1
|
Liu X, Lin J, Wu H, Wang Y, Xie L, Wu J, Qin H, Xu J. A Novel Long Noncoding RNA lincRNA00892 Activates CD4 + T Cells in Systemic Lupus Erythematosus by Regulating CD40L. Front Pharmacol 2021; 12:733902. [PMID: 34707498 PMCID: PMC8543062 DOI: 10.3389/fphar.2021.733902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The mechanism of CD4+ T-cell dysfunction in systemic lupus erythematosus (SLE) has not been fully understood. Increasing evidence show that long noncoding RNAs (lncRNAs) can regulate immune responses and take part in some autoimmune diseases, while little is known about the lncRNA expression and function in CD4+ T of SLE. Here, we aimed to detect the expression profile of lncRNAs in lupus CD4+ T cells and explore the mechanism that how lincRNA00892 in CD4+ T cells is involved in the pathogenesis of SLE. Methods: The expression profiles of lncRNAs and mRNAs in CD4+ T cells from SLE patients and healthy controls were detected by microarray. LincRNA00892 and CD40L were chosen for validation by quantitative real-time PCR (qRT-PCR). Coexpression network was conducted to predict the potential target genes of lincRNA00892. Then lincRNA00892 was overexpressed in normal CD4+ T cells via lentivirus transfection. The expression of lincRNA00892 was detected by qRT-PCR. The expression of CD40L was detected by qRT-PCR, western blotting, and flow cytometry, respectively. The expression of CD69 and CD23 was measured by flow cytometry. The secretion of IgG was determined by enzyme-linked immunosorbent assay (ELISA). The proteins targeted by lincRNA00892 were measured by RNA pulldown and subsequent mass spectrometry (MS). The interaction between heterogeneous nuclear ribonucleoprotein K (hnRNP K) and lincRNA00892 or CD40L was detected by RNA immunoprecipitation (RIP) assay. Results: A total of 1887 lncRNAs and 3375 mRNAs were found to be aberrantly expressed in CD4+ T cells of SLE patients compared to healthy controls. LincRNA00892 and CD40L were confirmed to be upregulated in CD4+ T cells of SLE patients by qRT-PCR. The lncRNA-mRNA coexpression network analysis indicated that CD40L was a potential target of lincRNA00892. Overexpression of lincRNA00892 enhanced CD40L protein levels while exerting little influence on CD40L mRNA levels in CD4+ T cells. In addition, lincRNA00892 could induce the activation of CD4+ T cells. Furthermore, lincRNA00892 led to the activation of B cells and subsequent secretion of IgG in a CD4+ T-cell-dependent manner. Finally, hnRNP K was found to be among the proteins pulled down by lincRNA00892, and hnRNP K could bind to lincRNA00892 or CD40L directly. Conclusion: Our results showed that the lncRNA expression profile was altered in CD4+ T cells of SLE. LincRNA00892 possibly contributed to the pathogenesis of SLE by targeting hnRNP K and subsequently upregulating CD40L expression to activate CD4+ T and B cells. These provided us a potential target for further mechanistic studies of SLE pathogenesis.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Xie
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haihong Qin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Narayanan B, Prado de Maio D, La Porta J, Voskoboynik Y, Ganapathi U, Xie P, Covey LR. A Posttranscriptional Pathway of CD40 Ligand mRNA Stability Is Required for the Development of an Optimal Humoral Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:2552-2565. [PMID: 34031147 DOI: 10.4049/jimmunol.2001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
CD40 ligand (CD40L) mRNA stability is dependent on an activation-induced pathway that is mediated by the binding complexes containing the multifunctional RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) to a 3' untranslated region of the transcript. To understand the relationship between regulated CD40L and the requirement for variegated expression during a T-dependent response, we engineered a mouse lacking the CD40L stability element (CD40LΔ5) and asked how this mutation altered multiple aspects of the humoral immunity. We found that CD40LΔ5 mice expressed CD40L at 60% wildtype levels, and lowered expression corresponded to significantly decreased levels of T-dependent Abs, loss of germinal center (GC) B cells and a disorganized GC structure. Gene expression analysis of B cells from CD40LΔ5 mice revealed that genes associated with cell cycle and DNA replication were significantly downregulated and genes linked to apoptosis upregulated. Importantly, somatic hypermutation was relatively unaffected although the number of cells expressing high-affinity Abs was greatly reduced. Additionally, a significant loss of plasmablasts and early memory B cell precursors as a percentage of total GL7+ B cells was observed, indicating that differentiation cues leading to the development of post-GC subsets was highly dependent on a threshold level of CD40L. Thus, regulated mRNA stability plays an integral role in the optimization of humoral immunity by allowing for a dynamic level of CD40L expression on CD4 T cells that results in the proliferation and differentiation of pre-GC and GC B cells into functional subsets.
Collapse
Affiliation(s)
- Bitha Narayanan
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Diego Prado de Maio
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | | | - Usha Ganapathi
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lori R Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ; and .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| |
Collapse
|
3
|
The 3'-UTR (CA)n microsatellite on CD40LG gene as a possible genetic marker for rheumatoid arthritis in Mexican population: impact on CD40LG mRNA expression. Clin Rheumatol 2017; 37:345-353. [PMID: 28963582 DOI: 10.1007/s10067-017-3853-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022]
Abstract
The objective of this study was to determine the association of the CD40LG 3'-UTR (CA)n microsatellite with rheumatoid arthritis (RA) and CD40LG mRNA levels in females from western Mexico. A case-control study with 219 RA patients and 175 control subjects (CS) was conducted. Genotyping was performed by polymerase chain reaction (PCR), X 2 test was used to compare genotype and allele frequencies, and odds ratios and 95% confidence intervals were calculated to evaluate the association between RA and the microsatellite. CD40LG mRNA expression was assessed by real-time quantitative PCR. For comparisons between groups, Kruskal-Wallis or Mann-Whitney U tests for non-parametric data and ANOVA test for parametric data were performed. Among the 13 different alleles identified, CA25 was the most represented (45.4% RA and 46.3% CS). Stratification according to CA repeats as <CA25, CA25, and >CA25 showed a tendency towards a higher frequency of >CA25 alleles in RA patients (29%) compared to CS (23.4%). There was no association between any genotype and the clinical parameters of RA patients. According to the 2-∆∆Cq method, CD40LG mRNA expression in RA patients was 4.5-fold higher compared to CS; this difference was significant when assessed by the 2-∆Cq method (p = 0.028). Compared to carriers of the CA25/CA25 genotype, CS carrying the <CA25/<CA25 genotypes showed greater CD40LG mRNA expression (9.97-fold), unlike RA patients, where expression was 2.55-fold higher for >CA25/>CA25 carriers. The 3'-UTR CD40LG (CA)n microsatellite is not a genetic marker for RA in western Mexican population; however, results suggest that it plays a role in the CD40LG mRNA expression.
Collapse
|
4
|
Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells. Sci Rep 2017; 7:43927. [PMID: 28262838 PMCID: PMC5338267 DOI: 10.1038/srep43927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.
Collapse
|
5
|
Fred RG, Mehrabi S, Adams CM, Welsh N. PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability. Heliyon 2016; 2:e00159. [PMID: 27699280 PMCID: PMC5035359 DOI: 10.1016/j.heliyon.2016.e00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. METHODS AND RESULTS To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro. We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. CONCLUSIONS These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.
Collapse
Affiliation(s)
- Rikard G Fred
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Syrina Mehrabi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christopher M Adams
- Department of Biological and Medical Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Are polymorphisms of the immunoregulatory factor CD40LG implicated in acute transfusion reactions? Sci Rep 2014; 4:7239. [PMID: 25430087 PMCID: PMC5384113 DOI: 10.1038/srep07239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
The CD40 ligand (CD40L/CD154), a member of TNF superfamily, is notably expressed on activated CD4+ T-cells and stimulated platelets. CD40L is linked to a variety of pathologies and to acute transfusion reactions (ATR). Mutations in this gene (CD40LG) lead to X-linked hyper-IgM syndrome. Some CD40LG polymorphisms are associated with variable protein expression. The rationale behind this study is that CD40L protein has been observed to be involved in ATR. We wondered whether genetic polymorphisms are implicated. We investigated genetic diversity in the CD40LG using DHPLC and capillary electrophoresis for screening and genotyping (n = 485 French and Tunisian blood donors). We identified significant difference in the CD40LG linkage pattern between the two populations. Variant minor alleles were significantly over-represented in Tunisian donors (P<0.0001 to 0.0270). We found higher heterogeneity in the Tunisian, including three novel low frequency variants. As there was not a particular pattern of CD40LG in single apheresis donors whose platelet components induced an ATR, we discuss how this information may be useful for future disease association studies on CD40LG.
Collapse
|
7
|
Xia Z, Yang T, Wang Z, Dong J, Liang C. GRK5 intronic (CA)n polymorphisms associated with type 2 diabetes in Chinese Hainan Island. PLoS One 2014; 9:e90597. [PMID: 24594703 PMCID: PMC3940906 DOI: 10.1371/journal.pone.0090597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/01/2014] [Indexed: 12/19/2022] Open
Abstract
A genome-wide association study had showed G-protein-coupled receptor kinase 5 (GRK5) rs10886471 was related to the risk of type 2 diabetes mellitus (T2DM) through upregulated GRK5 mRNA expression. Rs10886471 is located in the intron region of GRK5. However, the mechanism by which intronic SNP affects gene expression remains unclear, whether the effect on gene expression depends on the intronic short tandem repeat (STR) (CA)n splicing regulator or not. Here we investigated the STR (CA)n polymorphism in rs10886471 and further discussed its role in the T2DM risk of Chinese Hainan Island individuals. A total of 1164 subjects were recruited and classified into a normal fasting glucose (NFG) group, an impaired fasting glucose (IFG) group, an impaired glucose tolerance (IGT) group, and a T2DM group. STR (CA)n polymorphisms were detected through polymerase chain reaction and sequencing. Five intronic (CA)n alleles, (CA)15 to (CA)19, were identified in GRK5 rs10886471. Only the (CA)16 allele was significantly associated with increased prediabetes and T2DM risk [odds ratio (OR)>1, P<0.05]. Conversely, multiple alleles without any (CA)16 protected against prediabetes and T2DM (0<OR<1, P<0.05). In summary, rs10886471 acts as both an SNP and an STR. The rs10886471 intronic SNP causes GRK5 overexpression the subsequent risk of T2DM may be due to the rs10886471 intronic STR (CA)n splicing enhancer. Further studies should focus on verifying these finding using a large sample size and analyzing the splicing mechanism of intronic (CA)n in rs10886471.
Collapse
Affiliation(s)
- Zhenfang Xia
- Division of Health Statistics, School of Public Health, Central South University, City of Changsha, Province Hunan, China
| | - Tubao Yang
- Division of Health Statistics, School of Public Health, Central South University, City of Changsha, Province Hunan, China
- * E-mail:
| | - Zhuansuo Wang
- Department of Endocrinology, the Affiliated Hospital of Hainan Medical College, City of Haikou, Province Hainan, China
| | - Jianping Dong
- Transgenic Laboratory, Hainan Medical College, City of Haikou, Province Hainan, China
| | - Chunyan Liang
- Outpatients Department, Community Health Service Center of Xiuying, City of Haikou, Province Hainan, China
| |
Collapse
|
8
|
Yau WY, Shih HC, Tsai MH, Sheu JC, Chen CH, Chow LP. Autoantibody recognition of an N-terminal epitope of hnRNP L marks the risk for developing HBV-related hepatocellular carcinoma. J Proteomics 2013; 94:346-58. [PMID: 24125732 DOI: 10.1016/j.jprot.2013.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/06/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is associated with a poor prognosis and remains one of the leading causes of cancer death worldwide. Tumor-associated antigens (TAAs) and autoantibodies have been reported as potential markers in different cancers. Here, we employed an immunoproteomic approach to identify TAAs in the sera of patients with hepatitis B virus-related HCC (HBV-HCC). Immunoreactive spots were excised from 2-DE and analyzed by nano-LC-MS/MS. This analysis identified 16 HCC-associated antigens, including hnRNP L. The antigenicity of hnRNP L was further validated by immunoblotting using recombinant proteins. Autoantibodies against hnRNP L were found in 60% patients with HBV-HCC. Using sera from hnRNP L-positive patients, we found that most of these antibodies recognized glycine-rich region in the N-terminus of hnRNP L. In addition, high titers of autoantibodies against hnRNP L were found in HBV-HCC patients' sera and were associated with increased tumor size and reduced survival rate. hnRNP L protein was also found highly expressed in HCC tissue. Knockdown of hnRNP L significantly suppressed cell growth, migration, and invasion in vitro. Our results indicate that an N-terminal epitope of hnRNP L is a potential biomarker for the diagnosis of HBV-HCC and show that hnRNP L contributes to HCC progression. BIOLOGICAL SIGNIFICANCE In this paper, we employed an immunoproteomic approach to identify TAAs in the sera of patients with hepatitis B virus-related HCC (HBV-HCC). We identified hnRNP L as a tumor-associated antigen in HBV-relative HCC patients. Glycine-rich region located at the N-terminus of hnRNP L constitutes the major epitope. We also demonstrated that hnRNP L is involved in cell proliferation and metastasis.
Collapse
Affiliation(s)
- Wen-Yea Yau
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
10
|
Bracken CP, Szubert JM, Mercer TR, Dinger ME, Thomson DW, Mattick JS, Michael MZ, Goodall GJ. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 2011; 39:5658-68. [PMID: 21427086 PMCID: PMC3141239 DOI: 10.1093/nar/gkr110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Ago2 component of the RNA-induced silencing complex (RISC) is an endonuclease that cleaves mRNAs that base pair with high complementarity to RISC-bound microRNAs. Many examples of such direct cleavage have been identified in plants, but not in vertebrates, despite the conservation of catalytic capacity in vertebrate Ago2. We performed parallel analysis of RNA ends (PAREs), a deep sequencing approach that identifies 5'-phosphorylated, polyadenylated RNAs, to detect potential microRNA-directed mRNA cleavages in mouse embryo and adult tissues. We found that numerous mRNAs are potentially targeted for cleavage by endogenous microRNAs, but at very low levels relative to the mRNA abundance, apart from miR-151-5p-guided cleavage of the N4BP1 mRNA. We also find numerous examples of non-miRNA-directed cleavage, including cleavage of a group of mRNAs within a CA-repeat consensus sequence. The PARE analysis also identified many examples of adenylated small non-coding RNAs, including microRNAs, tRNA processing intermediates and various other small RNAs, consistent with adenylation being part of a widespread proof-reading and/or degradation pathway for small RNAs.
Collapse
|
11
|
Gau BH, Chen TM, Shih YHJ, Sun HS. FUBP3 interacts with FGF9 3' microsatellite and positively regulates FGF9 translation. Nucleic Acids Res 2011; 39:3582-93. [PMID: 21252297 PMCID: PMC3089454 DOI: 10.1093/nar/gkq1295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A TG microsatellite in the 3'-untranslated region (UTR) of FGF9 mRNA has previously been shown to modulate FGF9 expression. In the present study, we investigate the possible interacting protein that binds to FGF9 3'-UTR UG-repeat and study the mechanism underlying this protein-RNA interaction. We first applied RNA pull-down assays and LC-MS analysis to identify proteins associated with this repetitive sequence. Among the identified proteins, FUBP3 specifically bound to the synthetic (UG)(15) oligoribonucleotide as shown by supershift in RNA-EMSA experiments. The endogenous FGF9 protein was upregulated in response to transient overexpression and downregulated after knockdown of FUBP3 in HEK293 cells. As the relative levels of FGF9 mRNA were similar in these two conditions, and the depletion of FUBP3 had no effect on the turn-over rate of FGF9 mRNA, these data suggested that FUBP3 regulates FGF9 expression at the post-transcriptional level. Further examination using ribosome complex pull-down assay showed overexpression of FUBP3 promotes FGF9 expression. In contrast, polyribosome-associated FGF9 mRNA decreased significantly in FUBP3-knockdown HEK293 cells. Finally, reporter assay suggested a synergistic effect of the (UG)-motif with FUBP3 to fine-tune the expression of FGF9. Altogether, results from this study showed the novel RNA-binding property of FUBP3 and the interaction between FUBP3 and FGF9 3'-UTR UG-repeat promoting FGF9 mRNA translation.
Collapse
Affiliation(s)
- Bing-Huang Gau
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
12
|
Matus-Nicodemos R, Vavassori S, Castro-Faix M, Valentin-Acevedo A, Singh K, Marcelli V, Covey LR. Polypyrimidine tract-binding protein is critical for the turnover and subcellular distribution of CD40 ligand mRNA in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2164-71. [PMID: 21242519 DOI: 10.4049/jimmunol.1003236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD40L (CD154) is regulated at the posttranscriptional level by an activation-induced process that results in a highly stable transcript at extended times of T cell activation. Transcript stability is mediated by polypyrimidine tract-binding protein (PTB)-containing complexes (complex I and II) that bind to three adjacent CU-rich sequences within the 3' untranslated region. To assess the role of PTB in the expression and distribution of CD40L mRNA, PTB was targeted using short hairpin RNA in both primary T cells and a T cell line that recapitulates the stability phase of regulated CD40L mRNA decay. PTB knockdown resulted in a marked decrease in the mRNA stability that resulted in lowered CD40L surface expression. PTB was also critical for appropriate distribution of CD40L mRNA between the nucleus and cytoplasm and in the cytoplasm between the cytosol and the translating polysomes. The activation-induced formation of PTB-specific ribonucleoprotein complexes was observed only with cytoplasmic and not nuclear PTB indicating functional differences in the protein defined by cellular localization. Finally, we observed that cytoplasmic and nuclear PTB isoforms were differentially modified relative to each other and that the changes in cytoplasmic PTB were consistent with activation-induced phosphorylation. Together this work suggests that differentially modified PTB regulates CD40L expression at multiple steps by 1) retaining CD40L mRNA in the nucleus, 2) directly regulating mRNA stability at late times of activation, and 3) forming a ribonuclear complex that preferentially associates with translating ribosomes thus leading to an enhanced level of CD40L protein.
Collapse
|
13
|
Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD. Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene 2010; 30:77-86. [PMID: 20802533 DOI: 10.1038/onc.2010.404] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM/B23) is a multifunctional oncoprotein whose protein expression levels dictate cellular growth and proliferation rates. NPM is translationally responsive to hyperactive mammalian target of rapamycin (mTOR) signals, but the mechanism of this regulation is not understood. Using chimeric translational reporters, we found that the 3' untranslated region (UTR) of the NPM messenger (m)RNA is sufficient to mediate its translational modulation by mTOR signalling. We show that far upstream element (FUSE)-binding protein 1 (FBP1) interacts specifically with the 3' UTR of NPM to repress translation. Overexpression of FBP1 resulted in translational repression of NPM mRNAs, whereas depletion of FBP1 caused a dramatic increase in NPM translation and resulted in enhanced overall cell proliferation. Thus, we propose that FBP1 is a key regulator of cell growth and proliferation through its ability to selectively bind the NPM 3' UTR and repress NPM translation.
Collapse
Affiliation(s)
- M E Olanich
- BRIGHT Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Anderson P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol 2010; 10:24-35. [PMID: 20029446 DOI: 10.1038/nri2685] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional control mechanisms chart the course of the inflammatory response by synthesizing mRNAs encoding proteins that promote or inhibit inflammation. Because these mRNAs can be long-lived, turning off their synthesis does not rapidly stop or change the direction of inflammation. Post-transcriptional mechanisms that modify mRNA stability and/or translation provide more rapid and flexible control of this process and are particularly important in coordinating the initiation and resolution of inflammation. Here, I review the surprising variety of post-transcriptional control mechanisms that regulate the initiation and resolution of inflammation and discuss how these mechanisms are integrated to coordinate this essential process.
Collapse
Affiliation(s)
- Paul Anderson
- Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
15
|
Vavassori S, Shi Y, Chen CC, Ron Y, Covey LR. In vivo post-transcriptional regulation of CD154 in mouse CD4+ T cells. Eur J Immunol 2009; 39:2224-32. [PMID: 19572319 DOI: 10.1002/eji.200839163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interactions between CD40 and its ligand CD154 are involved in the progression of both cell mediated and innate immunity. These interactions are brought about by the transient expression of CD154 on activated CD4(+) T cells, which is regulated, in part, at the level of mRNA turnover. Here we have focused on analyzing the pattern of post-transcriptional regulation in mouse CD4(+) T cells in response to activation. Initial experiments identify a region of the murine CD154 mRNA that binds a polypyrimidine tract-binding protein-containing complex (mComplex I), which is activation-dependent and binds to a single CU-rich site within the 3' uTR Subsequent findings demonstrate that in vivo polyclonal activation of T cells leads to a pattern of differential CD154 mRNA stability that is directly dependent on extent of activation. Furthermore, in vitro activation of antigen-primed T cells shows that the CD154 mRNA half-life increases relative to that of unprimed cells. Importantly, this is the first report demonstrating that the regulation of CD154 in vivo is connected to an activation-induced program of mRNA decay and thus provides strong evidence for post-transcriptional mechanisms having a physiological role in regulating CD154 expression during an ongoing immune response.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
16
|
Vavassori S, Covey LR. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol 2009; 6:259-65. [PMID: 19395873 DOI: 10.4161/rna.6.3.8581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to gene expression in both immune and non-immune cells. The identification of protein factors and cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture of precisely orchestrated events required to both regulate and establish the decay process. One gene that is highly regulated at the post-transcriptional level is CD40 ligand (CD154 or CD40L). CD154 on CD4(+) T cells is tightly controlled by an interacting network of transcriptional and post-transcriptional processes that result in precise surface levels of protein throughout an extended time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal expression of CD154. In this review, we discuss known and potential roles of major mRNA decay pathways in lymphocytes and focus on the unique post-transcriptional mechanisms leading to CD154 expression by activated CD4(+) T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
17
|
Lee DH, Lim MH, Youn DY, Jung SE, Ahn YS, Tsujimoto Y, Lee JH. hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA. Biochem Biophys Res Commun 2009; 382:583-7. [PMID: 19298794 DOI: 10.1016/j.bbrc.2009.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
Abstract
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). A super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.
Collapse
Affiliation(s)
- Dong-Hyoung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
We recently characterized human hnRNP L as a global regulator of alternative splicing, binding to CA-repeat and CA-rich elements. Here we report that hnRNP L autoregulates its own expression on the level of alternative splicing. Intron 6 of the human hnRNP L gene contains a short exon that, if used, introduces a premature termination codon, resulting in nonsense-mediated decay (NMD). This "poison exon" is preceded by a highly conserved CA-rich cluster extending over 800 nucleotides that binds hnRNP L and functions as an unusually extended, intronic enhancer, promoting inclusion of the poison exon. As a result, excess hnRNP L activates NMD of its own mRNA, thereby creating a negative autoregulatory feedback loop and contributing to homeostasis of hnRNP L levels. We present experimental evidence for this mechanism, based on NMD inactivation, hnRNP L binding assays, and hnRNP L-dependent alternative splicing of heterologous constructs. In addition, we demonstrate that hnRNP L cross-regulates inclusion of an analogous poison exon in the hnRNP L-like pre-mRNA, which explains the reciprocal expression of the two closely related hnRNP L proteins.
Collapse
|