1
|
Mani H, Chang CC, Hsu HJ, Yang CH, Yen JH, Liou JW. Comparison, Analysis, and Molecular Dynamics Simulations of Structures of a Viral Protein Modeled Using Various Computational Tools. Bioengineering (Basel) 2023; 10:1004. [PMID: 37760106 PMCID: PMC10525864 DOI: 10.3390/bioengineering10091004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The structural analysis of proteins is a major domain of biomedical research. Such analysis requires resolved three-dimensional structures of proteins. Advancements in computer technology have led to progress in biomedical research. In silico prediction and modeling approaches have facilitated the construction of protein structures, with or without structural templates. In this study, we used three neural network-based de novo modeling approaches-AlphaFold2 (AF2), Robetta-RoseTTAFold (Robetta), and transform-restrained Rosetta (trRosetta)-and two template-based tools-the Molecular Operating Environment (MOE) and iterative threading assembly refinement (I-TASSER)-to construct the structure of a viral capsid protein, hepatitis C virus core protein (HCVcp), whose structure have not been fully resolved by laboratory techniques. Templates with sufficient sequence identity for the homology modeling of complete HCVcp are currently unavailable. Therefore, we performed domain-based homology modeling for MOE simulations. The templates for each domain were obtained through sequence-based searches on NCBI and the Protein Data Bank. Then, the modeled domains were assembled to construct the complete structure of HCVcp. The full-length structure and two truncated forms modeled using various computational tools were compared. Molecular dynamics (MD) simulations were performed to refine the structures. The root mean square deviation of backbone atoms, root mean square fluctuation of Cα atoms, and radius of gyration were calculated to monitor structural changes and convergence in the simulations. The model quality was evaluated through ERRAT and phi-psi plot analysis. In terms of the initial prediction for protein modeling, Robetta and trRosetta outperformed AF2. Regarding template-based tools, MOE outperformed I-TASSER. MD simulations resulted in compactly folded protein structures, which were of good quality and theoretically accurate. Thus, the predicted structures of certain proteins must be refined to obtain reliable structural models. MD simulation is a promising tool for this purpose.
Collapse
Affiliation(s)
- Hemalatha Mani
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Sabariegos R, Albentosa-González L, Palmero B, Clemente-Casares P, Ramírez E, García-Crespo C, Gallego I, de Ávila AI, Perales C, Domingo E, Mas A. Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Front Microbiol 2021; 12:754664. [PMID: 34745059 PMCID: PMC8570118 DOI: 10.3389/fmicb.2021.754664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Blanca Palmero
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Eugenio Ramírez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
3
|
Bessa LM, Launay H, Dujardin M, Cantrelle FX, Lippens G, Landrieu I, Schneider R, Hanoulle X. NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. J Biol Chem 2017; 292:18024-18043. [PMID: 28912275 DOI: 10.1074/jbc.m117.813766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Non-structural protein 5B (NS5B) is the RNA-dependent RNA polymerase that catalyzes replication of the hepatitis C virus (HCV) RNA genome and therefore is central for its life cycle. NS5B interacts with the intrinsically disordered domain 2 of NS5A (NS5A-D2), another essential multifunctional HCV protein that is required for RNA replication. As a result, these two proteins represent important targets for anti-HCV chemotherapies. Despite this importance and the existence of NS5B crystal structures, our understanding of the conformational and dynamic behavior of NS5B in solution and its relationship with NS5A-D2 remains incomplete. To address these points, we report the first detailed NMR spectroscopic study of HCV NS5B lacking its membrane anchor (NS5BΔ21). Analysis of constructs with selective isotope labeling of the δ1 methyl groups of isoleucine side chains demonstrates that, in solution, NS5BΔ21 is highly dynamic but predominantly adopts a closed conformation. The addition of NS5A-D2 leads to spectral changes indicative of binding to both allosteric thumb sites I and II of NS5BΔ21 and induces long-range perturbations that affect the RNA-binding properties of the polymerase. We compared these modifications with the short- and long-range effects triggered in NS5BΔ21 upon binding of filibuvir, an allosteric inhibitor. We demonstrate that filibuvir-bound NS5BΔ21 is strongly impaired in the binding of both NS5A-D2 and RNA. NS5A-D2 induces conformational and functional perturbations in NS5B similar to those triggered by filibuvir. Thus, our work highlights NS5A-D2 as an allosteric regulator of the HCV polymerase and provides new insight into the dynamics of NS5B in solution.
Collapse
Affiliation(s)
- Luiza M Bessa
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Hélène Launay
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marie Dujardin
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - François-Xavier Cantrelle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Guy Lippens
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Isabelle Landrieu
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Robert Schneider
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Xavier Hanoulle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| |
Collapse
|
4
|
Sesmero E, Brown JA, Thorpe IF. Molecular simulations to delineate functional conformational transitions in the HCV polymerase. J Comput Chem 2016; 38:1125-1137. [PMID: 27859387 DOI: 10.1002/jcc.24662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
Hepatitis C virus (HCV) is a global health concern for which there is no vaccine available. The HCV polymerase is responsible for the critical function of replicating the RNA genome of the virus. Transitions between at least two conformations (open and closed) are necessary to allow the enzyme to replicate RNA. In this study, molecular dynamic simulations were initiated from multiple crystal structures to understand the free energy landscape (FEL) explored by the enzyme as it interconverts between these conformations. Our studies reveal the location of distinct states within the FEL as well as the molecular interactions associated with these states. Specific hydrogen bonds appear to play a key role in modulating conformational transitions. This knowledge is essential to elucidate the role of these conformations in replication and may also be valuable in understanding the basis by which this enzyme is inhibited by small molecules. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ester Sesmero
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Jodian A Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Ian F Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| |
Collapse
|
5
|
Deredge D, Li J, Johnson KA, Wintrode PL. Hydrogen/Deuterium Exchange Kinetics Demonstrate Long Range Allosteric Effects of Thumb Site 2 Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase. J Biol Chem 2016; 291:10078-88. [PMID: 27006396 DOI: 10.1074/jbc.m115.708370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 01/08/2023] Open
Abstract
New nonnucleoside analogs are being developed as part of a multi-drug regimen to treat hepatitis C viral infections. Particularly promising are inhibitors that bind to the surface of the thumb domain of the viral RNA-dependent RNA polymerase (NS5B). Numerous crystal structures have been solved showing small molecule non-nucleoside inhibitors bound to the hepatitis C viral polymerase, but these structures alone do not define the mechanism of inhibition. Our prior kinetic analysis showed that nonnucleoside inhibitors binding to thumb site-2 (NNI2) do not block initiation or elongation of RNA synthesis; rather, they block the transition from the initiation to elongation, which is thought to proceed with significant structural rearrangement of the enzyme-RNA complex. Here we have mapped the effect of three NNI2 inhibitors on the conformational dynamics of the enzyme using hydrogen/deuterium exchange kinetics. All three inhibitors rigidify an extensive allosteric network extending >40 Å from the binding site, thus providing a structural rationale for the observed disruption of the transition from distributive initiation to processive elongation. The two more potent inhibitors also suppress slow cooperative unfolding in the fingers extension-thumb interface and primer grip, which may contribute their stronger inhibition. These results establish that NNI2 inhibitors act through long range allosteric effects, reveal important conformational changes underlying normal polymerase function, and point the way to the design of more effective allosteric inhibitors that exploit this new information.
Collapse
Affiliation(s)
- Daniel Deredge
- From the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201 and
| | - Jiawen Li
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Kenneth A Johnson
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Patrick L Wintrode
- From the Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201 and
| |
Collapse
|
6
|
Li Y, Wang R, Du X, Zhang M, Xie M. Genome-wide analysis for identification of adaptive diversification between hepatitis C virus subtypes 1a and 1b. Can J Microbiol 2016; 62:608-16. [PMID: 27277863 DOI: 10.1139/cjm-2016-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and has been estimated to infect approximately 2%-3% of the world's population. HCV genotype 1 is the subject of intense research and clinical investigations because of its worldwide prevalence and poor access to treatment for patients in developing countries and marginalized populations. The predominant subtypes 1a and 1b of HCV genotype 1 present considerable differences in epidemiological features. However, the genetic signature underlying such phenotypic functional divergence is still an open question. Here, we performed a genome-wide evolutionary study on HCV subtypes 1a and 1b. The results show that adaptive selection has driven the diversification between these subtypes. Furthermore, the major adaptive divergence-related changes have occurred on proteins E1, NS4B, NS5A, and NS5B. Structurally, a number of adaptively selected sites cluster in functional regions potentially relevant to (i) membrane attachment and (ii) the interactions with viral and host cell factors and the genome template. These results might provide helpful hints about the molecular determinants of epidemiological divergence between HCV 1a and 1b.
Collapse
Affiliation(s)
- Yan Li
- a College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Ruirui Wang
- b School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Xiaogang Du
- c College of Life Science, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Mingwang Zhang
- a College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Meng Xie
- c College of Life Science, Sichuan Agricultural University, Yaan, People's Republic of China
| |
Collapse
|
7
|
Li J, Johnson KA. Thumb Site 2 Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase Allosterically Block the Transition from Initiation to Elongation. J Biol Chem 2016; 291:10067-77. [PMID: 26851276 DOI: 10.1074/jbc.m115.708354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/12/2023] Open
Abstract
Replication of the hepatitis C viral genome is catalyzed by the NS5B (nonstructural protein 5B) RNA-dependent RNA polymerase, which is a major target of antiviral drugs currently in the clinic. Prior studies established that initiation of RNA replication could be facilitated by starting with a dinucleotide (pGG). Here we establish conditions for efficient initiation from GTP to form the dinucleotide and subsequent intermediates leading to highly processive elongation, and we examined the effects of four classes of nonnucleoside inhibitors on each step of the reaction. We show that palm site inhibitors block initiation starting from GTP but not when starting from pGG. In addition we show that nonnucleoside inhibitors binding to thumb site-2 (NNI2) lead to the accumulation of abortive intermediates three-five nucleotides in length. Our kinetic analysis shows that NNI2 do not significantly block initiation or elongation of RNA synthesis; rather, they block the transition from initiation to elongation, which is thought to proceed with significant structural rearrangement of the enzyme-RNA complex including displacement of the β-loop from the active site. Direct measurement in single turnover kinetic studies show that pyrophosphate release is faster than the chemistry step, which appears to be rate-limiting during processive synthesis. These results reveal important new details to define the steps involved in initiation and elongation during viral RNA replication, establish the allosteric mechanisms by which NNI2 inhibitors act, and point the way to the design of more effective allosteric inhibitors that exploit this new information.
Collapse
Affiliation(s)
- Jiawen Li
- From the Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Kenneth A Johnson
- From the Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
8
|
Kao CC, Yi G, Huang HC. The core of hepatitis C virus pathogenesis. Curr Opin Virol 2016; 17:66-73. [PMID: 26851516 DOI: 10.1016/j.coviro.2016.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
Capsid proteins form protective shells around viral genomes and mediate viral entry. However, many capsid proteins have additional and important roles for virus infection and in modulating cellular response to infection, with important consequences on pathogenesis. Infection by the Hepatitis C virus (HCV) can lead to liver steatosis, cirrhosis, and hepatocellular carcinoma. Herein, we focus on the role in pathogenesis of Core, the capsid protein of the HCV.
Collapse
Affiliation(s)
- C Cheng Kao
- Dept of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States.
| | - Guanghui Yi
- Dept of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States
| | - Hsuan-Cheng Huang
- Inst. of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
9
|
Davis BC, Brown JA, Thorpe IF. Allosteric inhibitors have distinct effects, but also common modes of action, in the HCV polymerase. Biophys J 2016; 108:1785-1795. [PMID: 25863069 DOI: 10.1016/j.bpj.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
The RNA-dependent RNA polymerase from the Hepatitis C Virus (gene product NS5B) is a validated drug target because of its critical role in genome replication. There are at least four distinct allosteric sites on the polymerase to which several small molecule inhibitors bind. In addition, numerous crystal structures have been solved with different allosteric inhibitors bound to the polymerase. However, the molecular mechanisms by which these small molecules inhibit the enzyme have not been fully elucidated. There is evidence that allosteric inhibitors alter the intrinsic motions and distribution of conformations sampled by the enzyme. In this study we use molecular dynamics simulations to understand the structural and dynamic changes that result when inhibitors are bound at three different allosteric binding sites on the enzyme. We observe that ligand binding at each site alters the structure and dynamics of NS5B in a distinct manner. Nonetheless, our studies also highlight commonalities in the mechanisms of action of the different inhibitors. Each inhibitor alters the conformational states sampled by the enzyme, either by rigidifying the enzyme and preventing transitions between functional conformational states or by destabilizing the enzyme and preventing functionally relevant conformations from being adequately sampled. By illuminating the molecular mechanisms of allosteric inhibition, these studies delineate the intrinsic functional properties of the enzyme and pave the way for designing novel and more effective polymerase inhibitors. This information may also be important to understand how allosteric regulation occurs in related viral polymerases and other enzymes.
Collapse
Affiliation(s)
- Brittny C Davis
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland
| | - Jodian A Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland
| | - Ian F Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland.
| |
Collapse
|
10
|
Wen Y, Lin X, Fan B, Ranjith-Kumar CT, Kao CC. The juxtamembrane sequence of the Hepatitis C virus polymerase can affect RNA synthesis and inhibition by allosteric polymerase inhibitors. Virus Genes 2015; 51:1-11. [PMID: 25895103 DOI: 10.1007/s11262-015-1199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
The Hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), nonstructural protein 5B (NS5B), is anchored in the membrane through a C-terminal helix. A sequence of ca. 12 residues that connects the catalytically competent portion of the RdRp and the C-terminal helix, the juxtamembrane sequence (JMS), has a poorly defined role in RdRp function in a large part since it is translated from a cis-acting RNA element (CRE) that is essential for HCV replication. Using a HCV replicon that transposed a second copy of CRE to the 3' UTR of the HCV replicon, we demonstrate that amino acid substitutions in the JMS were detrimental for HCV replicon replication. Substitutions in the JMS also resulted in a defect in de novo-initiated RNAs synthesis in vitro and in a cell-based reporter assay. A nonnucleoside inhibitor of the NS5B that binds to the catalytic pocket was less potent in inhibiting NS5B in the presence of JMS mutations. The JMS mutants exhibit reduced stability in thermodenaturation assays, suggesting that the JMS helps confer a more stable conformation to NS5B that could impact RNA synthesis.
Collapse
Affiliation(s)
- Y Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
11
|
Beaulieu PL, De Marte J, Garneau M, Luo L, Stammers T, Telang C, Wernic D, Kukolj G, Duan J. A prodrug strategy for the oral delivery of a poorly soluble HCV NS5B thumb pocket 1 polymerase inhibitor using self-emulsifying drug delivery systems (SEDDS). Bioorg Med Chem Lett 2015; 25:210-5. [DOI: 10.1016/j.bmcl.2014.11.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
|
12
|
Hydrophobic and charged residues in the C-terminal arm of hepatitis C virus RNA-dependent RNA polymerase regulate initiation and elongation. J Virol 2014; 89:2052-63. [PMID: 25428878 DOI: 10.1128/jvi.01106-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is essential for viral genome replication. Crystal structures of the HCV RdRp reveal two C-terminal features, a β-loop and a C-terminal arm, suitably located for involvement in positioning components of the initiation complex. Here we show that these two elements intimately regulate template and nucleotide binding, initiation, and elongation. We constructed a series of β-loop and C-terminal arm mutants, which were used for in vitro analysis of RdRp de novo initiation and primer extension activities. All mutants showed a substantial decrease in initiation activities but a marked increase in primer extension activities, indicating an ability to form more stable elongation complexes with long primer-template RNAs. Structural studies of the mutants indicated that these enzyme properties might be attributed to an increased flexibility in the C-terminal features resulting in a more open polymerase cleft, which likely favors the elongation process but hampers the initiation steps. A UTP cocrystal structure of one mutant shows, in contrast to the wild-type protein, several alternate conformations of the substrate, confirming that even subtle changes in the C-terminal arm result in a more loosely organized active site and flexible binding modes of the nucleotide. We used a subgenomic replicon system to assess the effects of the same mutations on viral replication in cells. Even the subtlest mutations either severely impaired or completely abolished the ability of the replicon to replicate, further supporting the concept that the correct positioning of both the β-loop and C-terminal arm plays an essential role during initiation and in HCV replication in general. IMPORTANCE HCV RNA polymerase is a key target for the development of directly acting agents to cure HCV infections, which necessitates a thorough understanding of the functional roles of the various structural features of the RdRp. Here we show that even highly conservative changes, e.g., Tyr→Phe or Asp→Glu, in these seemingly peripheral structural features have profound effects on the initiation and elongation properties of the HCV polymerase.
Collapse
|
13
|
Reich S, Kovermann M, Lilie H, Knick P, Geissler R, Golbik RP, Balbach J, Behrens SE. Initiation of RNA synthesis by the hepatitis C virus RNA-dependent RNA polymerase is affected by the structure of the RNA template. Biochemistry 2014; 53:7002-12. [PMID: 25310724 PMCID: PMC4230328 DOI: 10.1021/bi5006656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is
a central enzyme of the intracellular replication of the viral (+)RNA
genome. Here, we studied the individual steps of NS5B-catalyzed RNA
synthesis by a combination of biophysical methods, including real-time
1D 1H NMR spectroscopy. NS5B was found to bind to a nonstructured
and a structured RNA template in different modes. Following NTP binding
and conversion to the catalysis-competent ternary complex, the polymerase
revealed an improved affinity for the template. By monitoring the
folding/unfolding of 3′(−)SL by 1H NMR, the
base pair at the stem’s edge was identified as the most stable
component of the structure. 1H NMR real-time analysis of
NS5B-catalyzed RNA synthesis on 3′(−)SL showed that
a pronounced lag phase preceded the processive polymerization reaction.
The presence of the double-stranded stem with the edge base pair acting
as the main energy barrier impaired RNA synthesis catalyzed by NS5B.
Our observations suggest a crucial role of RNA-modulating factors
in the HCV replication process.
Collapse
Affiliation(s)
- Stefan Reich
- Institute of Biochemistry and Biotechnology, Section of Microbial Biotechnology, ‡Institute of Physics, Section of Biophysics, §Institute of Biochemistry and Biotechnology, Section of Technical Biochemistry, Martin Luther University Halle-Wittenberg , D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rigat KL, Lu H, Wang YK, Argyrou A, Fanslau C, Beno B, Wang Y, Marcinkeviciene J, Ding M, Gentles RG, Gao M, Abell LM, Roberts SB. Mechanism of inhibition for BMS-791325, a novel non-nucleoside inhibitor of hepatitis C virus NS5B polymerase. J Biol Chem 2014; 289:33456-68. [PMID: 25301950 DOI: 10.1074/jbc.m114.613653] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HCV infection is an urgent global health problem that has triggered a drive to discover therapies that specifically target the virus. BMS-791325 is a novel direct antiviral agent specifically targeting HCV NS5B, an RNA-dependent RNA polymerase. Robust viral clearance of HCV was observed in infected patients treated with BMS-791325 in combination with other anti-HCV agents in Phase 2 clinical studies. Biochemical and biophysical studies revealed that BMS-791325 is a time-dependent, non-competitive inhibitor of the polymerase. Binding studies with NS5B genetic variants (WT, L30S, and P495L) exposed a two-step, slow binding mechanism, but details of the binding mechanism differed for each of the polymerase variants. For the clinically relevant resistance variant (P495L), the rate of initial complex formation and dissociation is similar to WT, but the kinetics of the second step is significantly faster, showing that this variant impacts the final tight complex. The resulting shortened residence time translates into the observed decrease in inhibitor potency. The L30S variant has a significantly different profile. The rate of initial complex formation and dissociation is 7-10 times faster for the L30S variant compared with WT; however, the forward and reverse rates to form the final complex are not significantly different. The impact of the L30S variant on the inhibition profile and binding kinetics of BMS-791325 provides experimental evidence for the dynamic interaction of fingers and thumb domains in an environment that supports the formation of active replication complexes and the initiation of RNA synthesis.
Collapse
Affiliation(s)
| | - Hao Lu
- the Department of Mechanistic Biochemistry, Research and Development, Bristol Myers Squibb Co., Pennington, New Jersey 08534
| | | | - Argyrides Argyrou
- the Department of Mechanistic Biochemistry, Research and Development, Bristol Myers Squibb Co., Pennington, New Jersey 08534
| | - Caroline Fanslau
- the Department of Mechanistic Biochemistry, Research and Development, Bristol Myers Squibb Co., Pennington, New Jersey 08534
| | | | - Yi Wang
- From the Departments of Virology
| | - Jovita Marcinkeviciene
- the Department of Mechanistic Biochemistry, Research and Development, Bristol Myers Squibb Co., Pennington, New Jersey 08534
| | - Min Ding
- Early Discovery Chemistry, Research and Development, Bristol Myers Squibb Co., Wallingford, Connecticut 06492 and
| | - Robert G Gentles
- Early Discovery Chemistry, Research and Development, Bristol Myers Squibb Co., Wallingford, Connecticut 06492 and
| | - Min Gao
- From the Departments of Virology
| | - Lynn M Abell
- the Department of Mechanistic Biochemistry, Research and Development, Bristol Myers Squibb Co., Pennington, New Jersey 08534
| | | |
Collapse
|
15
|
Deval J, Symons JA, Beigelman L. Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus. Curr Opin Virol 2014; 9:1-7. [PMID: 25194816 PMCID: PMC7102778 DOI: 10.1016/j.coviro.2014.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
New therapies for infections caused by positive-strand RNA viruses are needed. Novel nucleoside and nucleotide analogs that inhibit HCV have been developed. Some of these molecules also inhibit other positive-strand RNA viruses. Optimization of antiviral potency and/or target delivery is necessary.
A number of important human infections are caused by positive-strand RNA viruses, yet almost none can be treated with small molecule antiviral therapeutics. One exception is the chronic infection caused by hepatitis C virus (HCV), against which new generations of potent inhibitors are being developed. One of the main molecular targets for anti-HCV drugs is the viral RNA-dependent RNA polymerase, NS5B. This review summarizes the search for nucleoside and nucleotide analogs that inhibit HCV NS5B, which led to the FDA approval of sofosbuvir in 2013. Advances in anti-HCV therapeutics have also stimulated efforts to develop nucleoside analogs against other positive-strand RNA viruses. Although it remains to be validated in the clinic, the prospect of using nucleoside analogs to treat acute infections caused by RNA viruses represents an important paradigm shift and a new frontier for future antiviral therapies.
Collapse
Affiliation(s)
- Jerome Deval
- Alios BioPharma, Inc., 260 East Grand Avenue, South San Francisco, CA 94080, USA.
| | - Julian A Symons
- Alios BioPharma, Inc., 260 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Leo Beigelman
- Alios BioPharma, Inc., 260 East Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|
16
|
te Velthuis AJW. Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci 2014; 71:4403-20. [PMID: 25080879 PMCID: PMC4207942 DOI: 10.1007/s00018-014-1695-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Eukaryotes and bacteria can be infected with a wide variety of RNA viruses. On average, these pathogens share little sequence similarity and use different replication and transcription strategies. Nevertheless, the members of nearly all RNA virus families depend on the activity of a virally encoded RNA-dependent polymerase for the condensation of nucleotide triphosphates. This review provides an overview of our current understanding of the viral RNA-dependent polymerase structure and the biochemistry and biophysics that is involved in replicating and transcribing the genetic material of RNA viruses.
Collapse
Affiliation(s)
- Aartjan J W te Velthuis
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands,
| |
Collapse
|
17
|
Phosphorylation of hepatitis C virus RNA polymerases ser29 and ser42 by protein kinase C-related kinase 2 regulates viral RNA replication. J Virol 2014; 88:11240-52. [PMID: 25031343 DOI: 10.1128/jvi.01826-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase (RdRp), is the key enzyme for HCV RNA replication. We previously showed that HCV RdRp is phosphorylated by protein kinase C-related kinase 2 (PRK2). In the present study, we used biochemical and reverse-genetics approaches to demonstrate that HCV NS5B phosphorylation is crucial for viral RNA replication in cell culture. Two-dimensional phosphoamino acid analysis revealed that PRK2 phosphorylates NS5B exclusively at its serine residues in vitro and in vivo. Using in vitro kinase assays and mass spectrometry, we identified two phosphorylation sites, Ser29 and Ser42, in the Δ1 finger loop region that interacts with the thumb subdomain of NS5B. Colony-forming assays using drug-selectable HCV subgenomic RNA replicons revealed that preventing phosphorylation by Ala substitution at either Ser29 or Ser42 impairs HCV RNA replication. Furthermore, reverse-genetics studies using HCV infectious clones encoding phosphorylation-defective NS5B confirmed the crucial role of these PRK2 phosphorylation sites in viral RNA replication. Molecular-modeling studies predicted that the phosphorylation of NS5B stabilizes the interactions between its Δ1 loop and thumb subdomain, which are required for the formation of the closed conformation of NS5B known to be important for de novo RNA synthesis. Collectively, our results provide evidence that HCV NS5B phosphorylation has a positive regulatory role in HCV RNA replication. IMPORTANCE While the role of RNA-dependent RNA polymerases (RdRps) in viral RNA replication is clear, little is known about their functional regulation by phosphorylation. In this study, we addressed several important questions about the function and structure of phosphorylated hepatitis C virus (HCV) nonstructural protein 5B (NS5B). Reverse-genetics studies with HCV replicons encoding phosphorylation-defective NS5B mutants and analysis of their RdRp activities revealed previously unidentified NS5B protein features related to HCV replication and NS5B phosphorylation. These attributes most likely reflect potential structural changes induced by phosphorylation in the Δ1 finger loop region of NS5B with two identified phosphate acceptor sites, Ser29 and Ser42, which may transiently affect the closed conformation of NS5B. Elucidating the effects of dynamic changes in NS5B phosphorylation status during viral replication and their impacts on RNA synthesis will improve our understanding of the molecular mechanisms of NS5B phosphorylation-mediated regulation of HCV replication.
Collapse
|
18
|
Wen Y, Cheng Kao C. The hepatitis C virus core protein can modulate RNA-dependent RNA synthesis by the 2a polymerase. Virus Res 2014; 189:165-76. [PMID: 24874198 DOI: 10.1016/j.virusres.2014.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 01/06/2023]
Abstract
RNA replication enzymes are multi-subunit protein complexes whose activity can be modulated by other viral and cellular factors. For genotype 1b Hepatitis C virus (HCV), the RNA-dependent RNA polymerase (RdRp) subunit of the replicase, NS5B, has been reported to interact with the HCV Core protein to decrease RNA synthesis (Kang et al., 2009). Here we used a cell-based assay for RNA synthesis to examine the Core-NS5B interaction of genotype 2a HCV. Unlike the 1b NS5B, the activity of the 2a NS5B was stimulated by the Core protein. Using the bimolecular fluorescence complementation assay, the 2a Core co-localized with 2a NS5B when they were transiently expressed in cells. The two proteins can form a co-immunoprecipitable complex. Deletion analysis showed that the N-terminal 75 residues of 2a Core were required to contact 2a NS5B to modulate its activity. The C-terminal transmembrane helix of 2a NS5B also contributes to the interaction with the 2a Core. To determine the basis for the differential effects of the Core-RdRp interaction, we found that the 2a RdRp activity was enhanced by both the 1b Core and 2a Core. However, the 1b NS5B activity was slightly inhibited by either Core protein. The replication of the 2a JFH-1 replicon was increased by co-expressed 2a Core while the genotype 1b Con1 replicon was not significantly affected by the corresponding Core. Mutations in 2a NS5B that affected the closed RdRp structure were found to be less responsive to 2a Core. Finally, we determined that RNA synthesis by the RdRps from genotypes 2a, 3a and 4a HCV were increased by the Core proteins from HCV of genotypes 1-4. These results reveal another difference between RNA syntheses by the different genotype RdRps and add additional examples of a viral structural protein regulating viral RNA synthesis.
Collapse
Affiliation(s)
- Y Wen
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
19
|
Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM, Gong P, Zhang B. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 2014; 8:e2891. [PMID: 24852307 PMCID: PMC4031075 DOI: 10.1371/journal.pntd.0002891] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022] Open
Abstract
The flavivirus NS5 harbors both a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Both enzyme activities of NS5 are critical for viral replication. Recently, the full-length NS5 crystal structure of Japanese encephalitis virus reveals a conserved MTase-RdRP interface that features two conserved components: a six-residue hydrophobic network and a GTR sequence. Here we showed for the first time that these key interface components are essential for flavivirus replication by various reverse genetics approaches. Interestingly, some replication-impaired variants generated a common compensatory NS5 mutation outside the interface (L322F), providing novel routes to further explore the crosstalk between MTase and RdRP.
Collapse
Affiliation(s)
- Xiao-Dan Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Shan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Lin Deng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han-Qing Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peng Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (PG); (BZ)
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (PG); (BZ)
| |
Collapse
|
20
|
Li W, Zhang Y, Kao CC. The classic swine fever virus (CSFV) core protein can enhance de novo-initiated RNA synthesis by the CSFV polymerase NS5B. Virus Genes 2014; 49:106-15. [DOI: 10.1007/s11262-014-1080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 12/28/2022]
|
21
|
López-Jiménez AJ, Clemente-Casares P, Sabariegos R, Llanos-Valero M, Bellón-Echeverría I, Encinar JA, Kaushik-Basu N, Froeyen M, Mas A. Hepatitis C virus polymerase-polymerase contact interface: significance for virus replication and antiviral design. Antiviral Res 2014; 108:14-24. [PMID: 24815023 DOI: 10.1016/j.antiviral.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
The hepatitis C virus (HCV) replicates its genome in replication complexes located in micro-vesicles derived from endoplasmic reticulum. The composition of these replication complexes indicates that proteins, both viral and cellular in origin, are at high concentrations. Under these conditions, protein-protein interactions must occur although their role in the replication pathways is unknown. HCV RNA-dependent RNA-polymerase (NS5B) initiates RNA synthesis in these vesicles by a de novo (DN) mechanism. After initiation, newly synthesized dsRNA could induce conformational changes that direct the transition from an initiating complex into a processive elongation complex. In this report, we analyze the role played by NS5B-NS5B intermolecular interactions controlling these conformational rearrangements. Based on NS5B protein-protein docking and molecular dynamics simulations, we constructed mutants of residues predicted to be involved in protein-protein interactions. Changes at these positions induced severe defects in both the activity of the enzyme and the replication of a subgenomic replicon. Thus, mutations at the interaction surface decreased both DN synthesis initiation and processive elongation activities. Based on this analysis, we define at an atomic level an NS5B homomeric interaction model that connects the T-helix in the thumb subdomain of one monomer, with the F-helix of the fingers subdomain in other monomer. Knowing the molecular determinants involved in viral replication could be helpful to delineate new and powerful antiviral strategies.
Collapse
Affiliation(s)
- Alberto José López-Jiménez
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete 02008, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete 02008, Spain; School of Pharmacy, Universidad de Castilla-La Mancha, Albacete 02008, Spain; Viral Hepatitis Study Group, Spanish Society of Virology, Madrid, Spain
| | - Rosario Sabariegos
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete 02008, Spain; School of Medicine, Universidad de Castilla-La Mancha, Albacete 02008, Spain; Viral Hepatitis Study Group, Spanish Society of Virology, Madrid, Spain
| | - María Llanos-Valero
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete 02008, Spain
| | - Itxaso Bellón-Echeverría
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete 02008, Spain
| | - José Antonio Encinar
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche 03202, Spain
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, United States
| | - Mathy Froeyen
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, K.U. Leuven, Belgium
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete 02008, Spain; School of Pharmacy, Universidad de Castilla-La Mancha, Albacete 02008, Spain; Viral Hepatitis Study Group, Spanish Society of Virology, Madrid, Spain; Unidad de Biomedicina, CSIC-UCLM, Spain.
| |
Collapse
|
22
|
Preclinical characterization of BMS-791325, an allosteric inhibitor of hepatitis C Virus NS5B polymerase. Antimicrob Agents Chemother 2014; 58:3485-95. [PMID: 24733465 DOI: 10.1128/aac.02495-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BMS-791325 is an allosteric inhibitor that binds to thumb site 1 of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. BMS-791325 inhibits recombinant NS5B proteins from HCV genotypes 1, 3, 4, and 5 at 50% inhibitory concentrations (IC50) below 28 nM. In cell culture, BMS-791325 inhibited replication of HCV subgenomic replicons representing genotypes 1a and 1b at 50% effective concentrations (EC50s) of 3 nM and 6 nM, respectively, with similar (3 to 18 nM) values for genotypes 3a, 4a, and 5a. Potency against genotype 6a showed more variability (9 to 125 nM), and activity was weaker against genotype 2 (EC50, 87 to 925 nM). Specificity was demonstrated by the absence of activity (EC50s of >4 μM) against a panel of mammalian viruses, and cytotoxic concentrations (50%) were >3,000-fold above the HCV EC50. Resistance substitutions selected by BMS-791325 in genotype 1 replicons mostly mapped to a single site, NS5B amino acid 495 (P495A/S/L/T). Additive or synergistic activity was observed in combination studies using BMS-791325 with alfa interferon plus ribavirin, inhibitors of NS3 protease or NS5A, and other classes of NS5B inhibitor (palm site 2-binding or nucleoside analogs). Plasma and liver exposures in vivo in several animal species indicated that BMS-791325 has a hepatotropic disposition (liver-to-plasma ratios ranging from 1.6- to 60-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥ 10-fold above the inhibitor EC50s observed with HCV genotype 1 replicons. These findings support the evaluation of BMS-791325 in combination regimens for the treatment of HCV. Phase 3 studies are ongoing.
Collapse
|
23
|
The self-interaction of a nodavirus replicase is enhanced by mitochondrial membrane lipids. PLoS One 2014; 9:e89628. [PMID: 24586921 PMCID: PMC3934934 DOI: 10.1371/journal.pone.0089628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/22/2014] [Indexed: 12/24/2022] Open
Abstract
RNA replication of positive-strand (+)RNA viruses requires the protein-protein interactions among viral replicases and the association of viral replicases with intracellular membranes. Protein A from Wuhan nodavirus (WhNV), which closely associate with mitochondrial membranes, is the sole replicase required for viral RNA replication. Here, we studied the direct effects of mitochondrial membrane lipids (MMLs) on WhNV protein A activity in vitro. Our investigations revealed the self-interaction of WhNV protein A is accomplished via two different patterns (i.e., homotypic and heterotypic self-interactions via different interfaces). MMLs stimulated the protein A self-interaction, and this stimulation exhibited selectivity for specific phospholipids. Moreover, we found that specific phospholipids differently favor the two self-interaction patterns. Furthermore, manipulating specific phospholipid metabolism affected protein A self-interaction and the activity of protein A to replicate RNA in cells. Taken together, our findings reveal the direct effects of membrane lipids on a nodaviral RNA replicase.
Collapse
|
24
|
Boyce SE, Tirunagari N, Niedziela-Majka A, Perry J, Wong M, Kan E, Lagpacan L, Barauskas O, Hung M, Fenaux M, Appleby T, Watkins WJ, Schmitz U, Sakowicz R. Structural and regulatory elements of HCV NS5B polymerase--β-loop and C-terminal tail--are required for activity of allosteric thumb site II inhibitors. PLoS One 2014; 9:e84808. [PMID: 24416288 PMCID: PMC3886995 DOI: 10.1371/journal.pone.0084808] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B – the C-terminal tail and β-loop – in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor – NS5B complex are absent in the inhibitor – bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop.
Collapse
Affiliation(s)
- Sarah E. Boyce
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Neeraj Tirunagari
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | - Jason Perry
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Melanie Wong
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Elaine Kan
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Leanna Lagpacan
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Ona Barauskas
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Magdeleine Hung
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Martijn Fenaux
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Todd Appleby
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | - Uli Schmitz
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences Inc., Foster City, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Genome replication is a crucial step in the life cycle of any virus. HCV is a positive strand RNA virus and requires a set of nonstructural proteins (NS3, 4A, 4B, 5A, and 5B) as well as cis-acting replication elements at the genome termini for amplification of the viral RNA. All nonstructural proteins are tightly associated with membranes derived from the endoplasmic reticulum and induce vesicular membrane alterations designated the membranous web, harboring the viral replication sites. The viral RNA-dependent RNA polymerase NS5B is the key enzyme of RNA synthesis. Structural, biochemical, and reverse genetic studies have revealed important insights into the mode of action of NS5B and the mechanism governing RNA replication. Although a comprehensive understanding of the regulation of RNA synthesis is still missing, a number of important viral and host determinants have been defined. This chapter summarizes our current knowledge on the role of viral and host cell proteins as well as cis-acting replication elements involved in the biogenesis of the membranous web and in viral RNA synthesis.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
26
|
Davis BC, Thorpe IF. Molecular simulations illuminate the role of regulatory components of the RNA polymerase from the hepatitis C virus in influencing protein structure and dynamics. Biochemistry 2013; 52:4541-52. [PMID: 23738897 DOI: 10.1021/bi400251g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA polymerase (gene product NS5B) from the hepatitis C virus is responsible for replication of the viral genome and is a validated drug target for new therapeutic agents. NS5B has a structure resembling an open right hand (containing the fingers, palm, and thumb subdomains), a hydrophobic C-terminal region, and two magnesium ions coordinated in the palm domain. Biochemical data suggest that the magnesium ions provide structural stability and are directly involved in catalysis, while the C-terminus plays a regulatory role in NS5B function. Nevertheless, the molecular mechanisms by which these two features regulate polymerase activity remain unclear. To answer this question, we performed molecular dynamics simulations of NS5B variants with different C-terminal lengths in the presence or absence of magnesium ions to determine the impact on enzyme properties. We observed that metal binding increases both the magnitude and the degree of correlated enzyme motions. In contrast, we observed that the C-terminus restricts enzyme dynamics. Under certain conditions, our simulations revealed a fully closed conformation of NS5B that may facilitate de novo initiation of RNA replication. This knowledge is important because it fosters the development of a comprehensive description of RNA replication by NS5B and is relevant to understanding the functional properties of a broad class of related RNA polymerases such as 3D-pol from poliovirus. Ultimately, this information may also be pertinent to designing novel NS5B therapeutics.
Collapse
Affiliation(s)
- Brittny C Davis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
27
|
Beaulieu PL. Design and Development of NS5B Polymerase Non‐nucleoside Inhibitors for the Treatment of Hepatitis C Virus Infection. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The hepatitis C virus (HCV) infects an estimated 130–170 million people worldwide and is associated with life‐threatening liver diseases. The recent introduction of the first two HCV direct‐acting antivirals (DAAs) as a complement to the interferon/ribavirin standard of care has provided patients with improved outcomes. Still, 25–30% of subjects infected with genotype 1 HCV do not respond adequately to treatment owing to the emergence of resistant virus and many suffer from severe side effects. A paradigm shift towards the development of interferon‐free combinations of DAAs with complementary modes of action is currently taking place. Virally encoded proteins and enzymes have become the target of HCV drug discovery efforts and several promising new agents are currently being evaluated in the clinic for treatment of chronic HCV infection. The NS5B RNA‐dependent RNA polymerase is responsible for replication of viral RNA and plays a pivotal role in the virus life cycle. NS5B is undoubtedly the most druggable HCV target and is susceptible to several classes of allosteric inhibitors that bind to four distinct sites on the enzyme. This chapter describes successful strategies that have led to the discovery of HCV NS5B antivirals. It is divided according to allosteric sites and describes how each of the known families of inhibitors was discovered, characterized and optimized to provide clinical candidates. When available, the strategies adopted by medicinal chemists to optimize initial leads and address challenges and liabilities encountered on the path to candidate selection are described, along with reported clinical outcomes.
Collapse
Affiliation(s)
- Pierre L. Beaulieu
- Boehringer Ingelheim (Canada) Ltd. 2100 Cunard Street, Laval, Québec Canada, H7S 2G5 resgeneral.lav@boehringer‐ingelheim.com
| |
Collapse
|
28
|
Asthana S, Shukla S, Vargiu AV, Ceccarelli M, Ruggerone P, Paglietti G, Marongiu ME, Blois S, Giliberti G, La Colla P. Different Molecular Mechanisms of Inhibition of Bovine Viral Diarrhea Virus and Hepatitis C Virus RNA-Dependent RNA Polymerases by a Novel Benzimidazole. Biochemistry 2013; 52:3752-64. [DOI: 10.1021/bi400107h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shailendra Asthana
- Dipartimento di Scienze Biomediche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
- Dipartimento di Scienze Fisiche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Saumya Shukla
- Dipartimento di Scienze Biomediche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | | | - Matteo Ceccarelli
- Dipartimento di Scienze Fisiche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Dipartimento di Scienze Fisiche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Giuseppe Paglietti
- Dipartimento di Scienze del
Farmaco, Università degli Studi di Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Maria E. Marongiu
- Dipartimento di Scienze Biomediche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Sylvain Blois
- Dipartimento di Scienze Biomediche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Gabriele Giliberti
- Dipartimento di Scienze Biomediche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Paolo La Colla
- Dipartimento di Scienze Biomediche,
Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| |
Collapse
|
29
|
Waheed Y, Bhatti A, Ashraf M. RNA dependent RNA polymerase of HCV: a potential target for the development of antiviral drugs. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 14:247-57. [PMID: 23291407 DOI: 10.1016/j.meegid.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/07/2012] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma, cirrhosis and end stage liver disease. More than 200million people are living with HCV worldwide with high morbidity and mortality. There is no vaccine available for this virus; the approved treatment option for the majority of HCV genotypes is the combination of pegylated (Peg) interferon and ribavirin. The therapy has a different response rate on different HCV genotypes and has a number of side effects. Recently, as well as Peg interferon and ribavirin, two protease inhibitors have been introduced to treat patients with HCV genotype 1 infection. The protease inhibitors have rapid onset of resistance and are not approved for use for infections with other HCV genotypes. The HCV NS5B gene encodes RNA dependent RNA polymerase (RdRp), which is the key player in viral replication and is a promising target for the development of antiviral drugs. HCV NS5B has been studied in various biochemical assays, cell based assays and animal model systems. So far, a number of nucleoside and non-nucleoside inhibitors have been screened for effects on viral replication. This review presents a deep insight into the structure and function of HCV polymerase and the effect of various nucleoside and non-nucleoside inhibitors on viral replication.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta ur Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan.
| | | | | |
Collapse
|
30
|
Beaulieu PL, Bös M, Cordingley MG, Chabot C, Fazal G, Garneau M, Gillard JR, Jolicoeur E, LaPlante S, McKercher G, Poirier M, Poupart MA, Tsantrizos YS, Duan J, Kukolj G. Discovery of the first thumb pocket 1 NS5B polymerase inhibitor (BILB 1941) with demonstrated antiviral activity in patients chronically infected with genotype 1 hepatitis C virus (HCV). J Med Chem 2012; 55:7650-66. [PMID: 22849725 DOI: 10.1021/jm3006788] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinations of direct acting antivirals (DAAs) that have the potential to suppress emergence of resistant virus and that can be used in interferon-sparing regimens represent a preferred option for the treatment of chronic HCV infection. We have discovered allosteric (thumb pocket 1) non-nucleoside inhibitors of HCV NS5B polymerase that inhibit replication in replicon systems. Herein, we report the late-stage optimization of indole-based inhibitors, which began with the identification of a metabolic liability common to many previously reported inhibitors in this series. By use of parallel synthesis techniques, a sparse matrix of inhibitors was generated that provided a collection of inhibitors satisfying potency criteria and displaying improved in vitro ADME profiles. "Cassette" screening for oral absorption in rat provided a short list of potential development candidates. Further evaluation led to the discovery of the first thumb pocket 1 NS5B inhibitor (BILB 1941) that demonstrated antiviral activity in patients chronically infected with genotype 1 HCV.
Collapse
Affiliation(s)
- Pierre L Beaulieu
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Quebec, H7S 2G5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vaughan R, Fan B, You JS, Kao CC. Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2012; 18:1541-52. [PMID: 22736798 PMCID: PMC3404374 DOI: 10.1261/rna.031914.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/30/2012] [Indexed: 05/21/2023]
Abstract
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.
Collapse
Affiliation(s)
- Robert Vaughan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Baochang Fan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Jin-Sam You
- Indiana University School of Medicine, IUPUI, Indianapolis, Indiana 46202, USA
| | - C. Cheng Kao
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
- Corresponding authorE-mail
| |
Collapse
|
32
|
Norovirus RNA synthesis is modulated by an interaction between the viral RNA-dependent RNA polymerase and the major capsid protein, VP1. J Virol 2012; 86:10138-49. [PMID: 22787222 DOI: 10.1128/jvi.01208-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a cell-based assay for RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of noroviruses, we previously observed that VP1, the major structural protein of the human GII.4 norovirus, enhanced the GII.4 RdRp activity but not that of the related murine norovirus (MNV) or other unrelated RNA viruses (C. V. Subba-Reddy, I. Goodfellow, and C. C. Kao, J. Virol. 85:13027-13037, 2011). Here, we examine the mechanism of VP1 enhancement of RdRp activity and the mechanism of mouse norovirus replication. We determined that the GII.4 and MNV VP1 proteins can enhance cognate RdRp activities in a concentration-dependent manner. The VP1 proteins coimmunoprecipitated with their cognate RdRps. Coexpression of individual domains of VP1 with the viral RdRps showed that the VP1 shell domain (SD) was sufficient to enhance polymerase activity. Using SD chimeras from GII.4 and MNV, three loops connecting the central β-barrel structure were found to be responsible for the species-specific enhancement of RdRp activity. A differential scanning fluorimetry assay showed that recombinant SDs can bind to the purified RdRps in vitro. An MNV replicon with a frameshift mutation in open reading frame 2 (ORF2) that disrupts VP1 expression was defective for RNA replication, as quantified by luciferase reporter assay and real-time quantitative reverse transcription-PCR (qRT-PCR). Trans-complementation of VP1 or its SD significantly recovered the VP1 knockout MNV replicon replication, and the presence or absence of VP1 affected the kinetics of viral RNA synthesis. The results document a regulatory role for VP1 in the norovirus replication cycle, further highlighting the paradigm of viral structural proteins playing additional functional roles in the virus life cycle.
Collapse
|
33
|
Two crucial early steps in RNA synthesis by the hepatitis C virus polymerase involve a dual role of residue 405. J Virol 2012; 86:7107-17. [PMID: 22532694 DOI: 10.1128/jvi.00459-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase essential for replication of the viral RNA genome. In vitro and presumably in vivo, NS5B initiates RNA synthesis by a de novo mechanism and then processively copies the whole RNA template. Dissections of de novo RNA synthesis by genotype 1 NS5B proteins previously established that there are two successive crucial steps in de novo initiation. The first is dinucleotide formation, which requires a closed conformation, and the second is the transition to elongation, which requires an opening of NS5B. We also recently published a combined structural and functional analysis of genotype 2 HCV-NS5B proteins (of strains JFH1 and J6) that established residue 405 as a key element in de novo RNA synthesis (P. Simister et al., J. Virol. 83:11926-11939, 2009; M. Schmitt et al., J. Virol 85:2565-2581, 2011). We hypothesized that this residue stabilizes a particularly closed conformation conducive to dinucleotide formation. Here we report similar in vitro dissections of de novo synthesis for J6 and JFH1 NS5B proteins, as well as for mutants at position 405 of several genotype 1 and 2 strains. Our results show that an isoleucine at position 405 can promote both dinucleotide formation and the transition to elongation. New structural results highlight a molecular switch of position 405 with long-range effects, resolving the implied paradox of how the same residue can successively favor both the closed conformation of the dinucleotide formation step and the opening necessary to the transition step.
Collapse
|
34
|
Jin Z, Leveque V, Ma H, Johnson KA, Klumpp K. Assembly, purification, and pre-steady-state kinetic analysis of active RNA-dependent RNA polymerase elongation complex. J Biol Chem 2012; 287:10674-10683. [PMID: 22303022 PMCID: PMC3323022 DOI: 10.1074/jbc.m111.325530] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NS5B is the RNA-dependent RNA polymerase responsible for replicating hepatitis C virus (HCV) genomic RNA. Despite more than a decade of work, the formation of a highly active NS5B polymerase·RNA complex suitable for mechanistic and structural studies has remained elusive. Here, we report that through a novel way of optimizing initiation conditions, we were able to generate a productive NS5B·primer·template elongation complex stalled after formation of a 9-nucleotide primer. In contrast to previous reports of very low proportions of active NS5B, we observed that under optimized conditions up to 65% of NS5B could be converted into active elongation complexes. The elongation complex was extremely stable, allowing purification away from excess nucleotide and abortive initiation products so that the purified complex was suitable for pre-steady-state kinetic analyses of polymerase activity. Single turnover kinetic studies showed that CTP is incorporated with apparent Kd and kpol values of 39 ± 3 μm and 16 ± 1 s−1, respectively, giving a specificity constant of kpol/Kd of 0.41 μm−1 s−1. The kinetics of multiple nucleotide incorporation during processive elongation also were determined. This work establishes a novel way to generate a highly active elongation complex of the medically important NS5B polymerase for structural and functional studies.
Collapse
Affiliation(s)
- Zhinan Jin
- Hoffmann-La Roche, Inc., Nutley, New Jersey 07110 and.
| | | | - Han Ma
- Hoffmann-La Roche, Inc., Nutley, New Jersey 07110 and
| | - Kenneth A Johnson
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Klaus Klumpp
- Hoffmann-La Roche, Inc., Nutley, New Jersey 07110 and.
| |
Collapse
|
35
|
Detergent-induced activation of the hepatitis C virus genotype 1b RNA polymerase. Gene 2012; 496:79-87. [PMID: 22306265 DOI: 10.1016/j.gene.2012.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 11/24/2022]
Abstract
Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.
Collapse
|
36
|
Hillung J, Ruiz-López E, Bellón-Echeverría I, Clemente-Casares P, Mas A. Characterization of the interaction between hepatitis C virus NS5B and the human oestrogen receptor alpha. J Gen Virol 2011; 93:780-785. [PMID: 22170636 DOI: 10.1099/vir.0.039396-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is part of the viral replicative complex and plays a crucial role in HCV replication. It has been described that NS5B interacts with cellular proteins, and that interactions between NS5B and host proteins are crucial for viral replication. Some of the host factors involved in the HCV replication cycle include the oestrogen receptor alpha (ESR1), protein kinases (c-Src) and chaperones (Hsp70). In this report, we determine the requirements for the interplay between NS5B and the domain C of ESR1 (ESR1C) by using Förster Resonance Energy Transfer. NS5B-ESR1C and ESR1C-ESR1C interactions are dependent on ionic strength, indicating that contacts are mainly electrostatic. Additionally, NS5B residues involved in NS5B oligomerization were also essential for NS5B-ESR1C interaction. The study of the interactions among viral and host factors will provide data to establish innovative therapeutic strategies and the development of new antiviral drugs.
Collapse
Affiliation(s)
- Julia Hillung
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Elena Ruiz-López
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Itxaso Bellón-Echeverría
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, 02006 Albacete, Spain
| |
Collapse
|
37
|
Biochemical study of the comparative inhibition of hepatitis C virus RNA polymerase by VX-222 and filibuvir. Antimicrob Agents Chemother 2011; 56:830-7. [PMID: 22143520 DOI: 10.1128/aac.05438-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Filibuvir and VX-222 are nonnucleoside inhibitors (NNIs) that bind to the thumb II allosteric pocket of the hepatitis C virus (HCV) RNA-dependent RNA polymerase. Both compounds have shown significant promise in clinical trials and, therefore, it is relevant to better understand their mechanisms of inhibition. In our study, filibuvir and VX-222 inhibited the 1b/Con1 HCV subgenomic replicon, with 50% effective concentrations (EC(50)s) of 70 nM and 5 nM, respectively. Using several RNA templates in biochemical assays, we found that both compounds preferentially inhibited primer-dependent RNA synthesis but had either no or only modest effects on de novo-initiated RNA synthesis. Filibuvir and VX-222 bind to the HCV polymerase with dissociation constants of 29 and 17 nM, respectively. Three potential resistance mutations in the thumb II pocket were analyzed for effects on inhibition by the two compounds. The M423T substitution in the RNA polymerase was at least 100-fold more resistant to filibuvir in the subgenomic replicon and in the enzymatic assays. This resistance was the result of a 250-fold loss in the binding affinity (K(d)) of the mutated enzyme to filibuvir. In contrast, the inhibitory activity of VX-222 was only modestly affected by the M423T substitution but more significantly affected by an I482L substitution.
Collapse
|
38
|
Lai Y, Yi G, Chen A, Bhardwaj K, Tragesser BJ, Rodrigo A Valverde, Zlotnick A, Mukhopadhyay S, Ranjith-Kumar CT, Kao CC. Viral double-strand RNA-binding proteins can enhance innate immune signaling by toll-like Receptor 3. PLoS One 2011; 6:e25837. [PMID: 22016778 PMCID: PMC3189932 DOI: 10.1371/journal.pone.0025837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022] Open
Abstract
Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.
Collapse
Affiliation(s)
- Yvonne Lai
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Norovirus RNA-dependent RNA polymerase is phosphorylated by an important survival kinase, Akt. J Virol 2011; 85:10894-8. [PMID: 21849454 DOI: 10.1128/jvi.05562-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viruses commonly use host cell survival mechanisms to their own advantage. We show that Akt, an important signaling kinase involved in cell survival, phosphorylates the RNA-dependent RNA polymerase (RdRp) from norovirus, the major cause of gastroenteritis outbreaks worldwide. The Akt phosphorylation of RdRp appears to be a feature unique to the more prevalent norovirus genotypes such as GII.4 and GII.b. This phosphorylation event occurs at a residue (Thr33) located at the interface where the RdRp finger and thumb domains interact and decreases de novo activity of the polymerase. This finding provides fresh insights into virus-host cell interactions.
Collapse
|
40
|
Ranjith-Kumar CT, Wen Y, Baxter N, Bhardwaj K, Cheng Kao C. A cell-based assay for RNA synthesis by the HCV polymerase reveals new insights on mechanism of polymerase inhibitors and modulation by NS5A. PLoS One 2011; 6:e22575. [PMID: 21799903 PMCID: PMC3142182 DOI: 10.1371/journal.pone.0022575] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
RNA synthesis by the genotype 1b hepatitis C virus (HCV) polymerase (NS5B) transiently expressed in Human embryonic kidney 293T cells or liver hepatocytes was found to robustly stimulate RIG-I-dependent luciferase production from the interferon β promoter in the absence of exogenously provided ligand. This cell-based assay, henceforth named the 5BR assay, could be used to examine HCV polymerase activity in the absence of other HCV proteins. Mutations that decreased de novo initiated RNA synthesis in biochemical assays decreased activation of RIG-I signaling. In addition, NS5B that lacks the C-terminal transmembrane helix but remains competent for RNA synthesis could activate RIG-I signaling. The addition of cyclosporine A to the cells reduced luciferase levels without affecting agonist-induced RIG-I signaling. Furthermore, non-nucleoside inhibitor benzothiadiazines (BTDs) that bind within the template channel of the 1b NS5B were found to inhibit the readout from the 5BR assay. Mutation M414T in NS5B that rendered the HCV replicon resistant to BTD was also resistant to BTDs in the 5BR assay. Co-expression of the HCV NS5A protein along with NS5B and RIG-I was found to inhibit the readout from the 5BR assay. The inhibition by NS5A was decreased with the removal of the transmembrane helix in NS5B. Lastly, NS5B from all six major HCV genotypes showed robust activation of RIG-I in the 5BR assay. In summary, the 5BR assay could be used to validate inhibitors of the HCV polymerase as well as to elucidate requirements for HCV-dependent RNA synthesis.
Collapse
Affiliation(s)
- C. T. Ranjith-Kumar
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Nielson Baxter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Kanchan Bhardwaj
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
41
|
Zou G, Chen YL, Dong H, Lim CC, Yap LJ, Yau YH, Shochat SG, Lescar J, Shi PY. Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem 2011; 286:14362-72. [PMID: 21349834 DOI: 10.1074/jbc.m110.214189] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavivirus NS5 protein encodes methyltransferase and RNA-dependent RNA polymerase (RdRp) activities. Structural analysis of flavivirus RdRp domains uncovered two conserved cavities (A and B). Both cavities are located in the thumb subdomains and represent potential targets for development of allosteric inhibitors. In this study, we used dengue virus as a model to analyze the function of the two RdRp cavities. Amino acids from both cavities were subjected to mutagenesis analysis in the context of genome-length RNA and recombinant NS5 protein; residues critical for viral replication were subjected to revertant analysis. For cavity A, we found that only one (Lys-756) of the seven selected amino acids is critical for viral replication. Alanine substitution of Lys-756 did not affect the RdRp activity, suggesting that this residue functions through a nonenzymatic mechanism. For cavity B, all four selected amino acids (Leu-328, Lys-330, Trp-859, and Ile-863) are critical for viral replication. Biochemical and revertant analyses showed that three of the four mutated residues (Leu-328, Trp-859, and Ile-863) function at the step of initiation of RNA synthesis, whereas the fourth residue (Lys-330) functions by interacting with the viral NS3 helicase domain. Collectively, our results have provided direct evidence for the hypothesis that cavity B, but not cavity A, from dengue virus NS5 polymerase could be a target for rational drug design.
Collapse
Affiliation(s)
- Gang Zou
- Novartis Institute for Tropical Diseases, Singapore 138670
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jin Z, Deval J, Johnson KA, Swinney DC. Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity. J Biol Chem 2010; 286:2067-77. [PMID: 21078673 PMCID: PMC3023504 DOI: 10.1074/jbc.m110.162685] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dengue virus (DENV) infects 50–100 million people worldwide per year, causing severe public health problems. DENV RNA-dependent RNA polymerase, an attractive target for drug development, catalyzes de novo replication of the viral genome in three phases: initiation, transition, and elongation. The aim of this work was to characterize the mechanism of nucleotide addition catalyzed by the polymerase domain of DENV serotype 2 during elongation using transient kinetic methods. We measured the kinetics of formation of the elongation complex containing the polymerase and a double-stranded RNA by preincubation experiments. The elongation complex assembly is slow, following a one-step binding mechanism with an association rate of 0.0016 ± 0.0001 μm−1s−1 and a dissociation rate of 0.00020 ± 0.00005 s−1 at 37 °C. The elongation complex assembly is 6 times slower at 30 °C and requires Mg2+ during preincubation. The assembled elongation complex incorporates a correct nucleotide, GTP, to the primer with a Kd of 275 ± 52 μm and kpol of 18 ± 1 s−1. The fidelity of the polymerase is 1/34,000, 1/59,000, 1/135,000 for misincorporation of UTP, ATP, and CTP opposite CMP in the template, respectively. The fidelity of DENV polymerase is comparable with HIV reverse transcriptase and the poliovirus polymerase. This work reports the first description of presteady-state kinetics and fidelity for an RNA-dependent RNA polymerase from the Flaviviridae family.
Collapse
Affiliation(s)
- Zhinan Jin
- Virology DTA, Roche Palo Alto LLC, Palo Alto, California 94034, USA
| | | | | | | |
Collapse
|
43
|
Sphingomyelin activates hepatitis C virus RNA polymerase in a genotype-specific manner. J Virol 2010; 84:11761-70. [PMID: 20844041 DOI: 10.1128/jvi.00638-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) replication and infection depend on the lipid components of the cell, and replication is inhibited by inhibitors of sphingomyelin biosynthesis. We found that sphingomyelin bound to and activated genotype 1b RNA-dependent RNA polymerase (RdRp) by enhancing its template binding activity. Sphingomyelin also bound to 1a and JFH1 (genotype 2a) RdRps but did not activate them. Sphingomyelin did not bind to or activate J6CF (2a) RdRp. The sphingomyelin binding domain (SBD) of HCV RdRp was mapped to the helix-turn-helix structure (residues 231 to 260), which was essential for sphingomyelin binding and activation. Helix structures (residues 231 to 241 and 247 to 260) are important for RdRp activation, and 238S and 248E are important for maintaining the helix structures for template binding and RdRp activation by sphingomyelin. 241Q in helix 1 and the negatively charged 244D at the apex of the turn are important for sphingomyelin binding. Both amino acids are on the surface of the RdRp molecule. The polarity of the phosphocholine of sphingomyelin is important for HCV RdRp activation. However, phosphocholine did not activate RdRp. Twenty sphingomyelin molecules activated one RdRp molecule. The biochemical effect of sphingomyelin on HCV RdRp activity was virologically confirmed by the HCV replicon system. We also found that the SBD was the lipid raft membrane localization domain of HCV NS5B because JFH1 (2a) replicon cells harboring NS5B with the mutation A242C/S244D moved to the lipid raft while the wild type did not localize there. This agreed with the myriocin sensitivity of the mutant replicon. This sphingomyelin interaction is a target for HCV infection because most HCV RdRps have 241Q.
Collapse
|
44
|
Rigat K, Wang Y, Hudyma TW, Ding M, Zheng X, Gentles RG, Beno BR, Gao M, Roberts SB. Ligand-induced changes in hepatitis C virus NS5B polymerase structure. Antiviral Res 2010; 88:197-206. [PMID: 20813137 DOI: 10.1016/j.antiviral.2010.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) RNA-dependent RNA polymerase (NS5B) is required for viral replication. Crystal structures of the NS5B apoprotein show that the finger and thumb domains interact to encircle the active site, and that inhibitors defined by P495 resistance that bind to the thumb-finger interface displace the Δ1 finger loop and disrupt this structure. Since crystal structures may not reveal all of the conformations of a protein in solution we have developed an alternative method, using limited trypsin protease digestion, to investigate the impact of inhibitors as well as substrates on the movement of the Δ1 loop. This assay can be used to study NS5B under conditions that support enzymatic activity. In the absence of inhibitors, no specific region of NS5B was hypersensitive to trypsin, and no specific intermediate cleavage products were formed. Binding of P495-site inhibitors to NS5B induced specific trypsin hypersensitivity at lysine residues 50 and 51. Previously characterized inhibitors and mutant polymerases were used to link this specific trypsin hypersensitivity to movement of the Δ1 loop. Trypsin hypersensitivity identical to the inhibitor pattern was also induced by the binding of the RNA template. The addition of primer to the NS5B-template complex eliminated the hypersensitivity. The data are consistent with displacement of the Δ1 finger loop from the thumb by the binding of template, and reversal by the addition of primer or NTP. Our results complement inhibitor-enzyme co-crystal studies, and the assay provides a rapid and sensitive method to study dynamic changes in HCV NS5B polymerase conformation under conditions that support functional activity.
Collapse
Affiliation(s)
- Karen Rigat
- Department of Virology, Bristol-Myers Squibb Co., Research & Development, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions. J Virol 2010; 84:5923-35. [PMID: 20375156 DOI: 10.1128/jvi.02446-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has been proposed to change conformations in association with RNA synthesis and to interact with cellular proteins. In vitro, the RdRp can initiate de novo from the ends of single-stranded RNA or extend a primed RNA template. The interactions between the Delta1 loop and thumb domain in NS5B are required for de novo initiation, although it is unclear whether these interactions are within an NS5B monomer or are part of a higher-order NS5B oligomeric complex. This work seeks to address how polymerase conformation and/or oligomerization affects de novo initiation. We have shown that an increasing enzyme concentration increases de novo initiation by the genotype 1b and 2a RdRps while primer extension reactions are not affected or inhibited under similar conditions. Initiation-defective mutants of the HCV polymerase can increase de novo initiation by the wild-type (WT) polymerase. GTP was also found to stimulate de novo initiation. Our results support a model in which the de novo initiation-competent conformation of the RdRp is stimulated by oligomeric contacts between individual subunits. Using electron microscopy and single-molecule reconstruction, we attempted to visualize the low-resolution conformations of a dimer of a de novo initiation-competent HCV RdRp.
Collapse
|
46
|
Cyclosporine inhibits a direct interaction between cyclophilins and hepatitis C NS5A. PLoS One 2010; 5:e9815. [PMID: 20352119 PMCID: PMC2843741 DOI: 10.1371/journal.pone.0009815] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/15/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatitis C Virus (HCV) infection is a leading indication for liver transplantation. HCV infection reoccurs almost universally post transplant, decreasing both graft longevity and patient survival. The immunosuppressant, cyclosporine A (CsA) has potent anti-HCV activity towards both HCV replicons and the genotype 2a cell culture infectious virus. Previously, we isolated mutations in the 1bN replicon with less sensitivity to CsA that mapped to both NS5A and NS5B regions of the virus. Mutations in NS5A alone conferred decreased CsA susceptibility regardless of NS5B mutations. METHODOLOGY/PRINCIPAL FINDINGS We examined the mechanisms by which NS5A mutations contribute to CsA resistance and if they are strain dependent. Using in vitro mutagenesis, the amino acid position 321 mutation of NS5A was restored to the wild-type tyrosine residue conferring partial CsA susceptibility on the mutant replicon. The 321 mutation also alters CsA susceptibility of the JFH cell culture virus. Additionally, we demonstrated a novel CsA-sensitive interaction between NS5A and both cyclophilin A and B. Both the mutant NS5A and wild type NS5A bind cyclophilin in vitro. The NS5A: cyclophilin interaction requires both the NS5A region identified by the resistance mutants and cyclophilin catalytic residues. In cell culture, NS5A from CsA resistant mutant has an enhanced interaction with cyclophilin B. Additionally; NS5B facilitates a stronger binding of mutant NS5A to endogenous cyclophilin B than wild-type in cell culture. CONCLUSIONS/SIGNIFICANCE Collectively, this data suggests direct interactions between cyclophilins and NS5A are critical to understand for optimal use of cyclophilin inhibitors in anti-HCV therapy.
Collapse
|
47
|
Choi KH, Rossmann MG. RNA-dependent RNA polymerases from Flaviviridae. Curr Opin Struct Biol 2009; 19:746-51. [PMID: 19914821 DOI: 10.1016/j.sbi.2009.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 12/13/2022]
Abstract
Viral genome replication in Flaviviridae is carried out by a virally encoded RNA-dependent RNA polymerase (RdRp). These viruses initiate the RNA synthesis via a de novo mechanism that differs from the primer-dependent mechanism used by Picornaviridae. Like all polymerases, the structure of Flaviviridae RdRps resembles a right hand with characteristic fingers, palm, and thumb domains. Structural features that distinguish Flaviviridae RdRps from other polymerases are a large thumb domain and a C-terminal motif that encircles the active site. This domain arrangement restricts the volume of the template-binding channel, allowing only single-stranded RNA to enter the active site. While this closed form of the polymerase is ideal to stabilize a de novo initiation complex, significant conformational changes are expected to accommodate the elongation complex containing the RNA duplex product.
Collapse
Affiliation(s)
- Kyung H Choi
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, TX 77555-0647, USA.
| | | |
Collapse
|
48
|
Lescar J, Canard B. RNA-dependent RNA polymerases from flaviviruses and Picornaviridae. Curr Opin Struct Biol 2009; 19:759-67. [PMID: 19910184 DOI: 10.1016/j.sbi.2009.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 01/24/2023]
Abstract
Flaviviruses and picornaviruses are positive-strand RNA viruses that encode the RNA-dependent RNA polymerase (RdRp) required for replicating the viral genome in infected cells. Because of their specific and essential role in the virus life cycle, RdRps are prime targets for antiviral drugs. Recent structural data have shed light on the different strategies used by RdRps from flaviviruses and Picornaviridae to initiate RNA polymerization. New details about the catalytic mechanism, the role of metal ions, how these RdRps interact with other nonstructural (NS) viral and host-cell proteins as well as with the viral RNA genome have also been published. These advances contribute to give a more complete picture of the 3D structure and mechanism of a membrane-bound viral replication complex for these two classes of medically important human pathogens.
Collapse
Affiliation(s)
- Julien Lescar
- Centre National de la Recherche Scientifique, Université d'Aix-Marseille I et II, UMR 6098 AFMB, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|
49
|
Grossoehme NE, Li L, Keane SC, Liu P, Dann CE, Leibowitz JL, Giedroc DP. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol 2009; 394:544-57. [PMID: 19782089 PMCID: PMC2783395 DOI: 10.1016/j.jmb.2009.09.040] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 11/03/2022]
Abstract
All coronaviruses (CoVs), including the causative agent of severe acute respiratory syndrome (SARS), encode a nucleocapsid (N) protein that harbors two independent RNA binding domains of known structure, but poorly characterized RNA binding properties. We show here that the N-terminal domain (NTD) of N protein from mouse hepatitis virus (MHV), a virus most closely related to SARS-CoV, employs aromatic amino acid-nucleobase stacking interactions with a triple adenosine motif to mediate high-affinity binding to single-stranded RNAs containing the transcriptional regulatory sequence (TRS) or its complement (cTRS). Stoichiometric NTD fully unwinds a TRS-cTRS duplex that mimics a transiently formed transcription intermediate in viral subgenomic RNA synthesis. Mutation of the solvent-exposed Y127, positioned on the beta-platform surface of our 1.75 A structure, binds the TRS far less tightly and is severely crippled in its RNA unwinding activity. In contrast, the C-terminal domain (CTD) exhibits no RNA unwinding activity. Viruses harboring Y127A N mutation are strongly selected against and Y127A N does not support an accessory function in MHV replication. We propose that the helix melting activity of the coronavirus N protein NTD plays a critical accessory role in subgenomic RNA synthesis and other processes requiring RNA remodeling.
Collapse
|
50
|
Hepatitis C: recent successes and continuing challenges in the development of improved treatment modalities. Curr Opin Pharmacol 2009; 9:537-44. [PMID: 19762279 DOI: 10.1016/j.coph.2009.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/21/2009] [Indexed: 01/11/2023]
Abstract
Dramatic progress is being made toward the development of less-toxic and simpler alternatives to the current standard-of-care therapy for chronic hepatitis C, which involves a combination of pegylated interferon (peg-IFN) and ribavirin (RBV). Several accessible viral targets have been identified and licensure of the most advanced clinical compounds can be anticipated within the next several years. However, the highly replicative nature of HCV infection, coupled with error-prone viral RNA synthesis and considerable genome diversity, pose extraordinary challenges to drug development. Peg-IFN is likely to remain a mainstay of therapy for the foreseeable future, or until such time that multiple direct-acting antiviral (STAT-C) inhibitors are available and shown to provide a sufficiently high barrier to resistance when used in combination.
Collapse
|