity and was crystallized for the first time using the hanging-drop vapor-diffusion method. The crystal of MtCuvA diffracted to a resolution of 2.1 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 47.27, b = 170.93, c = 178.10 Å. The calculated Matthews coefficient (VM) was 2.4 Å3 Da-1, with a solvent content of 48.02%, and thus four molecules appeared to be present in the asymmetric unit. Moreover, it is reported that MtCuvA can bind to the cell-wall precursor components uridine diphosphate (UDP)-glucose and UDP-N-acetylglucosamine.
Collapse
Affiliation(s)
- Yoon Chae Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Ki Seog Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
15
|
Convergent pathways to biosynthesis of the versatile cofactor F 420. Curr Opin Struct Biol 2020; 65:9-16. [PMID: 32570108 DOI: 10.1016/j.sbi.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
Cofactor F420 is historically known as the methanogenic redox cofactor, having a key role in the central metabolism of methanogens, and archaea in general. Over the past decade, however, it has become evident this cofactor is more widely distributed across archaeal and bacterial taxa, suggesting a broader role for F420 in various metabolic and ecological capacities. In this article, we focus on the recent findings that have led to a deeper understanding of F420 biosynthetic enzymes and metabolites across microorganisms.
Collapse
|
16
|
Grinter R, Ney B, Brammananth R, Barlow CK, Cordero PRF, Gillett DL, Izoré T, Cryle MJ, Harold LK, Cook GM, Taiaroa G, Williamson DA, Warden AC, Oakeshott JG, Taylor MC, Crellin PK, Jackson CJ, Schittenhelm RB, Coppel RL, Greening C. Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F 420-0 in Mycobacteria. mSystems 2020; 5:e00389-20. [PMID: 32430409 PMCID: PMC7253369 DOI: 10.1128/msystems.00389-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
F420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F420 in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged. In this work, we combined metabolomic, genetic, and structural analyses to resolve these discrepancies and determine the basis of F420 biosynthesis in mycobacterial cells. We show that, in whole cells of Mycobacterium smegmatis, phosphoenolpyruvate rather than 2-phospholactate stimulates F420 biosynthesis. Analysis of F420 biosynthesis intermediates present in M. smegmatis cells harboring genetic deletions at each step of the biosynthetic pathway confirmed that phosphoenolpyruvate is then used to produce the novel precursor compound dehydro-F420-0. To determine the structural basis of dehydro-F420-0 production, we solved high-resolution crystal structures of the enzyme responsible (FbiA) in apo-, substrate-, and product-bound forms. These data show the essential role of a single divalent cation in coordinating the catalytic precomplex of this enzyme and demonstrate that dehydro-F420-0 synthesis occurs through a direct substrate transfer mechanism. Together, these findings resolve the biosynthetic pathway of F420 in mycobacteria and have significant implications for understanding the emergence of antitubercular prodrug resistance.IMPORTANCE Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F420, and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F420 is important, as this process can be targeted to create new drugs to combat infections like tuberculosis. In this study, we show that mycobacteria make F420 in a way that is different from other bacteria. We studied the molecular machinery that mycobacteria use to make F420, determining the chemical mechanism for this process and identifying a novel chemical intermediate. These findings also have clinical relevance, given that two new prodrugs for tuberculosis treatment are activated by F420.
Collapse
Affiliation(s)
- Rhys Grinter
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blair Ney
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- CSIRO Land & Water, Canberra, ACT, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Rajini Brammananth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher K Barlow
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul R F Cordero
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David L Gillett
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thierry Izoré
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Max J Cryle
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam K Harold
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | - Paul K Crellin
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
18
|
A revised biosynthetic pathway for the cofactor F 420 in prokaryotes. Nat Commun 2019; 10:1558. [PMID: 30952857 PMCID: PMC6450877 DOI: 10.1038/s41467-019-09534-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
Cofactor F420 plays critical roles in primary and secondary metabolism in a range of bacteria and archaea as a low-potential hydride transfer agent. It mediates a variety of important redox transformations involved in bacterial persistence, antibiotic biosynthesis, pro-drug activation and methanogenesis. However, the biosynthetic pathway for F420 has not been fully elucidated: neither the enzyme that generates the putative intermediate 2-phospho-l-lactate, nor the function of the FMN-binding C-terminal domain of the γ-glutamyl ligase (FbiB) in bacteria are known. Here we present the structure of the guanylyltransferase FbiD and show that, along with its archaeal homolog CofC, it accepts phosphoenolpyruvate, rather than 2-phospho-l-lactate, as the substrate, leading to the formation of the previously uncharacterized intermediate dehydro-F420-0. The C-terminal domain of FbiB then utilizes FMNH2 to reduce dehydro-F420-0, which produces mature F420 species when combined with the γ-glutamyl ligase activity of the N-terminal domain. These new insights have allowed the heterologous production of F420 from a recombinant F420 biosynthetic pathway in Escherichia coli. Cofactor F420 plays crucial roles in bacterial and archaeal metabolism, but its biosynthetic pathway is not fully understood. Here, the authors present the structure of one of the enzymes and provide experimental evidence for a substantial revision of the pathway, including the identification of a new intermediate.
Collapse
|
19
|
Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis (Edinb) 2017; 109:17-27. [PMID: 29559117 DOI: 10.1016/j.tube.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Despite the low expensive and effective four-drug treatment regimen (isoniazid, rifampicin, pyrazinamide and ethambutol) was introduced 40 years ago, TB continues to cause considerable morbidity and mortality worldwide. In 2015, the WHO estimated a total of 10.4 million new tuberculosis (TB) cases worldwide. Currently, the increased number of multidrug-resistant (MDR-TB), extensively-drug resistant (XDR-TB) and in some recent reports, totally drug-resistant TB (TDR-TB) cases raises concerns about this disease. MDR-TB and XDR-TB have lower cure rates and higher mortality levels due to treatment problems. Novel drugs and regimens for all forms of TB have emerged in recent years. Moreover, scientific interest has recently increased in the field of host-directed therapies (HDTs) in order to identify new treatments for MDR-TB. In this review, we offer an update on the discovery of new drugs for TB therapy with a glance at molecular mechanisms leading to drug resistance in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michel Drancourt
- Institut Hospital-Universitaire (IHU) Mediterranée Infection, AP-HM, Marseille, France; Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Mohsen Heidary
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Ney B, Carere CR, Sparling R, Jirapanjawat T, Stott MB, Jackson CJ, Oakeshott JG, Warden AC, Greening C. Cofactor Tail Length Modulates Catalysis of Bacterial F 420-Dependent Oxidoreductases. Front Microbiol 2017; 8:1902. [PMID: 29021791 PMCID: PMC5623714 DOI: 10.3389/fmicb.2017.01902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
F420 is a microbial cofactor that mediates a wide range of physiologically important and industrially relevant redox reactions, including in methanogenesis and tetracycline biosynthesis. This deazaflavin comprises a redox-active isoalloxazine headgroup conjugated to a lactyloligoglutamyl tail. Here we studied the catalytic significance of the oligoglutamate chain, which differs in length between bacteria and archaea. We purified short-chain F420 (two glutamates) from a methanogen isolate and long-chain F420 (five to eight glutamates) from a recombinant mycobacterium, confirming their different chain lengths by HPLC and LC/MS analysis. F420 purified from both sources was catalytically compatible with purified enzymes from the three major bacterial families of F420-dependent oxidoreductases. However, long-chain F420 bound to these enzymes with a six- to ten-fold higher affinity than short-chain F420. The cofactor side chain also significantly modulated the kinetics of the enzymes, with long-chain F420 increasing the substrate affinity (lower Km) but reducing the turnover rate (lower kcat) of the enzymes. Molecular dynamics simulations and comparative structural analysis suggest that the oligoglutamate chain of F420 makes dynamic electrostatic interactions with conserved surface residues of the oxidoreductases while the headgroup binds the catalytic site. In conjunction with the kinetic data, this suggests that electrostatic interactions made by the oligoglutamate tail result in higher-affinity, lower-turnover catalysis. Physiologically, we propose that bacteria have selected for long-chain F420 to better control cellular redox reactions despite tradeoffs in catalytic rate. Conversely, this suggests that industrial use of shorter-length F420 will greatly increase the rates of bioremediation and biocatalysis processes relying on purified F420-dependent oxidoreductases.
Collapse
Affiliation(s)
- Blair Ney
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand
| | - Richard Sparling
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand.,Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew B Stott
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - John G Oakeshott
- Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Andrew C Warden
- Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| |
Collapse
|
21
|
YvcK, a protein required for cell wall integrity and optimal carbon source utilization, binds uridine diphosphate-sugars. Sci Rep 2017. [PMID: 28646159 PMCID: PMC5482804 DOI: 10.1038/s41598-017-04064-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In Bacillus subtilis, Listeria monocytogenes and in two Mycobacteria, it was previously shown that yvcK is a gene required for normal cell shape, for optimal carbon source utilization and for virulence of pathogenic bacteria. Here we report that the B. subtilis protein YvcK binds to Uridine diphosphate-sugars like Uridine diphosphate-Glucose (UDP-Glc) and Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) in vitro. Using the crystal structure of Bacillus halodurans YvcK, we identified residues involved in this interaction. We tested the effect of point mutations affecting the ability of YvcK to bind UDP-sugars on B. subtilis physiology and on cell size. Indeed, it was shown that UDP-Glc serves as a metabolic signal to regulate B. subtilis cell size. Interestingly, we observed that, whereas a yvcK deletion results in the formation of unusually large cells, inactivation of YvcK UDP-sugar binding site does not affect cell length. However, these point mutations result in an increased sensitivity to bacitracin, an antibiotic which targets peptidoglycan synthesis. We thus propose that UDP-GlcNAc, a precursor of peptidoglycan, could be a good physiological ligand candidate of YvcK.
Collapse
|
22
|
Pensinger DA, Boldon KM, Chen GY, Vincent WJB, Sherman K, Xiong M, Schaenzer AJ, Forster ER, Coers J, Striker R, Sauer JD. The Listeria monocytogenes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabolism, and Virulence. PLoS Pathog 2016; 12:e1006001. [PMID: 27806131 PMCID: PMC5091766 DOI: 10.1371/journal.ppat.1006001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
Obstacles to bacterial survival and replication in the cytosol of host cells, and the mechanisms used by bacterial pathogens to adapt to this niche are not well understood. Listeria monocytogenes is a well-studied Gram-positive foodborne pathogen that has evolved to invade and replicate within the host cell cytosol; yet the mechanisms by which it senses and responds to stress to survive in the cytosol are largely unknown. To assess the role of the L. monocytogenes penicillin-binding-protein and serine/threonine associated (PASTA) kinase PrkA in stress responses, cytosolic survival and virulence, we constructed a ΔprkA deletion mutant. PrkA was required for resistance to cell wall stress, growth on cytosolic carbon sources, intracellular replication, cytosolic survival, inflammasome avoidance and ultimately virulence in a murine model of Listeriosis. In Bacillus subtilis and Mycobacterium tuberculosis, homologues of PrkA phosphorylate a highly conserved protein of unknown function, YvcK. We found that, similar to PrkA, YvcK is also required for cell wall stress responses, metabolism of glycerol, cytosolic survival, inflammasome avoidance and virulence. We further demonstrate that similar to other organisms, YvcK is directly phosphorylated by PrkA, although the specific site(s) of phosphorylation are not highly conserved. Finally, analysis of phosphoablative and phosphomimetic mutants of YvcK in vitro and in vivo demonstrate that while phosphorylation of YvcK is irrelevant to metabolism and cell wall stress responses, surprisingly, a phosphomimetic, nonreversible negative charge of YvcK is detrimental to cytosolic survival and virulence in vivo. Taken together our data identify two novel virulence factors essential for cytosolic survival and virulence of L. monocytogenes. Furthermore, our data demonstrate that regulation of YvcK phosphorylation is tightly controlled and is critical for virulence. Finally, our data suggest that yet to be identified substrates of PrkA are essential for cytosolic survival and virulence of L. monocytogenes and illustrate the importance of studying protein phosphorylation in the context of infection.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle M. Boldon
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Grischa Y. Chen
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - William J. B. Vincent
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle Sherman
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Meng Xiong
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Emily R. Forster
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Rob Striker
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- W. S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
23
|
Hoffmann H, Kohl TA, Hofmann-Thiel S, Merker M, Beckert P, Jaton K, Nedialkova L, Sahalchyk E, Rothe T, Keller PM, Niemann S. Delamanid and Bedaquiline Resistance in Mycobacterium tuberculosis Ancestral Beijing Genotype Causing Extensively Drug-Resistant Tuberculosis in a Tibetan Refugee. Am J Respir Crit Care Med 2016; 193:337-40. [PMID: 26829425 DOI: 10.1164/rccm.201502-0372le] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Harald Hoffmann
- 1 synlab MVZ Gauting Munich-Gauting, Germany.,2 World Health Organization Supranational Reference Laboratory of Tuberculosis Munich-Gauting, Germany
| | - Thomas A Kohl
- 3 Leibniz-Zentrum für Medizin und Biowissenschaften Borstel, Germany
| | - Sabine Hofmann-Thiel
- 1 synlab MVZ Gauting Munich-Gauting, Germany.,2 World Health Organization Supranational Reference Laboratory of Tuberculosis Munich-Gauting, Germany
| | - Matthias Merker
- 3 Leibniz-Zentrum für Medizin und Biowissenschaften Borstel, Germany.,4 German Center for Infection Research Borstel, Germany
| | - Patrick Beckert
- 3 Leibniz-Zentrum für Medizin und Biowissenschaften Borstel, Germany.,4 German Center for Infection Research Borstel, Germany
| | - Katia Jaton
- 5 University Hospital Lausanne Lausanne, Switzerland
| | - Lubov Nedialkova
- 2 World Health Organization Supranational Reference Laboratory of Tuberculosis Munich-Gauting, Germany
| | - Evgeni Sahalchyk
- 2 World Health Organization Supranational Reference Laboratory of Tuberculosis Munich-Gauting, Germany
| | - Thomas Rothe
- 6 Zürcher Höhenklinik Davos Davos Clavadel, Switzerland
| | - Peter M Keller
- 7 Institut für Medizinische Mikrobiologie Zürich, Switzerland
| | - Stefan Niemann
- 3 Leibniz-Zentrum für Medizin und Biowissenschaften Borstel, Germany.,4 German Center for Infection Research Borstel, Germany
| |
Collapse
|
24
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
25
|
Gottlieb K, Wacher V, Sliman J, Pimentel M. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther 2016; 43:197-212. [PMID: 26559904 PMCID: PMC4737270 DOI: 10.1111/apt.13469] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/29/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and a possible role for methane as a gasotransmitter. Archaea are the only confirmed biological sources of methane in nature and Methanobrevibacter smithii is the predominant methanogen in the human intestine. AIM To review the biosynthesis and composition of archaeal cell membranes, archaeal methanogenesis and the mechanism of action of statins in this context. METHODS Narrative review of the literature. RESULTS Statins can inhibit archaeal cell membrane biosynthesis without affecting bacterial numbers as demonstrated in livestock and humans. This opens the possibility of a therapeutic intervention that targets a specific aetiological factor of constipation while protecting the intestinal microbiome. While it is generally believed that statins inhibit methane production via their effect on cell membrane biosynthesis, mediated by inhibition of the HMG-CoA reductase, there is accumulating evidence for an alternative or additional mechanism of action where statins inhibit methanogenesis directly. It appears that this other mechanism may predominate when the lactone form of statins, particularly lovastatin lactone, is administered. CONCLUSIONS Clinical development appears promising. A phase 2 clinical trial is currently in progress that evaluates the effect of lovastatin lactone on methanogenesis and symptoms in patients with irritable bowel syndrome with constipation. The review concludes with an outlook for the future and subsequent work that needs to be done.
Collapse
Affiliation(s)
| | - V. Wacher
- Synthetic BiologicsInc.RockvilleMDUSA
| | - J. Sliman
- Synthetic BiologicsInc.RockvilleMDUSA
| | - M. Pimentel
- GastroenterologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
26
|
Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59:5316-23. [PMID: 26100695 DOI: 10.1128/aac.00308-15] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
Alleviating the burden of tuberculosis (TB) requires an understanding of the genetic basis that determines the emergence of drug-resistant mutants. PA-824 (pretomanid) is a bicyclic nitroimidazole class compound presently undergoing the phase III STAND clinical trial, despite lacking identifiable genetic markers for drug-specific resistant Mycobacterium tuberculosis. In the present study, we aimed to characterize the genetic polymorphisms of spontaneously generated PA-824-resistant mutant strains by surveying drug metabolism genes for potential mutations. Of the 183 independently selected PA-824-resistant M. tuberculosis mutants, 83% harbored a single mutation in one of five nonessential genes associated with either PA-824 prodrug activation (ddn, 29%; fgd1, 7%) or the tangential F420 biosynthetic pathway (fbiA, 19%; fbiB, 2%; fbiC, 26%). Crystal structure analysis indicated that identified mutations were specifically located within the protein catalytic domain that would hinder the activity of the enzymes required for prodrug activation. This systematic analysis conducted of genotypes resistant to PA-824 may contribute to future efforts in monitoring clinical strain susceptibility with this new drug therapy.
Collapse
|
27
|
Valle ER, Henderson G, Janssen PH, Cox F, Alexander TW, McAllister TA. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions. Can J Microbiol 2015; 61:417-28. [DOI: 10.1139/cjm-2014-0873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, methanogen-specific coenzyme F420autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.
Collapse
Affiliation(s)
- Edith R. Valle
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Gemma Henderson
- Grasslands Research Centre, AgResearch, Palmerston North 4442, New Zealand
| | - Peter H. Janssen
- Grasslands Research Centre, AgResearch, Palmerston North 4442, New Zealand
| | - Faith Cox
- Grasslands Research Centre, AgResearch, Palmerston North 4442, New Zealand
| | - Trevor W. Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
28
|
Wang Y, Xu H, Harich KC, White RH. Identification and Characterization of a Tyramine–Glutamate Ligase (MfnD) Involved in Methanofuran Biosynthesis. Biochemistry 2014; 53:6220-30. [DOI: 10.1021/bi500879h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yu Wang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Kim C. Harich
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Allen KD, White RH. Identification of structurally diverse methanofuran coenzymes in methanococcales that are both N-formylated and N-acetylated. Biochemistry 2014; 53:6199-210. [PMID: 25203397 DOI: 10.1021/bi500973h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanofuran (MF) is a coenzyme necessary for the first step of methanogenesis from CO2. The well-characterized MF core structure is 4-[N-(γ-l-glutamyl-γ-l-glutamyl)-p-(β-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan (APMF-γ-Glu2). Three different MF structures that differ on the basis of the composition of their side chains have been determined previously. Here, we use liquid chromatography coupled with high-resolution mass spectrometry and a variety of biochemical methods to deduce the unique structures of MFs present in four different methanogens in the order Methanococcales. This is the first detailed characterization of the MF occurring in methanogens of this order. MF in each of these organisms contains the expected APMF-γ-Glu2; however, the composition of the side chain is different from that of the previously described MF structures. In Methanocaldococcus jannaschii, additional γ-linked glutamates that range from 7 to 12 residues are present. The MF coenzymes in Methanococcus maripaludis, Methanococcus vannielii, and Methanothermococcus okinawensis also have additional glutamate residues but interestingly also contain a completely different chemical moiety in the middle of the side chain that we have identified as N-(3-carboxy-2- or 3-hydroxy-1-oxopropyl)-l-aspartic acid. This addition results in the terminal γ-linked glutamates being incorporated in the opposite orientation. In addition to these nonacylated MF coenzymes, we also identified the corresponding N-formyl-MF and, surprisingly, N-acetyl-MF derivatives. N-Acetyl-MF has never been observed or implied to be functioning in nature and may represent a new route for acetate formation in methanogens.
Collapse
Affiliation(s)
- Kylie D Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061-0308, United States
| | | |
Collapse
|
30
|
Mycobacterial gene cuvA is required for optimal nutrient utilization and virulence. Infect Immun 2014; 82:4104-17. [PMID: 25047842 DOI: 10.1128/iai.02207-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To persist and cause disease in the host, Mycobacterium tuberculosis must adapt to its environment during infection. Adaptations include changes in nutrient utilization and alterations in growth rate. M. tuberculosis Rv1422 is a conserved gene of unknown function that was found in a genetic screen to interact with the mce4 cholesterol uptake locus. The Rv1422 protein is phosphorylated by the M. tuberculosis Ser/Thr kinases PknA and PknB, which regulate cell growth and cell wall synthesis. Bacillus subtilis strains lacking the Rv1422 homologue yvcK grow poorly on several carbon sources, and yvcK is required for proper localization of peptidoglycan synthesis. Here we show that Mycobacterium smegmatis and M. tuberculosis strains lacking Rv1422 have growth defects in minimal medium containing limiting amounts of several different carbon sources. These strains also have morphological abnormalities, including shortened and bulging cells, suggesting a cell wall defect. In both mycobacterial species, the Rv1422 protein localizes uniquely to the growing cell pole, the site of peptidoglycan synthesis in mycobacteria. An M. tuberculosis ΔRv1422 strain is markedly attenuated for virulence in a mouse infection model, where it elicits decreased inflammation in the lungs and shows impaired bacterial persistence. These findings led us to name this gene cuvA (carbon utilization and virulence protein A) and to suggest a model in which deletion of cuvA leads to changes in nutrient uptake and/or metabolism that affect cell wall structure, morphology, and virulence. Its role in virulence suggests that CuvA may be a useful target for novel inhibitors of M. tuberculosis during infection.
Collapse
|
31
|
Bruel L, Sulzenbacher G, Cervera Tison M, Pujol A, Nicoletti C, Perrier J, Galinier A, Ropartz D, Fons M, Pompeo F, Giardina T. α-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities. J Biol Chem 2011; 286:40814-23. [PMID: 21931163 PMCID: PMC3220449 DOI: 10.1074/jbc.m111.286039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/03/2011] [Indexed: 11/06/2022] Open
Abstract
α-Galactosides are non-digestible carbohydrates widely distributed in plants. They are a potential source of energy in our daily food, and their assimilation by microbiota may play a role in obesity. In the intestinal tract, they are degraded by microbial glycosidases, which are often modular enzymes with catalytic domains linked to carbohydrate-binding modules. Here we introduce a bifunctional enzyme from the human intestinal bacterium Ruminococcus gnavus E1, α-galactosidase/sucrose kinase (AgaSK). Sequence analysis showed that AgaSK is composed of two domains: one closely related to α-galactosidases from glycoside hydrolase family GH36 and the other containing a nucleotide-binding motif. Its biochemical characterization showed that AgaSK is able to hydrolyze melibiose and raffinose to galactose and either glucose or sucrose, respectively, and to specifically phosphorylate sucrose on the C6 position of glucose in the presence of ATP. The production of sucrose-6-P directly from raffinose points toward a glycolytic pathway in bacteria, not described so far. The crystal structures of the galactosidase domain in the apo form and in complex with the product shed light onto the reaction and substrate recognition mechanisms and highlight an oligomeric state necessary for efficient substrate binding and suggesting a cross-talk between the galactose and kinase domains.
Collapse
Affiliation(s)
- Laëtitia Bruel
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
- the IMM/Laboratoire de Chimie Bactérienne, UPR CNRS 9043, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, and
| | - Gerlind Sulzenbacher
- the Architecture et Fonction des Macromolécules Biologiques UMR CNRS 6098, Université Aix-Marseille, Campus Luminy, Case 932, F-13288 Marseille Cedex 09
| | - Marine Cervera Tison
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
| | - Ange Pujol
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
| | - Cendrine Nicoletti
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
| | - Josette Perrier
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
| | - Anne Galinier
- the IMM/Laboratoire de Chimie Bactérienne, UPR CNRS 9043, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, and
| | - David Ropartz
- the Laboratoire de Spectrométrie de Masse, Plate-forme Biopolymères-Biologie Structurale, INRA UR1268 Biopolymères Interactions Assemblages, Rue de la Géraudière, B.P. 71627, F-44316 Nantes cedex 3, France
| | - Michel Fons
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
| | - Frédérique Pompeo
- the IMM/Laboratoire de Chimie Bactérienne, UPR CNRS 9043, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, and
| | - Thierry Giardina
- From the Faculté des Sciences et Techniques Saint-Jérôme, Université Paul Cézanne, ISM2/BiosCiences UMR CNRS 6263, service 342, 13397 Marseille Cedex 20
| |
Collapse
|
32
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
33
|
More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:973848. [PMID: 21559116 PMCID: PMC3087415 DOI: 10.1155/2011/973848] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/07/2010] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
Collapse
|
34
|
Foulquier E, Pompeo F, Bernadac A, Espinosa L, Galinier A. The YvcK protein is required for morphogenesis via localization of PBP1 under gluconeogenic growth conditions in Bacillus subtilis. Mol Microbiol 2011; 80:309-18. [PMID: 21320184 DOI: 10.1111/j.1365-2958.2011.07587.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The YvcK protein was previously shown to be dispensable when B. subtilis cells are grown on glycolytic carbon sources but essential for growth and normal shape on gluconeogenic carbon sources. Here, we report that YvcK is localized as a helical-like pattern in the cell. This localization seems independent of the actin-like protein, MreB. A YvcK overproduction restores a normal morphology in an mreB mutant strain when bacteria are grown on PAB medium. Reciprocally, an additional copy of mreB restores a normal growth and morphology in a yvcK mutant strain when bacteria are grown on a gluconeogenic carbon source like gluconate. Furthermore, as already observed for the mreB mutant, the deletion of the gene encoding the penicillin-binding protein PBP1 restores growth and normal shape of a yvcK mutant on gluconeogenic carbon sources. The PBP1 is delocalized in an mreB mutant grown in the absence of magnesium and in a yvcK mutant grown on gluconate medium. Interestingly, its proper localization can be rescued by YvcK overproduction. Therefore, in gluconeogenic growth conditions, YvcK is required for the correct localization of PBP1 and hence for displaying a normal rod shape.
Collapse
Affiliation(s)
- Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UPR 9043 Service d'Imagerie Cellulaire, IFR 88, CNRS, Université de la Méditerranée, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
35
|
Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. J Bacteriol 2010; 192:5788-98. [PMID: 20675471 DOI: 10.1128/jb.00425-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regimens targeting Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), require long courses of treatment and a combination of three or more drugs. An increase in drug-resistant strains of M. tuberculosis demonstrates the need for additional TB-specific drugs. A notable feature of M. tuberculosis is coenzyme F(420), which is distributed sporadically and sparsely among prokaryotes. This distribution allows for comparative genomics-based investigations. Phylogenetic profiling (comparison of differential gene content) based on F(420) biosynthesis nominated many actinobacterial proteins as candidate F(420)-dependent enzymes. Three such families dominated the results: the luciferase-like monooxygenase (LLM), pyridoxamine 5'-phosphate oxidase (PPOX), and deazaflavin-dependent nitroreductase (DDN) families. The DDN family was determined to be limited to F(420)-producing species. The LLM and PPOX families were observed in F(420)-producing species as well as species lacking F(420) but were particularly numerous in many actinobacterial species, including M. tuberculosis. Partitioning the LLM and PPOX families based on an organism's ability to make F(420) allowed the application of the SIMBAL (sites inferred by metabolic background assertion labeling) profiling method to identify F(420)-correlated subsequences. These regions were found to correspond to flavonoid cofactor binding sites. Significantly, these results showed that M. tuberculosis carries at least 28 separate F(420)-dependent enzymes, most of unknown function, and a paucity of flavin mononucleotide (FMN)-dependent proteins in these families. While prevalent in mycobacteria, markers of F(420) biosynthesis appeared to be absent from the normal human gut flora. These findings suggest that M. tuberculosis relies heavily on coenzyme F(420) for its redox reactions. This dependence and the cofactor's rarity may make F(420)-related proteins promising drug targets.
Collapse
|
36
|
Otte MM, Escalante-Semerena JC. Biochemical characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase (CobY) enzyme of the hyperthermophilic archaeon Methanocaldococcus jannaschii. Biochemistry 2009; 48:5882-9. [PMID: 19489548 DOI: 10.1021/bi8023114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The archaeal cobY gene encodes the nonorthologous replacement of the bacterial NTP:AdoCbi kinase (EC 2.7.7.62)/GTP:AdoCbi-P guanylyltransferase (EC 3.1.3.73) and is required for de novo synthesis of AdoCbl (coenzyme B(12)). Here we show that ORF MJ1117 of the hyperthermophilic, methanogenic archaeon Methanocaldococcus jannaschii encodes a CobY protein (Mj CobY) that transfers the GMP moiety of GTP to AdoCbi-P to form AdoCbi-GDP. Results from isothermal titration calorimetry (ITC) experiments show that MjCobY binds GTP (K(d) = 5 muM), but it does not bind the GTP analogues GMP-PNP (guanosine 5'-(beta,gamma)-imidotriphosphate) or GMP-PCP (guanylyl 5'-(beta,gamma)-methylenediphosphonate) nor GDP. Results from ITC experiments indicate that MjCobY binds one GTP per dimer. Results from in vivo studies support the conclusion that the 5'-deoxyadenosyl upper ligand of AdoCbi-P is required for MjCobY function. Consistent with these findings, MjCobY displayed high affinity for AdoCbi-P (K(d) = 0.76 muM) but did not bind nonadenosylated Cbi-P. Kinetic parameters for theMj CobY reaction were determined. Results from circular dichroism studies indicate that, in isolation, MjCobY denatures at 80 degrees C with a concomitant loss of activity. We propose that ORF MJ1117 of M. jannaschii be annotated as cobY to reflect its involvement in AdoCbl biosynthesis.
Collapse
Affiliation(s)
- Michele M Otte
- Department of Bacteriology, University of Wisconsin at Madison, 1550 Linden Drive, Madison, Wisconsin 53706-1521, USA
| | | |
Collapse
|
37
|
Characterization of YvcJ, a conserved P-loop-containing protein, and its implication in competence in Bacillus subtilis. J Bacteriol 2008; 191:1556-64. [PMID: 19074378 DOI: 10.1128/jb.01493-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The uncharacterized protein family UPF0042 of the Swiss-Prot database is predicted to be a member of the conserved group of bacterium-specific P-loop-containing proteins. Here we show that two of its members, YvcJ from Bacillus subtilis and YhbJ, its homologue from Escherichia coli, indeed bind and hydrolyze nucleotides. The cellular function of yvcJ was then addressed. In contrast to results recently obtained for E. coli, which indicated that yhbJ mutants strongly overproduced glucosamine-6-phosphate synthase (GlmS), comparison of the wild type with the yvcJ mutant of B. subtilis showed that GlmS expression was quite similar in the two strains. However, in mutants defective in yvcJ, the transformation efficiency and the fraction of cells that expressed competence were reduced. Furthermore, our data show that YvcJ positively controls the expression of late competence genes. The overexpression of comK or comS compensates for the decrease in competence of the yvcJ mutant. Our results show that even if YvcJ and YhbJ belong to the same family of P-loop-containing proteins, the deletion of corresponding genes has different consequences in B. subtilis and in E. coli.
Collapse
|