1
|
Kang H, Maurer LM, Cheng J, Smyers M, Klei LR, Hu D, Hofstatter Azambuja J, Murai MJ, Mady A, Ahmad E, Trotta M, Klei HB, Liu M, Ekambaram P, Nikolovska-Coleska Z, Chen BB, McAllister-Lucas LM, Lucas PC. A small-molecule inhibitor of BCL10-MALT1 interaction abrogates progression of diffuse large B cell lymphoma. J Clin Invest 2025; 135:e164573. [PMID: 40231473 DOI: 10.1172/jci164573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, and the activated B cell-like subtype (ABC-DLBCL) is associated with particularly poor outcome. Many ABC-DLBCLs harbor gain-of-function mutations that cause inappropriate assembly of the CARMA1-BCL10-MALT1 (CBM) signalosome, a cytoplasmic complex that drives downstream NF-κB signaling. MALT1 is the effector protein of the CBM signalosome such that its recruitment to the signalosome via interaction with BCL10 allows it to exert both protease and scaffolding activities that together synergize in driving NF-κB. Here, we demonstrate that a molecular groove located between two adjacent immunoglobulin-like domains within MALT1 represents a binding pocket for BCL10. Leveraging this discovery, we performed an in silico screen to identify small molecules that dock within this MALT1 groove and act as BCL10-MALT1 protein-protein interaction (PPI) inhibitors. We report the identification of M1i-124 as a first-in-class compound that blocks BCL10-MALT1 interaction, abrogates MALT1 scaffolding and protease activities, promotes degradation of BCL10 and MALT1 proteins, and specifically targets ABC-DLBCLs characterized by dysregulated MALT1. Our findings demonstrate that small-molecule inhibitors of BCL10-MALT1 interaction can function as potent agents to block MALT1 signaling in selected lymphomas, and provide a road map for clinical development of a new class of precision-medicine therapeutics.
Collapse
Affiliation(s)
| | - Lisa M Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mei Smyers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda R Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Hu
- Department of Pathology and
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Juliana Hofstatter Azambuja
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcelo J Murai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ahmed Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew Trotta
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hanna B Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Minda Liu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prasanna Ekambaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Bill B Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda M McAllister-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Peter C Lucas
- Department of Pathology and
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Zhang RY, Wang ZX, Zhang MY, Wang YF, Zhou SL, Xu JL, Lin WX, Ji TR, Chen YD, Lu T, Li NG, Shi ZH. MALT1 Inhibitors and Degraders: Strategies for NF-κB-Driven Malignancies. J Med Chem 2025; 68:5075-5096. [PMID: 39999563 DOI: 10.1021/acs.jmedchem.4c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Mucosa-associated lymphoid tissue protein 1 (MALT1), a cysteine protease and the sole paracaspase in humans, plays a pivotal role in the survival and proliferation of NF-κB-dependent malignant cancers, particularly MALT lymphoma and diffuse large B-cell lymphoma (DLBCL). Dysregulated MALT1 activity is implicated in various malignancies, highlighting its importance as a therapeutic target. This Perspective provides an overview of MALT1's structural and functional characteristics, summarizes recent advancements in small-molecule inhibitors and degraders targeting this protein, and discusses compound structures, structure-activity relationship (SAR) analyses, and biological activities. We aim to inform future research efforts to enhance the activity, selectivity, and pharmacological properties of MALT1-targeting compounds, establishing a foundational framework for drug development in this critical area of cancer therapy.
Collapse
Affiliation(s)
- Ru-Yue Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu-Fan Wang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Si-Li Zhou
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jia-Lu Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wen-Xuan Lin
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Tian-Rui Ji
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ya-Dong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
3
|
Liang X, Yu H, Liang R, Feng Z, Saidahmatov A, Sun C, Ren H, Wei X, Zhao J, Yang C, Liu H. Development of Potent MALT1 Inhibitors Featuring a Novel "2-Thioxo-2,3-dihydrothiazolo[4,5- d]pyrimidin-7(6 H)-one" Scaffold for the Treatment of B Cell Lymphoma. J Med Chem 2024; 67:2884-2906. [PMID: 38349664 DOI: 10.1021/acs.jmedchem.3c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) has emerged as a novel and promising therapeutic target for the treatment of lymphomas and autoimmune diseases. Herein, we reported a new class of MALT1 inhibitors featuring a novel "2-thioxo-2,3-dihydrothiazolo[4,5-d]pyrimidin-7(6H)-one" scaffold developed by structure-based drug design. Structure-activity relationship studies finally led to the discovery of MALT1 inhibitor 10m, which covalently and potently inhibited MALT1 protease with the IC50 value of 1.7 μM. 10m demonstrated potent and selective antiproliferative activity against ABC-DLBCL and powerful ability to induce HBL1 apoptosis. 10m also effectively downregulated the activities of MALT1 and its downstream signal pathways. Furthermore, 10m induced upregulation of mTOR and PI3K-Akt signals and exhibited a synergistic antitumor effect with Rapamycin in HBL1 cells. More importantly, 10m remarkably suppressed the tumor growth both in the implanted HBL1 and TMD8 xenograft models. Collectively, this work provides valuable MALT1 inhibitors with a distinct core structure.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanghui Feng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxia Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaohui Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai 200433, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Wang H, Xiao B, Chen S, He J, Li C. Identification of an Ortholog of MALT1 from Shrimp That Induces NF-κB-Mediated Antiviral Immunity. Viruses 2023; 15:2361. [PMID: 38140602 PMCID: PMC10748089 DOI: 10.3390/v15122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) serves as a pivotal mediator for NF-κB activation in response to a wide spectrum of transmembrane receptor stimuli. In the present study, a homolog of MALT1, named LvMALT1, is cloned from the Pacific white shrimp (Litopenaeus vannamei) and its potential function in shrimp innate immunity is explored. The open reading frame of LvMALT1 is 2364 bp that encodes 787 amino acids. The predicted LvMALT1 protein structure comprises a death domain, three immunoglobulin domains, and a caspase-like domain, exhibiting remarkable similarity to other homologs. LvMALT1 is a cytoplasmic-localized protein and could interact with LvTRAF6. Overexpression of LvMALT1 induces the activation of promoter elements governing the expression of several key antimicrobial peptides (AMPs), including penaeidins (PENs) and crustins (CRUs). Conversely, silencing of LvMALT1 leads to a reduction in the phosphorylation levels of Dorsal and Relish, along with a concomitant decline in the in vivo expression levels of multiple AMPs. Furthermore, LvMALT1 is prominently upregulated in response to a challenge by the white spot syndrome virus (WSSV), facilitating the NF-κB-mediated expression of AMPs as a defense against viral infection. Taken together, we identified a MALT1 homolog from the shrimp L. vannamei, which plays a positive role in the TRAF6/NF-κB/AMPs axis-mediated innate immunity.
Collapse
Affiliation(s)
- Haiyang Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bang Xiao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shihan Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou 510275, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou 510275, China
| |
Collapse
|
5
|
Han X, Levkovets M, Lesovoy D, Sun R, Wallerstein J, Sandalova T, Agback T, Achour A, Agback P, Orekhov VY. Assignment of IVL-Methyl side chain of the ligand-free monomeric human MALT1 paracaspase-IgL 3 domain in solution. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:363-371. [PMID: 36094731 PMCID: PMC9510110 DOI: 10.1007/s12104-022-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial 1H, 13C Ile/Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL3 domain of human MALT1. Our results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).
Collapse
Affiliation(s)
- Xiao Han
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and, Division of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maria Levkovets
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Dmitry Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov, Institute of Bioorganic Chemistry RAS, Moscow, Russia, 117997
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and, Division of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Johan Wallerstein
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and, Division of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07, Uppsala, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and, Division of Infectious Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07, Uppsala, Sweden.
| | - Vladislav Yu Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden.
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden.
| |
Collapse
|
6
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Rios KE, Kashyap AK, Maynard SK, Washington M, Paul S, Schaefer BC. CARD19, the protein formerly known as BinCARD, is a mitochondrial protein that does not regulate Bcl10-dependent NF-κB activation after TCR engagement. Cell Immunol 2020; 356:104179. [PMID: 32763502 PMCID: PMC7484395 DOI: 10.1016/j.cellimm.2020.104179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/11/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
After T cell receptor (TCR) engagement, the CARD11-Bcl10-Malt1 (CBM) complex oligomerizes to transduce NF-κB activating signals. Bcl10 is then degraded to limit NF-κB activation. The cDNA AK057716 (BinCARD-1) was reported to encode a novel CARD protein that interacts with Bcl10 and modestly inhibits NF-κB activation. In a later study, a second isoform, BinCARD-2, was identified. Here, we report that the cDNA AK057716 (BinCARD-1) is an incompletely spliced derivative of the gene product of C9orf89, whereas CARD19 (BinCARD-2) represents the properly spliced isoform, with conservation across diverse species. Immunoblotting revealed expression of CARD19 in T cells, but no evidence of BinCARD-1 expression, and microscopy demonstrated that endogenous CARD19 localizes to mitochondria. Although we confirmed that both BinCARD-1 and CARD19 can inhibit NF-κB activation and promote Bcl10 degradation when transiently overexpressed in HEK293T cells, loss of endogenous CARD19 expression had little effect on Bcl10-dependent NF-κB activation, activation of Malt1 protease function, or Bcl10 degradation after TCR engagement in primary murine CD8 T cells. Together, these data indicate that the only detectable translated product of C9orf89 is the mitochondrial protein CARD19, which does not play a discernible role in TCR-dependent, Bcl10-mediated signal transduction to Malt1 or NF-κB.
Collapse
Affiliation(s)
- Kariana E Rios
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Anuj K Kashyap
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Sean K Maynard
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Michael Washington
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States.
| |
Collapse
|
8
|
Cheng J, Klei LR, Hubel NE, Zhang M, Schairer R, Maurer LM, Klei HB, Kang H, Concel VJ, Delekta PC, Dang EV, Mintz MA, Baens M, Cyster JG, Parameswaran N, Thome M, Lucas PC, McAllister-Lucas LM. GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein. J Clin Invest 2020; 130:1036-1051. [PMID: 31961340 DOI: 10.1172/jci97040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Antigen receptor-dependent (AgR-dependent) stimulation of the NF-κB transcription factor in lymphocytes is a required event during adaptive immune response, but dysregulated activation of this signaling pathway can lead to lymphoma. AgR stimulation promotes assembly of the CARMA1-BCL10-MALT1 complex, wherein MALT1 acts as (a) a scaffold to recruit components of the canonical NF-κB machinery and (b) a protease to cleave and inactivate specific substrates, including negative regulators of NF-κB. In multiple lymphoma subtypes, malignant B cells hijack AgR signaling pathways to promote their own growth and survival, and inhibiting MALT1 reduces the viability and growth of these tumors. As such, MALT1 has emerged as a potential pharmaceutical target. Here, we identified G protein-coupled receptor kinase 2 (GRK2) as a new MALT1-interacting protein. We demonstrated that GRK2 binds the death domain of MALT1 and inhibits MALT1 scaffolding and proteolytic activities. We found that lower GRK2 levels in activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) are associated with reduced survival, and that GRK2 knockdown enhances ABC-DLBCL tumor growth in vitro and in vivo. Together, our findings suggest that GRK2 can function as a tumor suppressor by inhibiting MALT1 and provide a roadmap for developing new strategies to inhibit MALT1-dependent lymphomagenesis.
Collapse
Affiliation(s)
| | | | - Nathaniel E Hubel
- Department of Pediatrics and.,Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ming Zhang
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | | | | | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Eric V Dang
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Michelle A Mintz
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Mathijs Baens
- Human Genome Laboratory, VIB Center for the Biology of Disease, and.,Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jason G Cyster
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA.,Howard Hughes Medical Institute and.,Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
9
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
10
|
Cheng J, Maurer LM, Kang H, Lucas PC, McAllister-Lucas LM. Critical protein-protein interactions within the CARMA1-BCL10-MALT1 complex: Take-home points for the cell biologist. Cell Immunol 2020; 355:104158. [PMID: 32721634 DOI: 10.1016/j.cellimm.2020.104158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
The CBM complex, which is composed of the proteins CARMA1, BCL10, and MALT1, serves multiple pivotal roles as a mediator of T-cell receptor and B-cell receptor-dependent NF-κB induction and lymphocyte activation. CARMA1, BCL10, and MALT1 are each proto-oncoproteins and dysregulation of CBM signaling, as a result of somatic gain-of-function mutation or chromosomal translocation, is a hallmark of multiple lymphoid malignancies including Activated B-cell Diffuse Large B-cell Lymphoma. Moreover, loss-of-function as well as gain-of-function germline mutations in CBM complex proteins have been associated with a range of immune dysregulation syndromes. A wealth of detailed structural information has become available over the past decade through meticulous interrogation of the interactions between CBM components. Here, we review key findings regarding the biochemical nature of these protein-protein interactions which have ultimately led the field to a sophisticated understanding of how these proteins assemble into high-order filamentous CBM complexes. To date, approaches to therapeutic inhibition of the CBM complex for the treatment of lymphoid malignancy and/or auto-immunity have focused on blocking MALT1 protease function. We also review key studies relating to the structural impact of MALT1 protease inhibitors on key protein-protein interactions.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Lisa M Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
11
|
Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, Staal J, Beyaert R. MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. Front Immunol 2019; 10:2330. [PMID: 31632405 PMCID: PMC6779721 DOI: 10.3389/fimmu.2019.02330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
MALT1 plays an important role in innate and adaptive immune signaling by acting as a scaffold protein that mediates NF-κB signaling. In addition, MALT1 is a cysteine protease that further fine tunes proinflammatory signaling by cleaving specific substrates. Deregulated MALT1 activity has been associated with immunodeficiency, autoimmunity, and cancer in mice and humans. Genetically engineered mice expressing catalytically inactive MALT1, still exerting its scaffold function, were previously shown to spontaneously develop autoimmunity due to a decrease in Tregs associated with increased effector T cell activation. In contrast, complete absence of MALT1 does not lead to autoimmunity, which has been explained by the impaired effector T cell activation due to the absence of MALT1-mediated signaling. However, here we report that MALT1-deficient mice develop atopic-like dermatitis upon aging, which is preceded by Th2 skewing, an increase in serum IgE, and a decrease in Treg frequency and surface expression of the Treg functionality marker CTLA-4.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - David Muyllaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Bardet M, Seeholzer T, Unterreiner A, Woods S, Krappmann D, Bornancin F. MALT1 activation by TRAF6 needs neither BCL10 nor CARD11. Biochem Biophys Res Commun 2018; 506:48-52. [DOI: 10.1016/j.bbrc.2018.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
|
13
|
Molecular architecture and regulation of BCL10-MALT1 filaments. Nat Commun 2018; 9:4041. [PMID: 30279415 PMCID: PMC6168461 DOI: 10.1038/s41467-018-06573-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
The CARD11-BCL10-MALT1 (CBM) complex triggers the adaptive immune response in lymphocytes and lymphoma cells. CARD11/CARMA1 acts as a molecular seed inducing BCL10 filaments, but the integration of MALT1 and the assembly of a functional CBM complex has remained elusive. Using cryo-EM we solved the helical structure of the BCL10-MALT1 filament. The structural model of the filament core solved at 4.9 Å resolution identified the interface between the N-terminal MALT1 DD and the BCL10 caspase recruitment domain. The C-terminal MALT1 Ig and paracaspase domains protrude from this core to orchestrate binding of mediators and substrates at the filament periphery. Mutagenesis studies support the importance of the identified BCL10-MALT1 interface for CBM complex assembly, MALT1 protease activation and NF-κB signaling in Jurkat and primary CD4 T-cells. Collectively, we present a model for the assembly and architecture of the CBM signaling complex and how it functions as a signaling hub in T-lymphocytes. The BCL10-MALT1 complex is a central signaling hub in lymphocytes and linked to various human immune pathologies. Here the authors present the cryo-EM structure of the BCL10-MALT1 filament core and verify the identified BCL10/MALT1 interface with mutagenesis studies.
Collapse
|
14
|
Gehring T, Seeholzer T, Krappmann D. BCL10 - Bridging CARDs to Immune Activation. Front Immunol 2018; 9:1539. [PMID: 30022982 PMCID: PMC6039553 DOI: 10.3389/fimmu.2018.01539] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Since the B-cell lymphoma/leukemia 10 (BCL10) protein was first described in 1999, numerous studies have elucidated its key functions in channeling adaptive and innate immune signaling downstream of CARMA/caspase-recruitment domain (CARD) scaffold proteins. While T and B cell antigen receptor (TCR/BCR) signaling induces the recruitment of BCL10 bound to mucosa-associated lymphoid tissue (MALT)1 to the lymphocyte-specific CARMA1/CARD11–BCL10–MALT1 (CBM-1) signalosome, alternative CBM complexes utilize different CARMA/CARD scaffolds in distinct innate or inflammatory pathways. BCL10 constitutes the smallest subunit in all CBM signalosomes, containing a 233 amino acid coding for N-terminal CARD as well as a C-terminal Ser/Thr-rich region. BCL10 forms filaments, thereby aggregating into higher-order clusters that mediate and amplify stimulation-induced signals, ultimately leading to MALT1 protease activation and canonical NF-κB and JNK signaling. BCL10 additionally undergoes extensive post-translational regulation involving phosphorylation, ubiquitination, MALT1-catalyzed cleavage, and degradation. Through these feedback and feed-forward events, BCL10 integrates positive and negative regulatory processes that govern the function as well as the dynamic assembly, disassembly, and destruction of CBM complexes. Thus, BCL10 is a critical regulator for activation as well as termination of immune cell signaling, revealing that its role extends far beyond that of a mere linking factor in CBM complexes.
Collapse
Affiliation(s)
- Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
15
|
Staal J, Driege Y, Haegman M, Borghi A, Hulpiau P, Lievens L, Gul IS, Sundararaman S, Gonçalves A, Dhondt I, Pinzón JH, Braeckman BP, Technau U, Saeys Y, van Roy F, Beyaert R. Ancient Origin of the CARD-Coiled Coil/Bcl10/MALT1-Like Paracaspase Signaling Complex Indicates Unknown Critical Functions. Front Immunol 2018; 9:1136. [PMID: 29881386 PMCID: PMC5978004 DOI: 10.3389/fimmu.2018.01136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
The CARD–coiled coil (CC)/Bcl10/MALT1-like paracaspase (CBM) signaling complexes composed of a CARD–CC family member (CARD-9, -10, -11, or -14), Bcl10, and the type 1 paracaspase MALT1 (PCASP1) play a pivotal role in immunity, inflammation, and cancer. Targeting MALT1 proteolytic activity is of potential therapeutic interest. However, little is known about the evolutionary origin and the original functions of the CBM complex. Type 1 paracaspases originated before the last common ancestor of planulozoa (bilaterians and cnidarians). Notably in bilaterians, Ecdysozoa (e.g., nematodes and insects) lacks Bcl10, whereas other lineages have a Bcl10 homolog. A survey of invertebrate CARD–CC homologs revealed such homologs only in species with Bcl10, indicating an ancient common origin of the entire CBM complex. Furthermore, vertebrate-like Syk/Zap70 tyrosine kinase homologs with the ITAM-binding SH2 domain were only found in invertebrate organisms with CARD–CC/Bcl10, indicating that this pathway might be related to the original function of the CBM complex. Moreover, the type 1 paracaspase sequences from invertebrate organisms that have CARD–CC/Bcl10 are more similar to vertebrate paracaspases. Functional analysis of protein–protein interactions, NF-κB signaling, and CYLD cleavage for selected invertebrate type 1 paracaspase and Bcl10 homologs supports this scenario and indicates an ancient origin of the CARD–CC/Bcl10/paracaspase signaling complex. By contrast, many of the known MALT1-associated activities evolved fairly recently, indicating that unknown functions are at the basis of the protein conservation. As a proof-of-concept, we provide initial evidence for a CBM- and NF-κB-independent neuronal function of the Caenorhabditis elegans type 1 paracaspase malt-1. In conclusion, this study shows how evolutionary insights may point at alternative functions of MALT1.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alice Borghi
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Laurens Lievens
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ismail Sahin Gul
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Srividhya Sundararaman
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Bio Imaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Jorge H Pinzón
- Department of Biology, University of Texas Arlington, Arlington, TX, United States
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Yvan Saeys
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem 2017; 397:1315-1333. [PMID: 27420898 DOI: 10.1515/hsz-2016-0216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.
Collapse
|
17
|
Ginster S, Bardet M, Unterreiner A, Malinverni C, Renner F, Lam S, Freuler F, Gerrits B, Voshol J, Calzascia T, Régnier CH, Renatus M, Nikolay R, Israël L, Bornancin F. Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation. PLoS One 2017; 12:e0169026. [PMID: 28052131 PMCID: PMC5214165 DOI: 10.1371/journal.pone.0169026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.
Collapse
Affiliation(s)
- Stefanie Ginster
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Maureen Bardet
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Adeline Unterreiner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Claire Malinverni
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Renner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen Lam
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Felix Freuler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Bertran Gerrits
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Johannes Voshol
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Catherine H. Régnier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Rainer Nikolay
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Laura Israël
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Hulpiau P, Driege Y, Staal J, Beyaert R. MALT1 is not alone after all: identification of novel paracaspases. Cell Mol Life Sci 2016; 73:1103-16. [PMID: 26377317 PMCID: PMC11108557 DOI: 10.1007/s00018-015-2041-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Paracaspases and metacaspases are two families of caspase-like proteins identified in 2000. Up until now paracaspases were considered a single gene family with one known non-metazoan paracaspase in the slime mold Dictyostelium and a single animal paracaspase called MALT1. Human MALT1 is a critical signaling component in many innate and adaptive immunity pathways that drive inflammation, and when it is overly active, it can also cause certain forms of cancer. Here, we report the identification and functional analysis of two new vertebrate paracaspases, PCASP2 and PCASP3. Functional characterization indicates that both scaffold and protease functions are conserved across the three vertebrate paralogs. This redundancy might explain the loss of two of the paralogs in mammals and one in Xenopus. Several of the vertebrate paracaspases currently have incorrect or ambiguous annotations. We propose to annotate them accordingly as PCASP1, PCASP2, and PCASP3 similar to the caspase gene nomenclature. A comprehensive search in other metazoans and in non-metazoan species identified additional new paracaspases. We also discovered the first animal metacaspase in the sponge Amphimedon. Comparative analysis of the active site suggests that paracaspases constitute one of the several subclasses of metacaspases that have evolved several times independently.
Collapse
Affiliation(s)
- Paco Hulpiau
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yasmine Driege
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Rudi Beyaert
- Inflammation Research Center, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
19
|
Demeyer A, Staal J, Beyaert R. Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad? Trends Mol Med 2016; 22:135-150. [PMID: 26787500 DOI: 10.1016/j.molmed.2015.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
MALT1 is a signaling protein that plays a key role in immunity, inflammation, and lymphoid malignancies. For a long time MALT1 was believed to function as a scaffold protein, providing an assembly platform for other signaling proteins. This view changed dramatically when MALT1 was also found to have proteolytic activity and a capacity to fine-tune immune responses. Preclinical studies have fostered the belief that MALT1 is a promising therapeutic target in autoimmunity and B cell lymphomas. However, recent studies have shown that mice expressing catalytically-inactive MALT1 develop multi-organ inflammation and autoimmunity, and thus have tempered this initial enthusiasm. We discuss recent findings, highlighting the urgent need for a better mechanistic and functional understanding of MALT1 in host defense and disease.
Collapse
Affiliation(s)
- Annelies Demeyer
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
20
|
Abstract
Marginal zone lymphomas (MZL) represent around 8 % of all non-Hodgkin lymphomas. During the last decades a number of studies have addressed the mechanisms underlying the disease development. Extranodal MZL lymphoma usually arises in mucosal sites where lymphocytes are not normally present from a background of either autoimmune processes, such as Hashimoto thyroiditis or Sjögren syndrome or chronic infectious conditions. In the context of a persistent antigenic stimulation, successive genetic abnormalities can progressively hit a B-cell clone among the reactive B-cells of the chronic inflammatory tissue and give rise to a MALT lymphoma. The best evidence of an etiopathogenetic link is available for the association between Helicobacter pylori-positive gastritis and gastric MALT lymphoma. Indeed, a successful eradication of this micro-organism with antibiotics can be followed by gastric MALT lymphoma regression in more than 2/3 of cases. Other microbial agents have been implicated in the pathogenesis of MZL arising in the skin (Borrelia burgdorferi), in the ocular adnexa (Chlamydophila psittaci), and in the small intestine (Campylobacter jejuni). The prevalence of hepatitis C virus (HCV) has also been reported higher in MZL patients (particularly of the splenic type) than in the control population, suggesting a possible causative role of the virus. In non-gastric MALT lymphoma and in splenic MZL the role of the antimicrobial therapy is, however, less clear. This review summarizes the recent advances in Marginal Zone Lymphomas, addressing the critical points in their diagnosis, staging and clinical management.
Collapse
|
21
|
Vincendeau M, Nagel D, Eitelhuber AC, Krappmann D. MALT1 paracaspase: a unique protease involved in B-cell lymphomagenesis. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SUMMARY MALT1 is a key regulator of adaptive immunity. MALT1-dependent signaling events control survival, proliferation and differentiation of lymphocytes in response to T- or B-cell receptor stimulation. MALT1 not only regulates physiological lymphocyte activation, but also controls oncogenic signaling in distinct lymphoid malignancies. The fusion protein API2–MALT1 generated by the chromosomal translocation t(11;18) acts as an oncoprotein in the late stages of mucosa-associated lymphoid tissue lymphoma. Moreover, MALT1 is critical for survival and proliferation of the activated B-cell type of diffuse large B-cell lymphomas, one of the most aggressive entities of malignant lymphomas. On the molecular level, MALT1 serves a dual role by functioning as a signaling adaptor and a protease. Both of these functions are critical for triggering the adaptive immune response and for promoting lymphomagenesis. Recent data emphasize that MALT1 is a promising drug target for the treatment of aggressive lymphomas.
Collapse
Affiliation(s)
- Michelle Vincendeau
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Daniel Nagel
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Andrea C Eitelhuber
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
22
|
Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma1-Bcl10-Malt1 complex. Proc Natl Acad Sci U S A 2013; 110:9433-8. [PMID: 23690623 DOI: 10.1073/pnas.1221925110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin conjugation system plays an important role in immune regulation; however, the ubiquitin-specific proteases (USPs) that carry out deubiquitination of cellular substrates are poorly understood. Here we show that in vivo knockdown of the deubiquitinating enzyme USP9X attenuates T-cell proliferation. In addition, naïve CD4(+) T cells from USP9X knockdown chimeric mice display decreased cytokine production and T helper cell differentiation in vitro, which we confirmed in vivo by performing adoptive transfer of transgenic T cells and subsequent immunization. USP9X silencing in both a human T-cell line and mouse primary T cells reduced T-cell receptor (TCR) signaling-induced NF-κB activation. Mechanistically, USP9X interacts with Bcl10 of the Carma1-Bcl10-Malt1 (CBM) complex and removes the TCR-induced ubiquitin chain from Bcl10, which facilitates the association of Carma1 with Bcl0-Malt1. These results demonstrate that USP9X is a crucial positive regulator of the TCR signaling pathway and is required for T-cell function through the modulation of CBM complex formation.
Collapse
|
23
|
Jou SY, Chang CC, Wu CH, Chen MR, Tsai CH, Chuang WH, Chen YH, Cheng AL, Doong SL. BCL10GFP fusion protein as a substrate for analysis of determinants required for mucosa-associated lymphoid tissue 1 (MALT1)-mediated cleavage. J Biomed Sci 2012; 19:85. [PMID: 23035874 PMCID: PMC3500650 DOI: 10.1186/1423-0127-19-85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/01/2012] [Indexed: 11/25/2022] Open
Abstract
Background MALT1 belongs to a family of paracaspase and modulates NF-κB signaling pathways through its scaffolding function and proteolytic activity. MALT1 cleaves protein substrates after a positively charged Arginine residue. BCL10, a 233 amino acids polypeptide, is identified as one of the MALT1 proteolytic substrates. MALT1 cleaves BCL10 at the C-terminal end of Arg228. A mere 5 amino acids difference between the substrate and the proteolytic product made it difficult to tell whether the cleavage event took place by using a simple western blot analysis. Here, BCL10GFP was constructed and utilized to examine the specificity and domain determinants for MALT1 cleavage in cells. Methods Various BCL10GFP constructs were transfected into HEK293T cell with MALT1 construct by using calcium phosphate-DNA precipitation method. Lysates of transfectants were resolved by SDS/PAGE and analyzed by western blot analysis. Results BCL10GFP was proteolytically processed by MALT1 as BCL10. The integrity of caspase recruitment domain (CARD) and MALT1-interacting domain on BCL10 were required for MALT1 proteolytic activity. Besides the invariant P1 cleavage site Arg228, P4 Leu225 played a role in defining BCL10 as a good substrate for MALT1. Conclusions We offered a way of monitoring the catalytic activity of MALT1 in HEK293T cells using BCL10GFP as a substrate. BCL10GFP can be utilized as a convenient tool for studying the determinants for efficient MALT1 cleavage in HEK293T cells
Collapse
Affiliation(s)
- Shin-Yi Jou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No.1, Section 1, Jen-Ai Road, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Qiu L, Dhe-Paganon S. Oligomeric structure of the MALT1 tandem Ig-like domains. PLoS One 2011; 6:e23220. [PMID: 21966355 PMCID: PMC3179463 DOI: 10.1371/journal.pone.0023220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mucosa-associated lymphoid tissue 1 (MALT1) plays an important role in the adaptive immune program. During TCR- or BCR-induced NF-κB activation, MALT1 serves to mediate the activation of the IKK (IκB kinase) complex, which subsequently regulates the activation of NF-κB. Aggregation of MALT1 is important for E3 ligase activation and NF-κB signaling. Principal Findings Unlike the isolated CARD or paracaspase domains, which behave as monomers, the tandem Ig-like domains of MALT1 exists as a mixture of dimer and tetramer in solution. High-resolution structures reveals a protein-protein interface that is stabilized by a buried surface area of 1256 Å2 and contains numerous hydrogen and salt bonds. In conjunction with a second interface, these interactions may represent the basis of MALT1 oligomerization. Conclusions The crystal structure of the tandem Ig-like domains reveals the oligomerization potential of MALT1 and a potential intermediate in the activation of the adaptive inflammatory pathway. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
Affiliation(s)
- Liyan Qiu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sirano Dhe-Paganon
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Stempin CC, Chi L, Giraldo-Vela JP, High AA, Häcker H, Redecke V. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation. J Biol Chem 2011; 286:37147-57. [PMID: 21896478 DOI: 10.1074/jbc.m111.263384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cinthia C Stempin
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
26
|
Cartwright NG, Kashyap AK, Schaefer BC. An active kinase domain is required for retention of PKCθ at the T cell immunological synapse. Mol Biol Cell 2011; 22:3491-7. [PMID: 21795397 PMCID: PMC3172272 DOI: 10.1091/mbc.e10-11-0916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein kinase Cθ (PKCθ) is a serine/threonine kinase that plays an essential role in antigen-regulated responses of T lymphocytes. Upon antigen stimulation, PKCθ is rapidly recruited to the immunological synapse (IS), the region of contact between the T cell and antigen-presenting cell. This behavior is unique among T cell PKC isoforms. To define domains of PKCθ required for retention at the IS, we generated deletion and point mutants of PKCθ. We used quantitative imaging analysis to assess IS retention of PKCθ mutants in antigen-stimulated T cell clones. Deletion of the kinase domain or site-directed mutation of a subset of known PKCθ phosphorylation sites abrogated or significantly reduced IS retention, respectively. IS retention did not correlate with phosphorylation of specific PKCθ residues but rather with kinase function. Thus PKCθ catalytic competence is essential for stable IS retention.
Collapse
Affiliation(s)
- Natalia G Cartwright
- Department of Microbiology and Immunology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
27
|
Oruganti SR, Edin S, Grundström C, Grundström T. CaMKII targets Bcl10 in T-cell receptor induced activation of NF-κB. Mol Immunol 2011; 48:1448-60. [PMID: 21513986 DOI: 10.1016/j.molimm.2011.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/18/2022]
Abstract
Recognition of antigen by T- or B-cell receptors leads to formation of an immunological synapse and initiation of signalling events that collaborate to determine the nature of the adaptive immune response. Activation of NF-κB transcription factors has a key role in regulation of numerous genes with important functions in immune responses and inflammation and is of great importance for lymphocyte activation and differentiation. The activation of NF-κB depends on changes in intracellular Ca(2+) levels, and both calmodulin (CaM) and a CaM-dependent kinase, CaMKII, help regulate NF-κB activation after T-cell receptor (TCR) stimulation, but the mechanisms are not well characterized. Here we have analyzed the functional role of CaMKII in the signalling pathway from the TCR to activation of IKK, the kinase that phosphorylates the NF-κB inhibitor IκB. We show that CaMKII is recruited to the immunological synapse where it interacts with and phosphorylates the signalling adaptor protein Bcl10. Furthermore, phosphorylation of the CARD domain of Bcl10 by CaMKII regulates the interactions within the important Carma1, Bcl10, Malt1 signalling complex and the essential signal induced ubiquitinations of Bcl10 and IKKγ. We propose a novel mechanism whereby Ca(2+) signals can be integrated at the immunological synapse through CaMKII-dependent phosphorylation of Bcl10.
Collapse
|
28
|
Kingeter LM, Paul S, Maynard SK, Cartwright NG, Schaefer BC. Cutting edge: TCR ligation triggers digital activation of NF-kappaB. THE JOURNAL OF IMMUNOLOGY 2010; 185:4520-4. [PMID: 20855880 DOI: 10.4049/jimmunol.1001051] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR-mediated activation of the transcription factor NF-κB is required for T cell proliferation, survival, and effector differentiation. Although this pathway is the subject of intense study, it is not known whether TCR signaling to NF-κB is digital (switch-like) or analog in nature. Through analysis of the phosphorylation and degradation of IκBα and the nuclear translocation and phosphorylation of the NF-κB subunit RelA, we show that TCR-directed NF-κB activation is digital. Furthermore, digitization occurs well upstream of the IκB kinase complex, as protein kinase C translocation to the immunologic synapse and activation-associated aggregation of Bcl10 and Malt1 also demonstrate both digital behavior and high correlation with RelA nuclear translocation. Thus, similar to the TCR-to-MAPK signaling cascade, analog Ag inputs are converted to digital activation outputs to NF-κB at an early step downstream of TCR ligation.
Collapse
Affiliation(s)
- Lara M Kingeter
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol 2010; 2:a003004. [PMID: 20685844 DOI: 10.1101/cshperspect.a003004] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The signaling pathway controlling antigen receptor-induced regulation of the transcription factor NF-kappaB plays a key role in lymphocyte activation and development and the generation of lymphomas. Work of the past decade has led to dramatic progress in the identification and characterization of new players in the pathway. Moreover, novel enzymatic activities relevant for this pathway have been discovered, which represent interesting drug targets for immuno-suppression or lymphoma treatment. Here, we summarize these findings and give an outlook on interesting open issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Margot Thome
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.
| | | | | | | |
Collapse
|
30
|
Edin S, Oruganti SR, Grundström C, Grundström T. Interaction of calmodulin with Bcl10 modulates NF-kappaB activation. Mol Immunol 2010; 47:2057-64. [PMID: 20439115 DOI: 10.1016/j.molimm.2010.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/08/2010] [Accepted: 04/11/2010] [Indexed: 12/13/2022]
Abstract
Calcium signals resulting from antigen receptor activation are important in determining the responses of a T or B lymphocyte to an antigen. Calmodulin (CaM), a multi-functional sensor of intracellular calcium (Ca(2+)) signals in cells, is required in the pathway from the T cell receptor (TCR) to activation of the key transcription factor NF-kappaB. Here we searched for a partner in direct interaction with CaM in the pathway, and found that CaM interacts specifically with the signaling adaptor Bcl10. The binding is Ca(2+) dependent and of high affinity, with a K(d) of approximately 160 nM. Proximity of CaM and Bcl10 in vivo is induced by increases in the intracellular Ca(2+) level. The interaction is localized to the CARD domain of Bcl10, which interacts with the CARD domain of the upstream signaling partner Carma1. Binding of CaM to Bcl10 is shown to inhibit the ability of Bcl10 to interact with Carma1, an interaction that is required for signaling from the TCR to NF-kappaB. Furthermore, a mutant of Bcl10 with reduced binding to CaM shows increased activation of an NF-kappaB reporter, which is further enhanced by activating stimuli. We propose a novel mechanism whereby the Ca(2+) sensor CaM regulates T cell responses to antigens by binding to Bcl10, thereby modulating its interaction with Carma1 and subsequent activation of NF-kappaB.
Collapse
Affiliation(s)
- Sofia Edin
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
31
|
Malt1 and cIAP2-Malt1 as effectors of NF-kappaB activation: kissing cousins or distant relatives? Cell Signal 2009; 22:9-22. [PMID: 19772915 DOI: 10.1016/j.cellsig.2009.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/14/2009] [Indexed: 01/20/2023]
Abstract
Malt1 is a multi-domain cytosolic signaling molecule that was originally identified as the target of recurrent translocations in a large fraction of MALT lymphomas. The product of this translocation is a chimeric protein in which the N-terminus is contributed by the apoptosis inhibitor, cIAP2, and the C-terminus is contributed by Malt1. Early studies suggested that Malt1 is an essential intermediate in antigen receptor activation of NF-kappaB, and that the juxtaposition of the cIAP2 N-terminus and the Malt1 C-terminus results in deregulation of Malt1 NF-kappaB stimulatory activity. Initial experimental data further suggested that the molecular mechanisms of Malt1- and cIAP-Malt1-mediated NF-kappaB activation were quite similar. However, a number of more recent studies of both Malt1 and cIAP2-Malt1 now reveal that these proteins influence NF-kappaB activation by multiple distinct mechanisms, several of which are non-overlapping. Currently available data suggest a revised model in which cIAP2-Malt1 induces NF-kappaB activation via a mechanism that depends equally on domains contributed by cIAP2 and Malt1, which confer spontaneous oligomerization activity, polyubiquitin binding, proteolytic activity, and association with and activation of TRAF2 and TRAF6 at several independent binding sites. By contrast, emerging data suggest that the wild-type Malt1 protein uniquely contributes to NF-kappaB activation primarily through the control of two proteolytic cleavage mechanisms. Firstly, Malt1 directly cleaves and inactivates A20, a negative regulator of the antigen receptor-to-NF-kappaB pathway. Secondly, Malt1 interacts with caspase-8, inducing caspase-8 cleavage of c-FLIP(L), initiating a pathway that contributes to activation of the I kappaB kinase (IKK) complex. Furthermore, data suggest that Malt1 plays a more limited and focused role in antigen receptor activation of NF-kappaB, serving to augment weak antigen signals and stimulate a defined subset of NF-kappaB dependent responses. Thus, the potent activation of NF-kappaB by cIAP2-Malt1 contrasts with the more subtle role of Malt1 in regulating specific NF-kappaB responses downstream of antigen receptor ligation.
Collapse
|
32
|
Generation and functional characterization of a BCL10-inhibitory peptide that represses NF-κB activation. Biochem J 2009; 422:553-61. [DOI: 10.1042/bj20090055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular complex containing BCL10 and CARMA [CARD (caspase recruitment domain)-containing MAGUK (membrane-associated guanylate kinase)] proteins has recently been identified as a key component in the signal transduction pathways that regulate activation of the transcription factor NF-κB (nuclear factor κB) in lymphoid and non-lymphoid cells. Assembly of complexes containing BCL10 and CARMA proteins relies on homophilic interactions established between the CARDs of these proteins. In order to identify BCL10-inhibitory peptides, we have established a method of assaying peptides derived from the CARD of BCL10 in binding competition assays of CARD–CARD self-association. By this procedure, a short peptide corresponding to amino acid residues 91–98 of BCL10 has been selected as an effective inhibitor of protein self-association. When tested in cell assays for its capacity to block NF-κB activation, this peptide represses activation of NF-κB mediated by BCL10, CARMA3 and PMA/ionomycin stimulation. Collectively, these results indicate that residues 91–98 of BCL10 are involved in BCL10 self-association and also participate in the interaction with external partners. We also show that blocking of the CARD of BCL10 may potentially be used for the treatment of pathological conditions associated with inappropriate NF-κB activation.
Collapse
|