1
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
2
|
Placenti MA, Roman EA, González Flecha FL, González-Lebrero RM. Functional characterization of Legionella pneumophila Cu + transport ATPase. The activation by Cu + and ATP. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183822. [PMID: 34826402 DOI: 10.1016/j.bbamem.2021.183822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Cu+-ATPases are integral membrane proteins belonging to the IB subfamily of the P-type ATPases that couple Cu+ transport to the hydrolysis of ATP. As some structural and functional particularities arise for Cu+-ATPases, several authors suggest that some of the reaction steps of the Albers-Post model postulated for other P-ATPases may be different. In this work we describe a functional characterization of Legionella pneumophila Cu+-ATPase (LpCopA), the first PIB-ATPase whose structure was determined by X-ray crystallography. Cu+-ATPase activity of the enzyme presents a maximum at ∼37 °C and pH 6.6-6.8. Phospholipids enhance LpCopA Cu+-ATPase activity in a non-essential mode where optimal activity is achieved at an asolectin molar fraction of 0.15 and an amphiphile-protein ratio of ~30,000. As described for other P-ATPases, Mg2+ acts as an essential activator. Furthermore, Cu+-ATPase activity dependence on [Cu+] and [ATP] can both be described by a sum of two hyperbolic functions. Based on that, and the [Cu+] and [ATP] dependencies of the best fitting parameters of the hyperbolae pointed above, we propose a minimal reaction scheme for the catalytic mechanism that shares the basic reaction steps of the Albers-Post model for P-type ATPases. The reaction scheme postulated contemplates two different binding affinities for a single ATP (apparent affinities of 0.66 and 550 μM at [Cu+] → ∞) and binding of at least 2 Cu+ with different affinities as well (apparent affinities of 1.4 and 102.5 μM at [ATP] → ∞).
Collapse
Affiliation(s)
- M Agueda Placenti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Ernesto A Roman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| | - Rodolfo M González-Lebrero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. The CopA2-Type P 1B-Type ATPase CcoI Serves as Central Hub for cbb 3-Type Cytochrome Oxidase Biogenesis. Front Microbiol 2021; 12:712465. [PMID: 34589071 PMCID: PMC8475189 DOI: 10.3389/fmicb.2021.712465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maria Agostina Di Renzo
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexandra Meisner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fabian Frank
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Susana L A Andrade
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Lenoir G, Dieudonné T, Lamy A, Lejeune M, Vazquez-Ibar JL, Montigny C. Screening of Detergents for Stabilization of Functional Membrane Proteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e59. [PMID: 30021058 DOI: 10.1002/cpps.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane protein studies usually require use of detergents to extract and isolate proteins from membranes and manipulate them in a soluble context for their functional or structural characterization. However, solubilization with detergent may interfere with MP stability and may directly affect MP function or structure. Moreover, detergent properties can be affected such as critical micellar concentration (CMC) can be affected by the experimental conditions. Consequently, the experimenter must pay attention to both the protein and the behavior of the detergent. This article provides a convenient protocol for estimating the CMC of detergents in given experimental conditions. Then, it presents two protocols aimed at monitoring the function of a membrane protein in the presence of detergent. Such experiments may help to test various detergents for their inactivating or stabilizing effects on long incubation times, ranging from few hours to some days. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Anaïs Lamy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Maylis Lejeune
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - José-Luis Vazquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| |
Collapse
|
5
|
Seddigh S. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects. Comput Biol Chem 2017; 68:266-281. [DOI: 10.1016/j.compbiolchem.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
|
6
|
Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 2016; 69:211-217. [PMID: 27896900 DOI: 10.1002/iub.1590] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 11/06/2022]
Abstract
Copper has a wide and important role in biological systems, determining conformation and activity of many metalloproteins and enzymes, such as cytochrome oxidase and superoxide dismutase . Furthermore, due to its possible reactivity with nonspecific proteins and toxic effects, elaborate systems of absorption, concentration buffering, delivery to specific protein sites and elimination, require a complex system including small carriers, chaperones and active transporters. The P-type copper ATPases ATP7A and ATP7B provide an important system for acquisition, active transport, distribution and elimination of copper. Relevance of copper metabolism to human diseases and therapy is already known. It is quite certain that further studies will reveal detailed and useful information on biochemical mechanisms and relevance to diseases. © 2016 IUBMB Life, 69(4):211-217, 2017.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| |
Collapse
|
7
|
Azouaoui H, Montigny C, Jacquot A, Barry R, Champeil P, Lenoir G. Coordinated Overexpression in Yeast of a P4-ATPase and Its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex. Methods Mol Biol 2016; 1377:37-55. [PMID: 26695021 DOI: 10.1007/978-1-4939-3179-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Structural and functional characterization of integral membrane proteins requires milligram amounts of purified sample. Unless the protein you are studying is abundant in native membranes, it will be critical to overexpress the protein of interest in a homologous or heterologous way, and in sufficient quantities for further purification. The situation may become even more complicated if you chose to investigate the structure and function of a complex of two or more membrane proteins. Here, we describe the overexpression of a yeast lipid flippase complex, namely the P4-ATPase Drs2p and its associated subunit Cdc50p, in a coordinated manner. Moreover, we can take advantage of the fact that P4-ATPases, like most other P-type ATPases, form an acid-stable phosphorylated intermediate, to verify that the expressed complex is functional.
Collapse
Affiliation(s)
- Hassina Azouaoui
- Institute for Integrative Biology of the Cell (I2BC) - UMR 9198 CEA/CNRS/Université Paris-Sud, Gif-sur-Yvette Cedex, 91191, France
- CEA, iBiTec-S/SB2SM, CEA Saclay, Gif-sur-Yvette, 91191, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC) - UMR 9198 CEA/CNRS/Université Paris-Sud, Gif-sur-Yvette Cedex, 91191, France
- CEA, iBiTec-S/SB2SM, CEA Saclay, Gif-sur-Yvette, 91191, France
| | - Aurore Jacquot
- Institute for Integrative Biology of the Cell (I2BC) - UMR 9198 CEA/CNRS/Université Paris-Sud, Gif-sur-Yvette Cedex, 91191, France
- CEA, iBiTec-S/SB2SM, CEA Saclay, Gif-sur-Yvette, 91191, France
- UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes-Claude Grignon, Agro-M/CNRS/INRA/SupAgro/UM2, Montpellier, 34060, France
| | - Raphaëlle Barry
- Institute for Integrative Biology of the Cell (I2BC) - UMR 9198 CEA/CNRS/Université Paris-Sud, Gif-sur-Yvette Cedex, 91191, France
- CEA, iBiTec-S/SB2SM, CEA Saclay, Gif-sur-Yvette, 91191, France
- INSERM, U968, Paris, 75012, France
- UMR_S 968, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Paris, 75012, France
- CNRS, UMR 7210, Paris, 75012, France
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC) - UMR 9198 CEA/CNRS/Université Paris-Sud, Gif-sur-Yvette Cedex, 91191, France
- CEA, iBiTec-S/SB2SM, CEA Saclay, Gif-sur-Yvette, 91191, France
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC) - UMR 9198 CEA/CNRS/Université Paris-Sud, Gif-sur-Yvette Cedex, 91191, France.
- CEA, iBiTec-S/SB2SM, CEA Saclay, Gif-sur-Yvette, 91191, France.
| |
Collapse
|
8
|
Abstract
Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper.
Collapse
|
9
|
Azouaoui H, Montigny C, Ash MR, Fijalkowski F, Jacquot A, Grønberg C, López-Marqués RL, Palmgren MG, Garrigos M, le Maire M, Decottignies P, Gourdon P, Nissen P, Champeil P, Lenoir G. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate. PLoS One 2014; 9:e112176. [PMID: 25393116 PMCID: PMC4230938 DOI: 10.1371/journal.pone.0112176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023] Open
Abstract
P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism.
Collapse
Affiliation(s)
- Hassina Azouaoui
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Cédric Montigny
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Miriam-Rose Ash
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Frank Fijalkowski
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Aurore Jacquot
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Christina Grønberg
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rosa L. López-Marqués
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Garrigos
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Marc le Maire
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Paulette Decottignies
- CNRS, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, Orsay, France
- Univ Paris-Sud, Orsay, France
| | - Pontus Gourdon
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philippe Champeil
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Guillaume Lenoir
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
10
|
Sørensen DM, Holen HW, Holemans T, Vangheluwe P, Palmgren MG. Towards defining the substrate of orphan P5A-ATPases. Biochim Biophys Acta Gen Subj 2014; 1850:524-35. [PMID: 24836520 DOI: 10.1016/j.bbagen.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. SCOPE OF REVIEW This review aims to discuss the available evidence which could lead to identification of possible substrates of P5A-ATPases. MAJOR CONCLUSIONS The complex phenotypes resulting from the loss of P5A-ATPases in model organisms can be explained by a role of the P5A-ATPase in the endoplasmic reticulum (ER), where loss of function leads to broad and unspecific phenotypes related to the impairment of basic ER functions such as protein folding and processing. Genetic interactions in Saccharomyces cerevisiae point to a role of the endogenous P5A-ATPase Spf1p in separation of charges in the ER, in sterol metabolism, and in insertion of tail-anchored proteins in the ER membrane. A role for P5A-ATPases in vesicle formation would explain why sterol transport and distribution are affected in knock out cells, which in turn has a negative impact on the spontaneous insertion of tail-anchored proteins. It would also explain why secretory proteins destined for the Golgi and the cell wall have difficulties in reaching their final destination. Cations and phospholipids could both be transported substrates of P5A-ATPases and as each carry charges, transport of either might explain why a charge difference arises across the ER membrane. GENERAL SIGNIFICANCE Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Henrik Waldal Holen
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tine Holemans
- Department of Cellular and Molecular Medicine, ON1 Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, Box 802, B3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, ON1 Campus Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, Box 802, B3000 Leuven, Belgium
| | - Michael G Palmgren
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 2013; 21:43-8. [PMID: 24317491 DOI: 10.1038/nsmb.2721] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support a functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu(+)-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes' and Wilson's disease mutations impair protein function and points to a site for inhibitors targeting pathogens.
Collapse
|
12
|
Lewis D, Pilankatta R, Inesi G, Bartolommei G, Moncelli MR, Tadini-Buoninsegni F. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and Cu+ (ATP7A/B) ATPases. J Biol Chem 2012; 287:32717-27. [PMID: 22854969 DOI: 10.1074/jbc.m112.373472] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ca(2+) (sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA)) and Cu(+) (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca(2+), demonstrated by the addition of ATP and Ca(2+) to SERCA deprived of Ca(2+) (E2) as compared with ATP to Ca(2+)-activated enzyme (E1·2Ca(2+)). Activation by Ca(2+) is slower at low pH (2H(+)·E2 to E1·2Ca(2+)) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca(2+) translocation. A "H(+)-gated pathway," demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca(2+) release by H(+)/Ca(2+) exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu(+)/H(+) exchange. As opposed to SERCA after Ca(2+) chelation, ATP7A/B does not undergo reverse phosphorylation with P(i) after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.
Collapse
Affiliation(s)
- David Lewis
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | |
Collapse
|
13
|
Schushan M, Bhattacharjee A, Ben-Tal N, Lutsenko S. A structural model of the copper ATPase ATP7B to facilitate analysis of Wilson disease-causing mutations and studies of the transport mechanism. Metallomics 2012; 4:669-78. [PMID: 22692182 DOI: 10.1039/c2mt20025b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The copper-transporting ATPase ATP7B has an essential role in human physiology, particularly for the liver and brain function. Inactivation of ATP7B is associated with a severe hepato-neurologic disorder, Wilson disease (WD). Hundreds of WD related mutations have been identified in ATP7B to date. The low frequency and the compound-heterozygous nature of causative mutations complicate the analysis of individual mutants and the establishment of genotype-phenotype correlations. To facilitate studies of disease-causing mutations and mechanistic understanding of WD, we have homology-modelled the ATP7B core (residues 643-1377) using the recent structure of the bacterial copper-ATPase LCopA as a template. The model, supported by evolutionary conservation and hydrophobicity analysis, as well as existing and new mutagenesis data, allows molecular interpretations of experimentally characterized clinical mutations. We also illustrate that structure and conservation can be used to grade potential deleterious effects for many WD mutations, which were clinically detected but have not yet been experimentally characterized. Finally, we compare the structural features of ATP7B and LCopA and discuss specific features of the eukaryotic copper pump.
Collapse
Affiliation(s)
- Maya Schushan
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | |
Collapse
|
14
|
Abstract
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.
Collapse
|
15
|
Jacquot A, Montigny C, Hennrich H, Barry R, le Maire M, Jaxel C, Holthuis J, Champeil P, Lenoir G. Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate. J Biol Chem 2012; 287:13249-61. [PMID: 22351780 DOI: 10.1074/jbc.m111.313916] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here.
Collapse
Affiliation(s)
- Aurore Jacquot
- UMR 8221 (Systèmes Membranaires, Photobiologie, Stress et Détoxication), CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Allen GS, Wu CC, Cardozo T, Stokes DL. The architecture of CopA from Archeaoglobus fulgidus studied by cryo-electron microscopy and computational docking. Structure 2011; 19:1219-32. [PMID: 21820315 DOI: 10.1016/j.str.2011.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 10/17/2022]
Abstract
CopA uses ATP to pump Cu(+) across cell membranes. X-ray crystallography has defined atomic structures of several related P-type ATPases. We have determined a structure of CopA at 10 Å resolution by cryo-electron microscopy of a new crystal form and used computational molecular docking to study the interactions between the N-terminal metal-binding domain (NMBD) and other elements of the molecule. We found that the shorter-chain lipids used to produce these crystals are associated with movements of the cytoplasmic domains, with a novel dimer interface and with disordering of the NMBD, thus offering evidence for the transience of its interaction with the other cytoplasmic domains. Docking identified a binding site that matched the location of the NMBD in our previous structure by cryo-electron microscopy, allowing a more detailed view of its binding configuration and further support for its role in autoinhibition.
Collapse
Affiliation(s)
- Gregory S Allen
- Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
17
|
Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 2011; 1:1125-42. [PMID: 20454597 DOI: 10.4155/fmc.09.84] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Normal copper homeostasis is essential for human growth and development. Copper deficiency, caused by genetic mutations, inadequate diet or surgical interventions, may lead to cardiac hypertrophy, poor neuronal myelination, blood vessel abnormalities and impaired immune response. Copper overload is associated with morphological and metabolic changes in tissues and, if untreated, eventual death. Recent reports also indicate that changes in the expression of copper transporters alter the sensitivity of cancer cells to major chemotherapeutic drugs, such as cisplatin, although the mechanism behind this important phenomenon remains unclear. This review summarizes current information on the molecular characteristics of copper transporters CTR1, CTR2, ATP7A and ATP7B, their roles in mammalian copper homeostasis and the physiological consequences of their inactivation. The mechanisms through which copper transporters may influence cell sensitivity to cisplatin are discussed. Regulation of human copper homeostasis has significant therapeutic potential and requires the detailed understanding of copper transport mechanisms.
Collapse
|
18
|
Raimunda D, González-Guerrero M, Leeber BW, Argüello JM. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 2011; 24:467-75. [PMID: 21210186 DOI: 10.1007/s10534-010-9404-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/22/2010] [Indexed: 12/11/2022]
Abstract
Cu(+)-ATPases play a key role in bacterial Cu(+) homeostasis by participating in Cu(+) detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P(1B-1) type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu(+) with high affinity in a trigonal planar geometry. The cytoplasmic Cu(+) chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu(+) is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu(+)-ATPases drive cytoplasmic Cu(+) efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu(+)-efflux pumps responsible for Cu(+) tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
19
|
Hilário-Souza E, Valverde RHF, Britto-Borges T, Vieyra A, Lowe J. Golgi membranes from liver express an ATPase with femtomolar copper affinity, inhibited by cAMP-dependent protein kinase. Int J Biochem Cell Biol 2010; 43:358-62. [PMID: 21084060 DOI: 10.1016/j.biocel.2010.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 11/27/2022]
Abstract
Copper-stimulated P-type ATPases are essential in the fine-tuning of intracellular copper. In the present work we characterized a copper-dependent ATPase hydrolysis in a native Golgi-enriched preparation from liver and investigated its modulation by cyclic AMP-dependent protein kinase (PKA). The very high-affinity Atp7b copper pump presented here shows a K(0.5) for free copper of 2.5×10(-17) M in bathocuproine disulfonate/copper buffer and ATP hydrolysis was inhibited 50% upon stimulation of PKA pathway, using forskolin, cAMP or cholera toxin. Incubation with PKA inhibitor (PKAi(5-24) peptide) raises Cu(I)-ATPase activity by 50%. Addition of purified PKA α-catalytic subunit increases K(0.5) for free copper (6.2×10(-17) M) without modification in the affinity for ATP in the low-affinity range of the substrate curve (∼1 mM). The Hill coefficient for free copper activation also remains unchanged if exogenous PKA is added (2.7 and 2.3 in the absence and presence of PKA, respectively). The results demonstrate that this high-affinity copper pump in its natural environment is a target of the liver PKA pathway, being regulatory phosphorylation able to influence both turnover rate and ion affinity.
Collapse
Affiliation(s)
- Elaine Hilário-Souza
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
20
|
Agarwal S, Hong D, Desai NK, Sazinsky MH, Argüello JM, Rosenzweig AC. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA. Proteins 2010; 78:2450-8. [PMID: 20602459 DOI: 10.1002/prot.22753] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Cu(+)-ATPase CopA from Archaeoglobus fulgidus belongs to the P(1B) family of the P-type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P(1B-1)-type ATPases is the presence of soluble metal binding domains at the N-terminus (N-MBDs). The N-MBDs exhibit a conserved ferredoxin-like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N-MBDs enable Cu(+) regulation of turnover rates apparently through Cu-sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N-terminal MBD and a C-terminal MBD (C-MBD). The functional role of the unique C-MBD has not been established. Here, we report the crystal structure of the apo, oxidized C-MBD to 2.0 A resolution. In the structure, two C-MBD monomers form a domain-swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C-MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A-domain), has been investigated. Interestingly, the C-MBD interacts specifically with both of these domains, independent of the presence of Cu(+) or nucleotides. These data reinforce the uniqueness of the C-MBD and suggest a distinct structural role for the C-MBD in CopA transport.
Collapse
Affiliation(s)
- Sorabh Agarwal
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
21
|
González-Guerrero M, Raimunda D, Cheng X, Argüello JM. Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol Microbiol 2010; 78:1246-58. [PMID: 21091508 DOI: 10.1111/j.1365-2958.2010.07402.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In bacteria, most Cu(+) -ATPases confer tolerance to Cu by driving cytoplasmic metal efflux. However, many bacterial genomes contain several genes coding for these enzymes suggesting alternative roles. Pseudomonas aeruginosa has two structurally similar Cu(+) -ATPases, CopA1 and CopA2. Both proteins are essential for virulence. Expressed in response to high Cu, CopA1 maintains the cellular Cu quota and provides tolerance to this metal. CopA2 belongs to a subgroup of ATPases that are expressed in association with cytochrome oxidase subunits. Mutation of copA2 has no effect on Cu toxicity nor intracellular Cu levels; but it leads to higher H(2) O(2) sensitivity and reduced cytochrome oxidase activity. Mutation of both genes does not exacerbate the phenotypes produced by single-gene mutations. CopA1 does not complement the copA2 mutant strain and vice versa, even when promoter regions are exchanged. CopA1 but not CopA2 complements an Escherichia coli strain lacking the endogenous CopA. Nevertheless, transport assays show that both enzymes catalyse cytoplasmic Cu(+) efflux into the periplasm, albeit CopA2 at a significantly lower rate. We hypothesize that their distinct cellular functions could be based on the intrinsic differences in transport kinetic or the likely requirement of periplasmic partner Cu-chaperone proteins specific for each Cu(+) -ATPase.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
22
|
Mazzitelli LR, Rinaldi DE, Corradi GR, Adamo HP. The plasma membrane Ca2+ pump catalyzes the hydrolysis of ATP at low rate in the absence of Ca2+. Arch Biochem Biophys 2009; 495:62-6. [PMID: 20035709 DOI: 10.1016/j.abb.2009.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/30/2022]
Abstract
The plasma membrane Ca2+ ATPase catalyzed the hydrolysis of ATP in the presence of millimolar concentrations of EGTA and no added Ca2+ at a rate near 1.5% of that attained at saturating concentrations of Ca2+. Like the Ca-dependent ATPase, the Ca-independent activity was lower when the enzyme was autoinhibited, and increased when the enzyme was activated by acidic lipids or partial proteolysis. The ATP concentration dependence of the Ca2+-independent ATPase was consistent with ATP binding to the low affinity modulatory site. In this condition a small amount of hydroxylamine-sensitive phosphoenzyme was formed and rapidly decayed when chased with cold ATP. We propose that the Ca2+-independent ATP hydrolysis reflects the well known phosphatase activity which is maximal in the absence of Ca2+ and is catalyzed by E(2)-like forms of the enzyme. In agreement with this idea pNPP, a classic phosphatase substrate was a very effective inhibitor of the ATP hydrolysis.
Collapse
Affiliation(s)
- Luciana R Mazzitelli
- IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
23
|
Barry AN, Shinde U, Lutsenko S. Structural organization of human Cu-transporting ATPases: learning from building blocks. J Biol Inorg Chem 2009; 15:47-59. [PMID: 19851794 DOI: 10.1007/s00775-009-0595-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/28/2009] [Indexed: 12/29/2022]
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B play an essential role in human physiological function. Their primary function is to deliver copper to the secretory pathway and export excess copper from the cell for removal or further utilization. Cells employ Cu-ATPases in numerous physiological processes that include the biosynthesis of copper-dependent enzymes, lactation, and response to hypoxia. Biochemical studies of human Cu-ATPases and their orthologs have demonstrated that Cu-ATPases share many common structural and mechanistic characteristics with other members of the P-type ATPase family. Nevertheless, the Cu-ATPases have a unique coordinate environment for their ligands, copper and ATP, and additional domains that are required for sophisticated regulation of their intracellular localization and activity. Here, we review recent progress that has been made in understanding the structure of Cu-ATPases from the analysis of their individual domains and orthologs from microorganisms, and speculate about the implications of these findings for the function and regulation of human copper pumps.
Collapse
Affiliation(s)
- Amanda N Barry
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
24
|
Völlmecke C, Kötting C, Gerwert K, Lübben M. Spectroscopic investigation of the reaction mechanism of CopB-B, the catalytic fragment from an archaeal thermophilic ATP-driven heavy metal transporter. FEBS J 2009; 276:6172-86. [PMID: 19780839 DOI: 10.1111/j.1742-4658.2009.07320.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of ATP hydrolysis of a shortened variant of the heavy metal-translocating P-type ATPase CopB of Sulfolobus solfataricus was studied. The catalytic fragment, named CopB-B, comprises the nucleotide binding and phosphorylation domains. We demonstrated stoichiometric high-affinity binding of one nucleotide to the protein (K(diss) 1-20 microm). Mg is not necessary for nucleotide association but is essential for the phosphatase activity. Binding and hydrolysis of ATP released photolytically from the caged precursor nitrophenylethyl-ATP was measured at 30 degrees C by infrared spectroscopy, demonstrating that phosphate groups are not involved in nucleotide binding. The hydrolytic kinetics was biphasic, and provides evidence for at least one reaction intermediate. Modelling of the forward reaction gave rise to three kinetic states connected by two intrinsic rate constants. The lower kinetic constant (k(1) = 4.7 x 10(-3) s(-1) at 30 degrees C) represents the first and rate-limiting reaction, probably reflecting the transition between the open and closed conformations of the domain pair. The subsequent step has a faster rate (k(2) = 17 x 10(-3) s(-1) at 30 degrees C), leading to product formation. Although the latter appears to be a single step, it probably comprises several reactions with presently unresolved intermediates. Based on these data, we suggest a model of the hydrolytic mechanism.
Collapse
|
25
|
Hatori Y, Lewis D, Toyoshima C, Inesi G. Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants. Biochemistry 2009; 48:4871-80. [PMID: 19364131 PMCID: PMC2756213 DOI: 10.1021/bi900338n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Copper transport ATPases sustain important roles in homeostasis of heavy metals and delivery of copper to metalloenzymes. The copper transport ATPase from Thermotoga maritima (CopA) provides a useful system for mechanistic studies, due to its heterologous expression and stability. Its sequence comprises 726 amino acids, including the N-terminal metal binding domain (NMBD), three catalytic domains (A, N, and P), and a copper transport domain formed by eight helices, including the transmembrane metal binding site (TMBS). We performed functional characterization and conformational analysis by proteolytic digestion of WT and mutated (NMBD deletion or mutation) T. maritima CopA, comparing it with Archaeoglobus fulgidus CopA and Ca2+ ATPase. A specific feature of T. maritima CopA is ATP utilization in the absence of copper, to form a low-turnover phosphoenzyme intermediate, with a conformation similar to that obtained by phosphorylation with Pi or phosphate analogues. On the other hand, formation of an activated state requires copper binding to both NMBD and TMBS, with consequent conformational changes involving the NMBD and A domain. Proteolytic digestion analysis demonstrates A domain movements similar to those of other P-type ATPases to place the conserved TGES motif in the optimal position for catalytic assistance. We also studied an H479Q mutation (analogous to one of human copper ATPase ATP7B in Wilson disease) that inhibits ATPase activity. We found that, in spite of the H479Q mutation within the nucleotide binding domain, the mutant still binds ATP, yielding a phosphorylation transition state conformation. However, covalent phosphoryl transfer is not completed, and no catalytic turnover is observed.
Collapse
Affiliation(s)
- Yuta Hatori
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | |
Collapse
|
26
|
Kaplan JH, Lutsenko S. Copper transport in mammalian cells: special care for a metal with special needs. J Biol Chem 2009; 284:25461-5. [PMID: 19602511 DOI: 10.1074/jbc.r109.031286] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper plays an essential role in human physiology. It is required for respiration, radical defense, neuronal myelination, angiogenesis, and many other processes. Copper has distinct physicochemical properties that pose uncommon challenges for its transport across biological membranes. Only small amounts of copper are present in biological fluids, and essentially none of it exists in a free ion form. These properties and the low redox potential of copper dictate special structural and mechanistic features in copper transporters. This minireview discusses molecular mechanisms through which copper enters and exits human cells.
Collapse
Affiliation(s)
- Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | |
Collapse
|
27
|
Pilankatta R, Lewis D, Adams CM, Inesi G. High yield heterologous expression of wild-type and mutant Cu+-ATPase (ATP7B, Wilson disease protein) for functional characterization of catalytic activity and serine residues undergoing copper-dependent phosphorylation. J Biol Chem 2009; 284:21307-16. [PMID: 19520855 PMCID: PMC2755855 DOI: 10.1074/jbc.m109.023341] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ATP7B is a P-type ATPase required for copper homeostasis and related to Wilson disease of humans. In addition to various domains corresponding to other P-type ATPases, ATP7B includes an N terminus extension (NMBD) with six copper binding sites. We obtained high yield expression of WT and mutant ATP7B in COS1 cells infected with adenovirus vector. ATP7B, isolated with the microsomal fraction of cell homogenates, accounts for 10–20% of the total protein. Copper-dependent, steady-state ATPase yields 30 nmol of Pi/mg of protein/min at 37 °C, pH 6.0. ATP7B phosphorylation with ATP occurs with diphasic kinetics and is totally copper-dependent. Alkali labile phosphoenzyme (catalytic intermediate of P-ATPases) accounts for a small fraction of the total phosphoprotein and is prevented by D1027N (P domain) or C983A/C985A (CXC copper binding motif in TM6) mutations. Decay of [32P]phosphoenzyme following chase with non-radioactive ATP occurs with an initial burst involving alkali labile phosphoenzyme (absent in D1027N and C983A/C985A mutants) and continues at a slow rate involving alkali-resistant phosphoenzyme. If a copper chelator is added with the ATP chase, the initial burst is smaller, and further cleavage is totally inhibited. Analysis by proteolysis and mass spectrometry demonstrates that the alkali stable phosphoenzyme involves Ser478 and Ser481 (NMBD), Ser1121 (“N” domain) and Ser1453 (C terminus), and occurs with the same pattern ex vivo (COS-1) and in vitro (microsomes). The overall copper dependence of phosphorylation and hydrolytic cleavage suggests long range conformational effects, including interactions of NMBD and headpiece domains, with strong influence on catalytic turnover.
Collapse
Affiliation(s)
- Rajendra Pilankatta
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | |
Collapse
|
28
|
Tsuda T, Toyoshima C. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. EMBO J 2009; 28:1782-91. [PMID: 19478797 DOI: 10.1038/emboj.2009.143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/30/2009] [Indexed: 11/09/2022] Open
Abstract
Heavy metal pumps constitute a large subgroup in P-type ion-transporting ATPases. One of the outstanding features is that the nucleotide binding N-domain lacks residues critical for ATP binding in other well-studied P-type ATPases. Instead, they possess an HP-motif and a Gly-rich sequence in the N-domain, and their mutations impair ATP binding. Here, we describe 1.85 A resolution crystal structures of the P- and N-domains of CopA, an archaeal Cu(+)-transporting ATPase, with bound nucleotides. These crystal structures show that CopA recognises the adenine ring completely differently from other P-type ATPases. The crystal structure of the His462Gln mutant, in the HP-motif, a disease-causing mutation in human Cu(+)-ATPases, shows that the Gln side chain mimics the imidazole ring, but only partially, explaining the reduction in ATPase activity. These crystal structures lead us to propose a role of the His and a mechanism for removing Mg(2+) from ATP before phosphoryl transfer.
Collapse
Affiliation(s)
- Takeo Tsuda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
29
|
Banci L, Bertini I, Cantini F, Massagni C, Migliardi M, Rosato A. An NMR study of the interaction of the N-terminal cytoplasmic tail of the Wilson disease protein with copper(I)-HAH1. J Biol Chem 2009; 284:9354-60. [PMID: 19181666 PMCID: PMC2666587 DOI: 10.1074/jbc.m805981200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/30/2009] [Indexed: 12/17/2022] Open
Abstract
ATP7B is a human P(1B)-type ATPase that has a crucial role in maintaining copper(I) homeostasis. Mutations in the corresponding gene are the cause of Wilson disease. Among its various distinguishing features is a long ( approximately 630 amino acids) N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We expressed the entire tail as a single construct in Escherichia coli and investigated its interaction with its copper chaperone (i.e. HAH1) by solution NMR spectroscopy. We observed that all six of the metal-binding domains were metallated by Cu(I)-HAH1, with the first, the second, and the fourth domains forming an adduct with it. This behavior is different from that of the highly similar human ATPase ATP7A, in which only two domains form such an adduct. The distinct behaviors of the different domains were analyzed in terms of the energetics of Cu(I) transfer, hinting at a specific role of the interaction with copper(I)-HAH1 in the overall functional process.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Leonhardt K, Gebhardt R, Mössner J, Lutsenko S, Huster D. Functional interactions of Cu-ATPase ATP7B with cisplatin and the role of ATP7B in the resistance of cells to the drug. J Biol Chem 2009; 284:7793-802. [PMID: 19141620 DOI: 10.1074/jbc.m805145200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent for treatment of ovarian, testicular, lung, and stomach cancers. The initial response to the drug is robust; however, tumor cells commonly develop resistance to cisplatin, which complicates treatment. Recently, overexpression of the Cu-ATPase ATP7B in ovary cells was linked to the increased cellular resistance to cisplatin; and the role for Cu-ATPases in the export of cisplatin from cells was proposed. Our results support functional interactions between cisplatin and ATP7B but argue against the active transport through the copper translocation pathway as a mechanism of drug resistance. In hepatocytes, we observed no correlation between the levels of endogenous ATP7B and the resistance of cells to cisplatin. Unlike copper, cisplatin does not induce trafficking of ATP7B in hepatoma cells, neither does it compete with copper in a transport assay. However, cisplatin binds to ATP7B and stimulates catalytic phosphorylation with EC(50) similar to that of copper. Mutations of the first five N-terminal copper-binding sites of ATP7B do not inhibit the cisplatin-induced phosphorylation of ATP7B. In contrast, the deletion of the first four copper-binding sites abolishes the effect of cisplatin on the ATP7B activity. Thus, cisplatin binding to ATP7B and/or general changes in cellular copper homeostasis are likely contributors to the increased resistance to the drug. The link between changes in copper homeostasis and cisplatin resistance was confirmed by treating the Huh7 cells with copper chelator and increasing their resistance to cisplatin.cisplatin.
Collapse
Affiliation(s)
- Karoline Leonhardt
- Department of Medicine II and Department of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
31
|
González-Guerrero M, Eren E, Rawat S, Stemmler TL, Argüello JM. Structure of the two transmembrane Cu+ transport sites of the Cu+ -ATPases. J Biol Chem 2008; 283:29753-9. [PMID: 18772137 DOI: 10.1074/jbc.m803248200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cu(+)-ATPases drive metal efflux from the cell cytoplasm. Paramount to this function is the binding of Cu(+) within the transmembrane region and its coupled translocation across the permeability barrier. Here, we describe the two transmembrane Cu(+) transport sites present in Archaeoglobus fulgidus CopA. Both sites can be independently loaded with Cu(+). However, their simultaneous occupation is associated with enzyme turnover. Site I is constituted by two Cys in transmembrane segment (TM) 6 and a Tyr in TM7. An Asn in TM7 and Met and Ser in TM8 form Site II. Single site x-ray spectroscopic analysis indicates a trigonal coordination in both sites. This architecture is distinct from that observed in Cu(+)-trafficking chaperones and classical cuproproteins. The high affinity of these sites for Cu(+) (Site I K(a)=1.3 fM(-1), Site II K(a)=1.1 fM(-1)), in conjunction with reversible direct Cu(+) transfer from chaperones, points to a transport mechanism where backward release of free Cu(+) to the cytoplasm is largely prevented.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | | | | | | | |
Collapse
|