1
|
Gavin-Plagne L, Perold F, Osteil P, Voisin S, Moreira SC, Combourieu Q, Saïdou V, Mure M, Louis G, Baudot A, Buff S, Joly T, Afanassieff M. Insights into Species Preservation: Cryobanking of Rabbit Somatic and Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21197285. [PMID: 33023104 PMCID: PMC7582889 DOI: 10.3390/ijms21197285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by genetically reprogramming adult somatic cells via the overexpression of specific pluripotent genes. The resulting cells possess the same differentiation properties as blastocyst-stage embryonic stem cells (ESCs) and can be used to produce new individuals by embryonic complementation, nuclear transfer cloning, or in vitro fertilization after differentiation into male or female gametes. Therefore, iPSCs are highly valuable for preserving biodiversity and, together with somatic cells, can enlarge the pool of reproductive samples for cryobanking. In this study, we subjected rabbit iPSCs (rbiPSCs) and rabbit ear tissues to several cryopreservation conditions with the aim of defining safe and non-toxic slow-freezing protocols. We compared a commercial synthetic medium (STEM ALPHA.CRYO3) with a biological medium based on fetal bovine serum (FBS) together with low (0-5%) and high (10%) concentrations of dimethyl sulfoxide (DMSO). Our data demonstrated the efficacy of a CRYO3-based medium containing 4% DMSO for the cryopreservation of skin tissues and rbiPSCs. Specifically, this medium provided similar or even better biological results than the commonly used freezing medium composed of FBS and 10% DMSO. The results of this study therefore represent an encouraging first step towards the use of iPSCs for species preservation.
Collapse
Affiliation(s)
- Lucie Gavin-Plagne
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
| | - Florence Perold
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Pierre Osteil
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Sophie Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Synara Cristina Moreira
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Quitterie Combourieu
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Véronique Saïdou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Magali Mure
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Gérard Louis
- Univ Paris, Université Descartes Paris V, LVTS, Inserm UMRS 1148, F-75018 Paris, France; (G.L.); (A.B.)
| | - Anne Baudot
- Univ Paris, Université Descartes Paris V, LVTS, Inserm UMRS 1148, F-75018 Paris, France; (G.L.); (A.B.)
| | - Samuel Buff
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
| | - Thierry Joly
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA-Lyon, UPSP ICE 2016.A104, F-69007 Lyon, France
| | - Marielle Afanassieff
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
- Correspondence: ; Tel.: +33-472-913-458
| |
Collapse
|
2
|
Afanassieff M, Perold F, Bouchereau W, Cadiou A, Beaujean N. Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits. Exp Cell Res 2020; 389:111908. [PMID: 32057751 DOI: 10.1016/j.yexcr.2020.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
Both embryo-derived (ESC) and induced pluripotent stem cell (iPSC) lines have been established in rabbit. They exhibit the essential characteristics of primed pluripotency. In this review, we described their characteristic features at both molecular and functional levels. We also described the attempts to reprogram rabbit pluripotent stem cells (rbPSCs) toward the naive state of pluripotency using methods established previously to capture this state in rodents and primates. In the last section, we described and discussed our current knowledge of rabbit embryo development pertaining to the mechanisms of early lineage segregation. We argued that the molecular signature of naive-state pluripotency differs between mice and rabbits. We finally discussed some of the key issues to be addressed for capturing the naive state in rbPSCs, including the generation of embryo/PSC chimeras.
Collapse
Affiliation(s)
- Marielle Afanassieff
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France.
| | - Florence Perold
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Wilhelm Bouchereau
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Antoine Cadiou
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Nathalie Beaujean
- Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| |
Collapse
|
3
|
GP130 signaling and the control of naïve pluripotency in humans, monkeys, and pigs. Exp Cell Res 2020; 386:111712. [DOI: 10.1016/j.yexcr.2019.111712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022]
|
4
|
Fibroblast Growth Factor 9 Is Upregulated Upon Intervertebral Mechanical Stress-Induced Ligamentum Flavum Hypertrophy in a Rabbit Model. Spine (Phila Pa 1976) 2019; 44:E1172-E1180. [PMID: 31022154 DOI: 10.1097/brs.0000000000003089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control study of an animal model. OBJECTIVE To investigate the factors that are upregulated and potentially related to degenerative changes in the ligamentum flavum (LF) upon mechanical stress concentration. SUMMARY OF BACKGROUND DATA LF hypertrophy is reported to be associated with mechanical stress. However, few studies, using exhaustive analysis with control subjects, on the molecular mechanisms of LF hypertrophy have been published. METHODS Fourteen rabbits were used for this study. The first group underwent L2-3 and L4-5 posterolateral fusion with instrumentation and resection of the L3-4 supraspinal muscle to concentrate the mechanical stress on L3-4, whereas the other group underwent a sham operation. The deep layer of the LF from L2-3 to L4-5 in both groups was harvested after 16 weeks. Gene expression was evaluated exhaustively using DNA microarray and real-time polymerase chain reaction (RT-PCR). Fibroblast growth factor 9 (FGF9) protein expression was subsequently examined by immunohistological staining. RESULTS A total of 680 genes were found to be upregulated upon mechanical stress concentration and downregulated upon mechanical shielding compared with those in the sham group. Functional annotation analysis revealed that these genes not only included those related to the extracellular matrix but also those related to certain FGF families. On RT-PCR validation and immunohistological analysis, we identified that the FGF9 protein increases in the LF upon mechanical stress, especially in the area wherein degenerative changes were frequently identified in the previous literature. CONCLUSION FGF9 and its pathway are suggested to contribute to the degenerative changes in the LF following mechanical stress. This finding will be helpful in further understanding the molecular mechanism of human LF degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
5
|
Hu B, Zheng L, Long C, Song M, Li T, Yang L, Zuo Y. EmExplorer: a database for exploring time activation of gene expression in mammalian embryos. Open Biol 2019; 9:190054. [PMID: 31164042 PMCID: PMC6597754 DOI: 10.1098/rsob.190054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding early development offers a striking opportunity to investigate genetic disease, stem cell and assisted reproductive technology. Recent advances in high-throughput sequencing technology have led to the rising influx of omics data, which have rapidly boosted our understanding of mammalian developmental mechanisms. Here, we review the database EmExplorer (a database for exploring time activation of gene expression in mammalian embryos), which systematically organizes the genes from development-related pathways, and which we have already established and continue to update it. The current version of EmExplorer incorporates over 26 000 genes obtained from 306 functional pathways in five species. The function annotations of development-related genes were also integrated into EmExplorer. To facilitate data extraction, the database also contains the following information. (i) The dynamic expression values for each development stage are matched to the corresponding genes. (ii) A two-layer search tool which supports multi-option searching, such as by official symbol, pathway name and function annotation. The returned entries can directly link to the analysis results for the corresponding gene or pathway in the analysis module. (iii) The analysis module provides different gene comparisons at the multi-species level and functional pathway level, which shows the species specificity and stage specificity at the gene or pathway level. (iv) The analysis based on the hypergeometric distribution test reveals the enrichment of gene functions at a particular stage of one organism's pathway. (v) The browser is designed for users with ambiguous searching goals and greatly helps new users to get a general idea of the contents of the database. (vi) The experimentally validated pathways are manually curated and shown on the home page. EmExplorer will be helpful for elucidating early developmental mechanisms and exploring time activation genes. EmExplorer is freely available at http://bioinfor.imu.edu.cn/emexplorer.
Collapse
Affiliation(s)
- Bosu Hu
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Lei Zheng
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Chunshen Long
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Mingmin Song
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Tao Li
- 2 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018 , People's Republic of China
| | - Lei Yang
- 3 College of Bioinformatics Science and Technology, Harbin Medical University , Harbin 150081 , People's Republic of China
| | - Yongchun Zuo
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| |
Collapse
|
6
|
Profile of Prof. Weizhi Ji. SCIENCE CHINA-LIFE SCIENCES 2018; 62:8-11. [PMID: 30570698 DOI: 10.1007/s11427-018-9424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget 2018; 7:74120-74131. [PMID: 27705919 PMCID: PMC5342040 DOI: 10.18632/oncotarget.12339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity. Endocytosis act as one of master activators for uncovering a series of successive waves of maternal pioneer signal regulator with the help of Spliceosome complex. Furthermore, the results showed that pattern recognition receptors began to perform its essential function at 4-cell stage, which might be needed to coordinate the later major activation. And finally, our work presented a probable dynamic landscape of key functional pathways for embryogenesis. A clearer understanding of early embryo development will be helpful for Assisted Reproductive Technology (ART) and Regenerative Medicine (RM).
Collapse
|
8
|
Wang R, Liu W, Du M, Yang C, Li X, Yang P. The differential effect of basic fibroblast growth factor and stromal cell‑derived factor‑1 pretreatment on bone morrow mesenchymal stem cells osteogenic differentiation potency. Mol Med Rep 2017; 17:3715-3721. [PMID: 29359787 PMCID: PMC5802181 DOI: 10.3892/mmr.2017.8316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.
Collapse
Affiliation(s)
- Ruolin Wang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenhua Liu
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mi Du
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuefen Li
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Tapponnier Y, Afanassieff M, Aksoy I, Aubry M, Moulin A, Medjani L, Bouchereau W, Mayère C, Osteil P, Nurse-Francis J, Oikonomakos I, Joly T, Jouneau L, Archilla C, Schmaltz-Panneau B, Peynot N, Barasc H, Pinton A, Lecardonnel J, Gocza E, Beaujean N, Duranthon V, Savatier P. Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors. Stem Cell Res 2017; 24:106-117. [PMID: 28889080 DOI: 10.1016/j.scr.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Rabbit induced pluripotent stem cells (rbiPSCs) possess the characteristic features of primed pluripotency as defined in rodents and primates. In the present study, we reprogrammed rbiPSCs using human Krüppel-like factors (KLFs) 2 and 4 and cultured them in a medium supplemented with fetal calf serum and leukemia inhibitory factor. These cells (designated rbEKA) were propagated by enzymatic dissociation for at least 30 passages, during which they maintained a normal karyotype. This new culturing protocol resulted in transcriptional and epigenetic reconfiguration, as substantiated by the expression of transcription factors and the presence of histone modifications associated with naïve pluripotency. Furthermore, microarray analysis of rbiPSCs, rbEKA cells, rabbit ICM cells, and rabbit epiblast showed that the global gene expression profile of the reprogrammed rbiPSCs was more similar to that of rabbit ICM and epiblast cells. Injection of rbEKA cells into 8-cell stage rabbit embryos resulted in extensive colonization of ICM in 9% early-blastocysts (E3.5), epiblast in 10% mid-blastocysts (E4.5), and embryonic disk in 1.4% pre-gastrulae (E6). Thus, these results indicate that KLF2 and KLF4 triggered the conversion of rbiPSCs into epiblast-like, embryo colonization-competent PSCs. Our results highlight some of the requirements to achieve bona fide chimeric competency.
Collapse
Affiliation(s)
- Yann Tapponnier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Marielle Afanassieff
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France.
| | - Irène Aksoy
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Maxime Aubry
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Anaïs Moulin
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Lucas Medjani
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Wilhelm Bouchereau
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Chloé Mayère
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre Osteil
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Jazmine Nurse-Francis
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Ioannis Oikonomakos
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Thierry Joly
- ISARA-Lyon, F-69007 Lyon, France; VetAgroSup, UPSP ICE, F-69280 Marcy l'Etoile, France
| | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Catherine Archilla
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | | | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Harmonie Barasc
- INRA, UMR 444, Génétique Cellulaire, F-31076 Toulouse, France; ENVT, F-31076 Toulouse, France
| | - Alain Pinton
- INRA, UMR 444, Génétique Cellulaire, F-31076 Toulouse, France; ENVT, F-31076 Toulouse, France
| | - Jérome Lecardonnel
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elen Gocza
- Agricultural Biotechnology Institute, H-2100 Gödöllo, Hungary
| | - Nathalie Beaujean
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | | | - Pierre Savatier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France.
| |
Collapse
|
10
|
Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Res 2017; 19:104-112. [DOI: 10.1016/j.scr.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
|
11
|
Wei R, Zhao X, Hao H, Du W, Zhu H. Embryonic stem-like cells from rabbit blastocysts cultured with melatonin could differentiate into three germ layers in vitro and in vivo. Mol Reprod Dev 2016; 83:1003-1014. [DOI: 10.1002/mrd.22739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/14/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ruxue Wei
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS); Chinese Academy of Agricultural Sciences (CAAS); Beijing P.R. China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS); Chinese Academy of Agricultural Sciences (CAAS); Beijing P.R. China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS); Chinese Academy of Agricultural Sciences (CAAS); Beijing P.R. China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS); Chinese Academy of Agricultural Sciences (CAAS); Beijing P.R. China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS); Chinese Academy of Agricultural Sciences (CAAS); Beijing P.R. China
| |
Collapse
|
12
|
Osteil P, Moulin A, Santamaria C, Joly T, Jouneau L, Aubry M, Tapponnier Y, Archilla C, Schmaltz-Panneau B, Lecardonnel J, Barasc H, Mouney-Bonnet N, Genthon C, Roulet A, Donnadieu C, Acloque H, Gocza E, Duranthon V, Afanassieff M, Savatier P. A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits. Stem Cell Reports 2016; 7:383-398. [PMID: 27594588 PMCID: PMC5032405 DOI: 10.1016/j.stemcr.2016.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/11/2023] Open
Abstract
Conventional rabbit embryonic stem cell (ESC) lines are derived from the inner cell mass (ICM) of pre-implantation embryos using methods and culture conditions that are established for primate ESCs. In this study, we explored the capacity of the rabbit ICM to give rise to ESC lines using conditions similar to those utilized to generate naive ESCs in mice. On single-cell dissociation and culture in fibroblast growth factor 2 (FGF2)-free, serum-supplemented medium, rabbit ICMs gave rise to ESC lines lacking the DNA-damage checkpoint in the G1 phase like mouse ESCs, and with a pluripotency gene expression profile closer to the rabbit ICM/epiblast profiles. These cell lines can be converted to FGF2-dependent ESCs after culture in conventional conditions. They can also colonize the rabbit pre-implantation embryo. These results indicate that rabbit epiblast cells can be coaxed toward different types of pluripotent stem cells and reveal the dynamics of pluripotent states in rabbit ESCs.
Collapse
Affiliation(s)
- Pierre Osteil
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; INRA, USC1361, 69500 Bron, France; Embryology Unit, Children's Medical Research Institute, CMRI, Westmead, NSW 2145, Australia
| | - Anaïs Moulin
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Claire Santamaria
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Thierry Joly
- ISARA-Lyon, 69007 Lyon, France; VetAgroSup, UPSP ICE, 69280 Marcy l'Etoile, France
| | - Luc Jouneau
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Maxime Aubry
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Yann Tapponnier
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Catherine Archilla
- UMR BDR, INRA, ENVA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Jérôme Lecardonnel
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Harmonie Barasc
- INRA, UMR 444, Génétique Cellulaire, 31076 Toulouse, France; ENVT, 31076 Toulouse, France
| | - Nathalie Mouney-Bonnet
- INRA, UMR 444, Génétique Cellulaire, 31076 Toulouse, France; ENVT, 31076 Toulouse, France
| | - Clémence Genthon
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, 31326 Castanet Tolosan, France
| | - Alain Roulet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, 31326 Castanet Tolosan, France
| | - Cécile Donnadieu
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, 31326 Castanet Tolosan, France
| | - Hervé Acloque
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, 31326 Castanet Tolosan, France
| | - Elen Gocza
- NARIC, Agricultural Biotechnology Institute, 2100 Gödöllo, Hungary
| | | | - Marielle Afanassieff
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; INRA, USC1361, 69500 Bron, France.
| | - Pierre Savatier
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
13
|
Derivation and application of pluripotent stem cells for regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2016; 59:576-83. [DOI: 10.1007/s11427-016-5066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
|
14
|
Du F, Chen CH, Li Y, Hu Y, An LY, Yang L, Zhang J, Chen YE, Xu J. Derivation of Rabbit Embryonic Stem Cells from Vitrified-Thawed Embryos. Cell Reprogram 2015; 17:453-62. [PMID: 26579970 DOI: 10.1089/cell.2015.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rabbit is a useful animal model for regenerative medicine. We previously developed pluripotent rabbit embryonic stem cell (rbESC) lines using fresh embryos. We also successfully cryopreserved rabbit embryos by vitrification. In the present work, we combined these two technologies to derive rbESCs using vitrified-thawed (V/T) embryos. We demonstrate that V/T blastocysts (BLs) can be used to derive pluripotent rbESCs with efficiencies comparable to those using fresh BLs. These ESCs are undistinguishable from the ones derived from fresh embryos. We tested the developmental capacity of rbESCs derived from V/T embryos by BL injection experiments and produced chimeric kits. Our work adds cryopreservation to the toolbox of rabbit stem cell research and applications and will greatly expand the available research materials for regenerative medicine in a clinically relevant animal model.
Collapse
Affiliation(s)
- Fuliang Du
- 1 Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing 210046, China .,2 Renova Life, Inc. , College Park, Maryland 20742.,5 These authors contributed equally to this work
| | - Chien-Hong Chen
- 2 Renova Life, Inc. , College Park, Maryland 20742.,5 These authors contributed equally to this work
| | - Yi Li
- 1 Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing 210046, China
| | - Yeshu Hu
- 1 Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing 210046, China
| | - Li-You An
- 1 Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing 210046, China
| | - Lan Yang
- 3 Lannuo Biotechnologies Wuxi, Inc. , Wuxi, Jiangsu 214174, China
| | - Jifeng Zhang
- 4 Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center , Ann Arbor, MI, 48109
| | - Y Eugene Chen
- 4 Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center , Ann Arbor, MI, 48109
| | - Jie Xu
- 2 Renova Life, Inc. , College Park, Maryland 20742.,4 Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center , Ann Arbor, MI, 48109
| |
Collapse
|
15
|
Abstract
Leukemia inhibitory factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. All members of this family activate signal transducer and activator of transcription 3 (STAT3), a transcription factor that influences stem and progenitor cell identity, proliferation and cytoprotection. The role of LIF in development was first identified when LIF was demonstrated to support the propagation of mouse embryonic stem cells. Subsequent studies of mice deficient for components of the LIF pathway have revealed important roles for LIF signaling during development and homeostasis. Here and in the accompanying poster, we provide a broad overview of JAK-STAT signaling during development, with a specific focus on LIF-mediated JAK-STAT3 activation.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5 The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, Canada M5S 3E1 McEwen Centre for Regenerative Medicine, University Health Network, 101 College St., Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
16
|
Lo NW, Intawicha P, Chiu YT, Lee KH, Lu HC, Chen CH, Chang YH, Chen CD, Ju JC. Leukemia Inhibitory Factor and Fibroblast Growth Factor 2 Critically and Mutually Sustain Pluripotency of Rabbit Embryonic Stem Cells. Cell Transplant 2015; 24:319-38. [DOI: 10.3727/096368915x686832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Effects of leukemia inhibitory factor (LIF) and fibroblast growth factor 2 (FGF2) on establishment and maintenance of rabbit embryonic stem cell (rESC) lines were assessed. When grown on MEF feeders, rESC lines derived from fertilized embryos were established and maintained in medium containing paracrine factors LIF (via STAT3) and/or FGF2 (via MEK-ERK1/2 and PI3K-AKT). However, high levels of ERK1/2 and AKT activities in rESCs were crucial for maintaining their undifferentiated proliferation. Although rESCs under the influence of either LIF (500, 1,000, and 2,000 U/ml) or FGF2 (5, 10, and 20 ng/ml) alone had enhanced expression of pluripotency markers, peak expression occurred when both LIF (1,000 U/ml) and FGF2 (10 ng/ml) were applied. Induced dephosphorylation of STAT3, ERK1/2, and AKT by specific inhibitors limited growth of rESCs and caused remarkable losses of self-renewal capacity; therefore, we inferred that STAT3, ERK, and AKT had essential roles in maintaining rESC proliferation and self-renewal. We concluded that LIF and FGF2 jointly maintained the undifferentiated state and self-renewal of rESCs through an integrative signaling module.
Collapse
Affiliation(s)
- Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Payungsuk Intawicha
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | | | - Kun-Hsiung Lee
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, Hsinchu, Taiwan
| | - Hsi-Chi Lu
- Department of Food Science, Tunghai University, Taichung, Taiwan
| | - Chien-Hong Chen
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, Hsinchu, Taiwan
| | - Yong-Hsuan Chang
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Chun-Da Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Agricultural Biotechnology Center and Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Medical Research Department, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, Gao Y, Gao S. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev 2014; 23:2283-96. [PMID: 24805295 DOI: 10.1089/scd.2014.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The deficiency of X-inactive specific transcript (XIST) on the inactive X chromosome affects the behavior of female human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), and further chromosomal erosion can occur with continued passaging of these cells. However, X chromosome instability has not been identified in other species. In the present study, we investigated three female rabbit ESC (rbESC) lines and found that two of them expressed Xist normally and obtained both Xist RNA coating and H3K27me3 foci, thus defined as Xi(Xist)Xa. Interestingly, the third female rbESC line lacked Xist expression during ESC maintenance and differentiation. This line showed H3K27me3 foci but no Xist RNA coating in the early passages and was thus defined as Xi(w/oXist)Xa. Similar to Xi(w/oXist)Xa hESCs or hiPSCs, Xi(w/oXist)Xa rbESCs lose H3K27me3 and undergo Xi erosion (Xe) with passaging. Moreover, Xist-deficient rbESCs also exhibit impaired differentiation ability and upregulation of cancer-related genes. By overexpressing OCT4, SOX2, KLF4, and c-MYC in Xist-deficient rbESCs under optimized culture conditions, we successfully obtained mouse ESC-like (mESC-like) cells. The mESC-like rbESCs displayed dome-shaped colony morphology, activation of the LIF/STAT3-dependent pathway, and conversion of disordered X chromosome. Importantly, the defective differentiation potential was also greatly improved. Our data demonstrate that variations in X chromosome inactivation occur in early passage of rbESCs; thus, Xi disorders are conserved across species and are reversible using the proper epigenetic reprogramming and culture conditions. These findings may be very useful for future efforts toward deriving fully pluripotent rbESCs or rabbit iPSCs (rbiPSCs).
Collapse
Affiliation(s)
- Yonghua Jiang
- 1 College of Biological Sciences, China Agricultural University , Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 2014; 3:241-54. [PMID: 24436440 DOI: 10.5966/sctm.2013-0079] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O(2) consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue.
Collapse
Affiliation(s)
- Lisa B Boyette
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, McGowan Institute for Regenerative Medicine, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
19
|
Honda A, Hatori M, Hirose M, Honda C, Izu H, Inoue K, Hirasawa R, Matoba S, Togayachi S, Miyoshi H, Ogura A. Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells. J Biol Chem 2013; 288:26157-26166. [PMID: 23880763 DOI: 10.1074/jbc.m113.502492] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called "naive" state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.
Collapse
Affiliation(s)
- Arata Honda
- From the Organization for Promotion of Tenure Track, University of Miyazaki, 5200, Kibara, Kiyotake, Miyazaki 889-1692,; the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074,; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012,.
| | | | | | - Chizumi Honda
- From the Organization for Promotion of Tenure Track, University of Miyazaki, 5200, Kibara, Kiyotake, Miyazaki 889-1692
| | - Haruna Izu
- From the Organization for Promotion of Tenure Track, University of Miyazaki, 5200, Kibara, Kiyotake, Miyazaki 889-1692
| | - Kimiko Inoue
- the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074,; the Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, and
| | | | - Shogo Matoba
- the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074
| | | | | | - Atsuo Ogura
- the RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074,; the Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, and; the Center for Disease Biology and Integrative Medicine, 5 Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Osteil P, Tapponnier Y, Markossian S, Godet M, Schmaltz-Panneau B, Jouneau L, Cabau C, Joly T, Blachère T, Gócza E, Bernat A, Yerle M, Acloque H, Hidot S, Bosze Z, Duranthon V, Savatier P, Afanassieff M. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open 2013; 2:613-28. [PMID: 23789112 PMCID: PMC3683164 DOI: 10.1242/bio.20134242] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits.
Collapse
Affiliation(s)
- Pierre Osteil
- INSERM, U846, Stem Cell and Brain Institute , 18 Avenue du Doyen Jean Lépine, F-69500 Bron , France ; Stem Cell and Brain Institute , F-69500 Bron , France ; Université de Lyon , F-69100 Villeurbanne , France ; INRA, USC1361, F-69500 Bron , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Osteil P, Tapponnier Y, Markossian S, Godet M, Schmaltz-Panneau B, Jouneau L, Cabau C, Joly T, Blachère T, Gócza E, Bernat A, Yerle M, Acloque H, Hidot S, Bosze Z, Duranthon V, Savatier P, Afanassieff M. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open 2013. [PMID: 23789112 DOI: 10.1242/bio.20134242.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2022] Open
Abstract
Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits.
Collapse
Affiliation(s)
- Pierre Osteil
- INSERM, U846, Stem Cell and Brain Institute , 18 Avenue du Doyen Jean Lépine, F-69500 Bron , France ; Stem Cell and Brain Institute , F-69500 Bron , France ; Université de Lyon , F-69100 Villeurbanne , France ; INRA, USC1361, F-69500 Bron , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sharma R, Kamble NM, George A, Chauhan MS, Singla S, Manik RS, Palta P. Effect of TGF-β1 superfamily members on survival of buffalo (Bubalus bubalis) embryonic stem-like cells. Reprod Domest Anim 2013; 48:569-76. [PMID: 23320894 DOI: 10.1111/rda.12126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/27/2012] [Indexed: 11/30/2022]
Abstract
This study examined the effects of supplementation of ES-like cell culture medium with bone morphogenetic protein (BMP)-4 (0, 10, 20 or 100 ng/ml) or Noggin (250, 500 or 750 ng/ml) or TGF-β1 (0, 0.1, 1 or 10 ng/ml) or SB431542 (0, 10, 25 or 50 μm), an inhibitor of TGF-β1 signalling, on survival, colony area and expression level of pluripotency genes in buffalo ES-like cells at passage 40-80, under different culture conditions. BMP-4 supplementation significantly reduced (p < 0.05) colony survival rate, percentage increase in colony area and relative mRNA abundance of OCT4, whereas that of NANOG and SOX-2 was increased significantly (p < 0.05). Noggin supplementation did not affect the colony survival rate and percentage increase in colony area in the presence of FGF-2 and LIF. In the presence of FGF-2 alone, it significantly reduced (p < 0.05) the relative mRNA abundance of OCT4 and SOX-2 and increased (p < 0.05) that of NANOG. Supplementation with TGF-β1 at 1.0 ng/ml but not at other concentrations increased colony survival rate but had no effect on percentage increase in colony area at any concentration. Supplementation with SB-431542 decreased (p < 0.05) colony survival rate at 50 μm but not at other concentrations. The percentage increase in colony area was lower (p < 0.05) with 10 μm SB-431542 than that in the controls, whereas at higher concentrations of 25 or 50 μm, SB-431542 decreased (p < 0.05) the colony size instead of increasing it. In conclusion, these results suggest that BMP-4 induces differentiation in buffalo ES-like cells, whereas TGF-β/activin/nodal pathway may not be playing a crucial role in maintaining pluripotency in these cells.
Collapse
Affiliation(s)
- R Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Rodríguez A, Allegrucci C, Alberio R. Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 2012; 7:e49079. [PMID: 23145076 PMCID: PMC3493503 DOI: 10.1371/journal.pone.0049079] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/04/2012] [Indexed: 01/12/2023] Open
Abstract
The establishment of the pluripotent ICM during early mammalian development is characterized by the differential expression of the transcription factors NANOG and GATA4/6, indicative of the epiblast and hypoblast, respectively. Differences in the mechanisms regulating the segregation of these lineages have been reported in many species, however little is known about this process in the porcine embryo. The aim of this study was to investigate the signalling pathways participating in the formation of the porcine ICM, and to establish whether their modulation can be used to increase the developmental potential of pluripotent cells. We show that blocking MEK signalling enhances the proportion of NANOG expressing cells in the ICM, but does not prevent the segregation of GATA-4 cells. Interestingly, inhibition of FGF signalling does not alter the segregation of NANOG and GATA-4 cells, but affects the number of ICM cells. This indicates that FGF signalling participates in the formation of the founders of the ICM. Inhibition of MEK signalling combined with GSK3β inhibition and LIF supplementation was used to modulate pluripotency in porcine iPS (piPS) cells. We demonstrate that under these stringent culture conditions piPS cells acquire features of naive pluripotency, characterized by the expression of STELLA and REX1, and increased in vitro germline differentiation capacity. We propose that small molecule inhibitors can be used to increase the homogeneity of induced pluripotent stem cell cultures. These improved culture conditions will pave the way for the generation of germline competent stem cells in this species.
Collapse
Affiliation(s)
- Aida Rodríguez
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Sciences, University of Nottingham, Loughborough, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
24
|
Tancos Z, Nemes C, Polgar Z, Gocza E, Daniel N, Stout T, Maraghechi P, Pirity M, Osteil P, Tapponnier Y, Markossian S, Godet M, Afanassieff M, Bosze Z, Duranthon V, Savatier P, Dinnyes A. Generation of rabbit pluripotent stem cell lines. Theriogenology 2012; 78:1774-86. [DOI: 10.1016/j.theriogenology.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/09/2012] [Accepted: 06/10/2012] [Indexed: 12/20/2022]
|
25
|
Dynamic profiles of Oct-4, Cdx-2 and acetylated H4K5 in in-vivo-derived rabbit embryos. Reprod Biomed Online 2012; 25:358-70. [PMID: 22877942 DOI: 10.1016/j.rbmo.2012.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023]
Abstract
This study documents the spatial and temporal distribution of Oct-4, Cdx-2 and acetylated H4K5 (H4K5ac) by immunocytochemistry staining using in-vivo-derived rabbit embryos at different stages: day-3 compact morulae, day-4 early blastocysts, day-4 expanded blastocysts, day-5 blastocysts, day-6 blastocysts and day-7 blastocysts. The Oct-4 signal was stronger in the inner cell mass (ICM)/epiblast cells than in the trophectoderm (TE) cells in all blastocyst stages except day-4 expanded blastocysts, where the signal was similarly weak in both the ICM and TE cells. The Cdx-2 signal was first detected in a small number of TE cells of day-4 early blastocysts, and became evident in the TE cells exclusively afterwards. A consistently strong H4K5ac signal was observed in the TE cells in all blastocyst stages examined. In particular, this signal was stronger in the TE than in the ICM cells in day-4 early blastocysts, day-4 expanded blastocysts and day-5 blastocysts. Double staining of H4K5ac with either Oct-4 or Cdx-2 on embryos at different blastocyst stages confirmed these findings. This work suggests that day 4 is a critical timing for lineage formation in rabbit embryos. A combination of Oct-4, Cdx-2 and H4K5ac can be used as biomarkers to identify different lineage cells in rabbit blastocysts.
Collapse
|
26
|
Xue F, Ma Y, Chen YE, Zhang J, Lin TA, Chen CH, Lin WW, Roach M, Ju JC, Yang L, Du F, Xu J. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells. Cell Reprogram 2012; 14:364-76. [PMID: 22775411 DOI: 10.1089/cell.2012.0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.
Collapse
Affiliation(s)
- Fei Xue
- Renova Life Inc., University of Maryland, TAP program, College Park, MD 20740, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Atari M, Caballé-Serrano J, Gil-Recio C, Giner-Delgado C, Martínez-Sarrà E, García-Fernández DA, Barajas M, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L. The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 2012; 50:930-41. [PMID: 22270057 DOI: 10.1016/j.bone.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/09/2023]
Abstract
The potential for osteogenic differentiation of dental pulp mesenchymal stem cells (DPMSCs) in vitro and in vivo has been well documented in a variety of studies. Previously, we obtained a population of cells from human dental pulp called dental pulp pluripotent stem cells (DPPSCs) that could differentiate into mesodermal, ectodermal and endodermal progenies. We compared the osteogenic capacity of DPPSCs and DPMSCs that had been isolated from the same donors (N=5) and cultivated in the same osteogenic medium in 3D (three dimensions) Cell Carrier glass scaffolds. We also compared the architecture of bone-like tissue obtained from DPPSCs and human maxillary bone tissue. Differentiation was evaluated by scanning electron microscopy, whereas the expression of bone markers such as ALP, Osteocalcin, COLL1 and Osteonectin was investigated by quantitative real time polymerase chain reaction (qRT-PCR). We also used calcium quantification, Alizarin red staining and alkaline phosphatase (ALP) activity to compare the two cell types. New bone tissue formed by DPPSCs was in perfect continuity with the trabecular host bone structure, and the restored bone network demonstrated high interconnectivity. Significant differences between DPPSCs and DPMSCs were observed for the expression of bone markers, calcium deposition and ALP activity during osteogenic differentiation; these criteria were higher for DPPSCs than DPMSCs. Both DPPSCs and differentiated tissue showed normal chromosomal dosage after being cultured in vitro and analysed using short-chromosome genomic hybridisation (short-CGH). This study demonstrates the stability and potential for the use of DPPSCs in bone tissue engineering applications.
Collapse
Affiliation(s)
- M Atari
- Laboratory for Regenerative Medicine, Department of Oral and Maxillofacial Surgery, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sharma R, George A, Kamble NM, Singh KP, Chauhan MS, Singla SK, Manik RS, Palta P. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell Reprogram 2011; 13:539-49. [PMID: 22029416 DOI: 10.1089/cell.2011.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
To date, pluripotent epiblast stem cells (EpiSCs) had only been derived from postimplantation mouse embryos. In this issue of Cell Stem Cell, Najm et al. (2011) demonstrate that EpiSCs can be routinely derived from preimplantation embryos, showing that both human and mouse blastocysts can produce the same class of primed pluripotent cells.
Collapse
Affiliation(s)
- Tilo Kunath
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH9 3JQ, UK.
| |
Collapse
|
30
|
Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 2011; 26:1953-63. [PMID: 21351149 PMCID: PMC3810406 DOI: 10.1002/jbmr.377] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dickkopf-related protein 1 (DKK1) is essential to maintain skeletal homeostasis as an inhibitor of Wnt signaling and osteogenic differentiation. The purpose of this study was to investigate the molecular mechanisms underlying the developmental stage-specific regulation of the DKK1 protein level. We performed a series of studies including luciferase reporter assays, micro-RNA microarray, site-specific mutations, and gain- and loss-of-function analyses. We found that the DKK1 protein level was regulated via DKK1 3' UTR by miRNA control, which was restricted to osteoblast-lineage cells. As a result of decreased DKK1 protein level by miR-335-5p, Wnt signaling was enhanced, as indicated by elevated GSK-3β phosphorylation and increased β-catenin transcriptional activity. The effects of miR-335-5p were reversed by anti-miR-335-5p treatment, which downregulated endogenous miR-335-5p. In vivo studies showed high expression levels of miR-335-5p in osteoblasts and hypertrophic chondrocytes of mouse embryos, indicating a pivotal role of miR-335-5p in regulating bone development. In conclusion, miR-335-5p activates Wnt signaling and promotes osteogenic differentiation by downregulating DKK1. This cell- and development-specific regulation is essential and mandatory for the initiation and progression of osteogenic differentiation. miR-335-5p proves to be a potential and useful targeting molecule for promoting bone formation and regeneration.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Li Z, Liu C, Xie Z, Song P, Zhao RCH, Guo L, Liu Z, Wu Y. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6:e20526. [PMID: 21694780 PMCID: PMC3111432 DOI: 10.1371/journal.pone.0020526] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/02/2011] [Indexed: 11/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood. Methodology/Principal Findings Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes. Conclusions/Significance Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation.
Collapse
Affiliation(s)
- Zhilong Li
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Shenzhen, China
| | - Chenxiong Liu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhenhua Xie
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Pengyue Song
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Robert C. H. Zhao
- Center of Excellence in Tissue Engineering, Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ling Guo
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Shenzhen, China
- * E-mail: (YW); (ZL)
| | - Yaojiong Wu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- * E-mail: (YW); (ZL)
| |
Collapse
|
32
|
Hsieh YC, Intawicha P, Lee KH, Chiu YT, Lo NW, Ju JC. LIF and FGF Cooperatively Support Stemness of Rabbit Embryonic Stem Cells Derived from Parthenogenetically Activated Embryos. Cell Reprogram 2011; 13:241-55. [DOI: 10.1089/cell.2010.0097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Ya-Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Payungsuk Intawicha
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Republic of China
| | - Yung-Tsung Chiu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Republic of China
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan, Republic of China
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
33
|
Alberio R, Croxall N, Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 2011; 19:1627-36. [PMID: 20210627 DOI: 10.1089/scd.2010.0012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Activin/Nodal signaling is required for maintaining pluripotency and self-renewal of mouse epiblast stem cells and human embryonic stem cells (hESC). In this study, we investigated whether this signaling mechanism is also operative in cultured epiblasts derived from Days 10.5-12 pig embryos. Pig epiblast stem cell lines (pEpiSC) were established on mouse feeder layers and medium supplemented with basic fibroblast growth factor (bFGF). pEpiSC express the core pluripotency factors OCT4 (or POU5F1), NANOG, SOX2, and NODAL, but they do not express REX1 or alkaline phosphatase activity. Blocking leukemia inhibitory factor (LIF)/JAK/STAT3 pathway by adding the specific JAK I inhibitor 420099 and an anti-LIF antibody over 3 passages did not affect pluripotency of pEpiSC. In contrast, cells grown with the Alk-5 inhibitor SB431542, which blocks Activin/Nodal pathway, differentiated readily toward the neural lineage. pEpiSC are pluripotent, as established by their differentiation potential to ectoderm, mesoderm, and endoderm. These cells can be induced to differentiate toward trophectoderm and to germ cell precursors in response to bone morphogenetic protein 4 (BMP-4). In conclusion, our study demonstrates that pig epiblasts express the core pluripotency genes and that the capacity for maintaining self-renewal in pEpiSC depends on Activin/Nodal signaling. This study provides further evidence that maintenance of pluripotency via Activin/Nodal signal is conserved in mammals.
Collapse
Affiliation(s)
- Ramiro Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom.
| | | | | |
Collapse
|
34
|
Peltier J, Conway A, Keung AJ, Schaffer DV. Akt increases sox2 expression in adult hippocampal neural progenitor cells, but increased sox2 does not promote proliferation. Stem Cells Dev 2010; 20:1153-61. [PMID: 21028992 DOI: 10.1089/scd.2010.0130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple extracellular factors have been shown to modulate adult hippocampal neural progenitor cell (NPC) proliferation and self-renewal, and we have previously shown that Akt is an important mediator of the effects of these extracellular factors on NPC proliferation and differentiation. However, very little work has investigated how and whether Akt is involved in maintaining the multipotency of these cells. Here we demonstrate that Akt promotes expression of Sox2, a core transcription factor important for the self-renewal of NPCs. Retroviral-mediated overexpression of wild-type Akt increased Sox2 protein expression, particularly under conditions that promote cell differentiation, whereas Akt inhibition decreased Sox2. Similarly, quantitative reverse transcription (RT)-PCR in differentiating cultures indicated that Akt rescued Sox2 mRNA to levels present under conditions that promote cell proliferation. Additionally, pharmacological inhibition of Akt did not affect Sox2 protein levels in cells constitutively expressing Sox2 from a retroviral vector, indicating that Akt does not affect Sox2 protein stability. Further, in contrast to Akt overexpression, Sox2 overexpression does not increase NPC viable cell number or proliferation yet does inhibit differentiation. Collectively, these results indicate that Akt promotes cell proliferation and maintenance of a multipotent state via two downstream paths.
Collapse
Affiliation(s)
- Joseph Peltier
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-3220, USA
| | | | | | | |
Collapse
|
35
|
Martins-Taylor K, Xu RH. Determinants of pluripotency: from avian, rodents, to primates. J Cell Biochem 2010; 109:16-25. [PMID: 19937733 DOI: 10.1002/jcb.22402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since mouse embryonic stem (ES) cells was first derived in 1981, the ability of this unprecedented cell type to self-renew and differentiate without limit has revolutionized the discovery tools that are used to study gene functions and development. Furthermore, they have inspired others to hunt for similar cells from other species. The derivation of human ES cells in 1998 has accelerated these discoveries and has also widely provoked public interest, due to both the scientific significance of these cells for human tissue regeneration and the ethical disputes over the use of donated early human embryos. However, this is no longer a barrier, with the recent discovery of methods that can convert differentiated somatic cells into ES-like cells or induced pluripotent stem (iPS) cells, by using defined reprogramming factors. This review attempts to summarize the progresses in the derivation of ES cells (as well as other embryo-derived pluripotent cells) and iPS cells from various species. We will focus on the molecular and biological features of the cells, as well as the different determinants identified thus far to sustain their pluripotency.
Collapse
Affiliation(s)
- Kristen Martins-Taylor
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
36
|
Pant D, Keefer CL. Expression of Pluripotency-Related Genes during Bovine Inner Cell Mass Explant Culture. CLONING AND STEM CELLS 2009; 11:355-65. [DOI: 10.1089/clo.2008.0078] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Disha Pant
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Carol L. Keefer
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| |
Collapse
|