1
|
Ao X, Ji G, Zhang B, Ding W, Wang J, Liu Y, Xue J. Role of apoptosis repressor with caspase recruitment domain in human health and chronic diseases. Ann Med 2024; 56:2409958. [PMID: 39351758 PMCID: PMC11445919 DOI: 10.1080/07853890.2024.2409958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional suppressor of various types of programmed cell death (PCD) (e.g. apoptosis, necroptosis, and pyroptosis) and plays a key role in determining cell fate. Under physiological conditions, ARC is predominantly expressed in terminally differentiated cells, such as cardiomyocytes and skeletal muscle cells. Its expression and activity are tightly controlled by a complicated system consisting of transcription factor (TF), non-coding RNA (ncRNA), and post-translational modification (PTM). ARC dysregulation has been shown to be closely associated with many chronic diseases, including cardiovascular disease, cancer, diabetes, and neurodegenerative disease. However, the detailed mechanisms of ARC involved in the progression of these diseases remain unclear to a large extent. In this review, we mainly focus on the regulatory mechanisms of ARC expression and activity and its role in PCD. We also discuss the underlying mechanisms of ARC in health and disease and highlight the potential implications of ARC in the clinical treatment of patients with chronic diseases. This information may assist in developing ARC-based therapeutic strategies for patients with chronic diseases and expand researchers' understanding of ARC.
Collapse
Affiliation(s)
- Xiang Ao
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, Shandong, P.R. China
| | - Bingqiang Zhang
- Institute for Restore Biotechnology, Qingdao Restore Biotechnology Co., Ltd, Qingdao, Shandong, P.R. China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao Restore Biotechnology Co., Ltd, Qingdao, P.R. China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ying Liu
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, P.R. China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
2
|
Jung SE, Kim SW, Choi JW. Exploring Cardiac Exosomal RNAs of Acute Myocardial Infarction. Biomedicines 2024; 12:430. [PMID: 38398032 PMCID: PMC10886708 DOI: 10.3390/biomedicines12020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), often a frequent symptom of coronary artery disease (CAD), is a leading cause of death and disability worldwide. Acute myocardial infarction (AMI), a major form of cardiovascular disease, necessitates a deep understanding of its complex pathophysiology to develop innovative therapeutic strategies. Exosomal RNAs (exoRNA), particularly microRNAs (miRNAs) within cardiac tissues, play a critical role in intercellular communication and pathophysiological processes of AMI. METHODS This study aimed to delineate the exoRNA landscape, focusing especially on miRNAs in animal models using high-throughput sequencing. The approach included sequencing analysis to identify significant miRNAs in AMI, followed by validation of the functions of selected miRNAs through in vitro studies involving primary cardiomyocytes and fibroblasts. RESULTS Numerous differentially expressed miRNAs in AMI were identified using five mice per group. The functions of 20 selected miRNAs were validated through in vitro studies with primary cardiomyocytes and fibroblasts. CONCLUSIONS This research enhances understanding of post-AMI molecular changes in cardiac tissues and investigates the potential of exoRNAs as biomarkers or therapeutic targets. These findings offer new insights into the molecular mechanisms of AMIs, paving the way for RNA-based diagnostics and therapeutics and therapies and contributing to the advancement of cardiovascular medicine.
Collapse
Affiliation(s)
- Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Sang Woo Kim
- International St. Mary's Hospital, Incheon 22711, Republic of Korea
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
3
|
A double-edged sword: role of apoptosis repressor with caspase recruitment domain (ARC) in tumorigenesis and ischaemia/reperfusion (I/R) injury. Apoptosis 2023; 28:313-325. [PMID: 36652128 DOI: 10.1007/s10495-022-01802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/19/2023]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) acts as a potent and multifunctional inhibitor of apoptosis, which is mainly expressed in postmitotic cells, including cardiomyocytes. ARC is special for its N-terminal caspase recruitment domain and caspase recruitment domain. Due to the powerful inhibition of apoptosis, ARC is mainly reported to act as a cardioprotective factor during ischaemia‒reperfusion (I/R) injury, preventing cardiomyocytes from being devastated by various catastrophes, including oxidative stress, calcium overload, and mitochondrial dysfunction in the circulatory system. However, recent studies have found that ARC also plays a potential regulatory role in tumorigenesis especially in colorectal cancer and renal cell carcinomas, through multiple apoptosis-associated pathways, which remains to be explored in further studies. Therefore, ARC regulates the body and maintains the balance of physiological activities with its interesting duplex. This review summarizes the current research progress of ARC in the field of tumorigenesis and ischaemia/reperfusion injury, to provide overall research status and new possibilities for researchers.
Collapse
|
4
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
5
|
6-Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO-1 and p38/NF-κB pathway in H9c2 cells. J Nutr Biochem 2022; 104:108975. [PMID: 35245652 DOI: 10.1016/j.jnutbio.2022.108975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/02/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.
Collapse
|
6
|
Pitaktong I, Lui C, Lowenthal J, Mattson G, Jung WH, Bai Y, Yeung E, Ong CS, Chen Y, Gerecht S, Hibino N. Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids. Tissue Eng Part C Methods 2021; 26:80-90. [PMID: 31830863 DOI: 10.1089/ten.tec.2019.0228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: A key obstacle in the creation of engineered cardiac tissues of clinically relevant sizes is limited diffusion of oxygen and nutrients. Thus, there is a need for organized vascularization within a three-dimensional (3D) tissue environment. Human induced pluripotent stem cell (hiPSC)-derived early vascular cells (EVCs) have shown to improve organization of vascular networks within hydrogels. We hypothesize that introduction of EVCs into 3D microtissue spheroids will lead to increased microvascular formation and improve spheroid formation. Methods: HiPSC-derived cardiomyocytes (CMs) were cocultured with human adult ventricular cardiac fibroblasts (FB) and either human umbilical vein endothelial cells (HUVECs) or hiPSC-derived EVCs for 72 h to form mixed cell spheroids. Three different groups of cell ratios were tested: Group 1 (control) consisted of CM:FB:HUVEC 70:15:15, Group 2 consisted of CM:FB:EVC 70:15:15, and Group 3 consisted of CM:FB:EVC 40:15:45. Vascularization, cell distribution, and cardiac function were investigated. Results: Improved microvasculature was found in EVC spheroids with new morphologies of endothelial organization not found in Group 1 spheroids. CMs were found in a core-shell type distribution in Group 1 spheroids, but more uniformly distributed in EVC spheroids. Contraction rate increased into Group 2 spheroids compared to Group 1 spheroids. Conclusion: The triculture of CM, FB, and EVC within a multicellular cardiac spheroid promotes microvascular formation and cardiac spheroid contraction.
Collapse
Affiliation(s)
- Isaree Pitaktong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Cecillia Lui
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Justin Lowenthal
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Gunnar Mattson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yang Bai
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Enoch Yeung
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Chin Siang Ong
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Narutoshi Hibino
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
7
|
Hu L, Wang Y, Pan H, Kadir K, Wen J, Li S, Zhang C. Apoptosis repressor with caspase recruitment domain (ARC) promotes bone regeneration of bone marrow-derived mesenchymal stem cells by activating Fgf-2/PI3K/Akt signaling. Stem Cell Res Ther 2021; 12:185. [PMID: 33726822 PMCID: PMC7962397 DOI: 10.1186/s13287-021-02253-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives This study aims to investigate whether apoptosis repressor with caspase recruitment domain (ARC) could promote survival and enhance osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Materials and methods The lentivirus transfection method was used to establish ARC-overexpressing BMSCs. The CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluorescence staining, ALP analysis, ARS assays, and RT-PCR analysis. Cells were seeded into calcium phosphate cement (CPC) scaffolds and then inserted subcutaneously into nude mice and the defect area of the rat calvarium. Histological analysis was conducted to evaluate the in vivo cell apoptosis and new bone formation of the ARC-overexpressing BMSCs. RNA-seq was used to detect the possible mechanism of the effect of ARC on BMSCs. Results ARC promoted BMSC proliferation and inhibited cell apoptosis. ARC enhanced BMSC osteogenic differentiation in vitro. An in vivo study revealed that ARC can inhibit BMSC apoptosis and increase new bone formation. ARC regulates BMSCs mainly by activating the Fgf-2/PI3K/Akt pathway. Conclusions The present study suggests that ARC is a powerful agent for promoting bone regeneration of BMSCs and provides a promising method for bone tissue engineering.
Collapse
Affiliation(s)
- Longwei Hu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Yang Wang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Hongya Pan
- Linno Pharmaceuticals Inc., Shanghai, 200011, People's Republic of China
| | - Kathreena Kadir
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jin Wen
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, People's Republic of China
| | - Siyi Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China.
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
8
|
Zhang J, Zheng X, Wang P, Wang J, Ding W. Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis 2021; 26:24-37. [PMID: 33604728 DOI: 10.1007/s10495-020-01653-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly effective and multifunctional inhibitor of apoptosis that is mainly expressed in postmitotic cells such as cardiomyocytes and skeletal muscle cells. ARC contains a C-terminal region rich in proline and glutamic acid residues and an N-terminal caspase recruitment domain (CARD). The CARD is originally described as a protein-binding motif that interacts with caspase through a CARD-CARD interaction. Initially, the inhibitory effect of ARC was only found in apoptosis, however, it was later found that ARC also played a regulatory role in other types of cell death. As a powerful cardioprotective factor, ARC can protect the heart by inhibiting the death of cardiomyocytes in various ways. ARC can reduce the cardiomyocyte apoptotic response to various stresses and injuries, including extrinsic apoptosis induced by death receptor ligands, cellular Ca2+ homeostasis and the dysregulation of endoplasmic reticulum (ER) stress, oxidative stress and hypoxia. In addition, changes in ARC transcription and translation levels in the heart can cause a series of physiological and pathological changes, and ARC can also perform corresponding functions through interactions with other molecules. Although there has been much research on ARC, the functional redundancy among proteins shows that ARC still has much research value. This review summarizes the molecular characteristics of ARC, its roles in the various death modes in cardiomyocytes and the roles of ARC in cardiac pathophysiology. This article also describes the potential therapeutic effect and research prospects of ARC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xianxin Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Peiyan Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
9
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 639] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, Fan Y, Deng X, Zhou S, Mehta JL. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 2019; 114:1738-1751. [PMID: 29800228 DOI: 10.1093/cvr/cvy128] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022] Open
Abstract
Aims Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapy to treat hypercholesterolaemia and related cardiovascular diseases. This study determined if PCSK9 can regulate infarct size, cardiac function, and autophagy during ischaemia. Methods and results Mice hearts were subjected to left coronary artery (LCA) occlusion. There was intense expression of PCSK9 in the zone bordering the infarct area in association with marked cardiac contractile dysfunction in the wild-type mice. This region also revealed intense autophagy. To assess the role of PCSK9 in the evolution of infarct size and function and development of autophagy, we used wild-type mice pre-treated with two different PCSK9 inhibitors (Pep2-8 and EGF-A) or mice lacking PCSK9 gene. Both strategies resulted in smaller infarcts and improved cardiac function following LCA ligation. PCSK9 inhibition also markedly reduced autophagy. Relationship between myocardial ischaemia and PCSK9 expression and autophagy was examined in cultured mouse cardiomyocytes. Exposure of cardiomyocytes to hypoxia resulted in prompt PCSK9 expression and autophagy signals; both were blocked by HIF-1α siRNA. Further, treatment of cardiomyocytes with recombinant PCSK9 during hypoxia induced, and treatment with PCSK9 siRNA reduced, autophagy suggesting a possible role of PCSK9 in the determination of autophagy. Other studies revealed activation of ROS-ATM-LKB1-AMPK axis as a possible mechanism of PCSK-induced autophagy. Hearts of humans with recent infarcts also showed expression of PCSK9 and autophagy in the border zone-similar to that in the infarcted mouse heart. Conclusion PCSK9 is up-regulated in the ischaemic hearts and determines development of infarct size, cardiac function, and autophagy.
Collapse
Affiliation(s)
- Zufeng Ding
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xianwei Wang
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Shijie Liu
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jiwani Shahanawaz
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sue Theus
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Sichang Zhou
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
11
|
Li Q, Yang J, Zhang J, Liu XW, Yang CJ, Fan ZX, Wang HB, Yang Y, Zheng T, Yang J. Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J Cell Physiol 2019; 235:3753-3767. [PMID: 31587299 DOI: 10.1002/jcp.29270] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
Apoptosis is the major cause of cardiomyocyte death in myocardial ischemia/reperfusion injury (MI/RI). Increasing evidence suggests that microRNAs (miRNAs) can contribute to the regulation of cardiomyocytes apoptosis by posttranscriptional modulation of gene expression networks. However, the effects of miR-327 in regulating MI/RI-induced cardiomyocytes apoptosis have not been extensively investigated. This study was performed to test whether miR-327 participate in cardiomyocytes apoptosis both in vitro and in vivo, and reveal the potential molecular mechanism of miR-327 regulated MI/RI through targeting apoptosis repressor with caspase recruitment domain (ARC). Sprague-Dawley (SD) rats were subjected to MI/RI by left anterior descending coronary artery occlusion for 30 min and reperfusion for 3 hr. H9c2 cells were exposed to hypoxia for 4 hr and reoxygenation for 12 hr to mimic I/R injury. miRNA-327 recombinant adenovirus vectors were transfected into H9c2 cells for 48 hr and rats for 72 hr before H/R and MI/RI treatment, respectively. The apoptosis rate, downstream molecules of apoptotic pathway, and the target reaction between miRNA-327 and ARC were evaluated. Our results showed that miR-327 was upregulated and ARC was downregulated in the myocardial tissues of MI/RI rats and in H9c2 cells with H/R treatment. Inhibition of miR-327 decreased the expression levels of proapoptotic proteins Fas, FasL, caspase-8, Bax, cleaved caspase-9, cleaved caspase-3, and the release of cytochrome-C, as well as increasing the expression levels of antiapoptotic protein Bcl-2 via negative regulation of ARC both in vivo or vitro. In contrast, overexpression miR-327 showed the reverse effect. Moreover, the results of luciferase reporter assay indicated miR-327 targets ARC directly at the posttranscriptional level. Taken together, inhibition of miR-327 could attenuate cardiomyocyte apoptosis and alleviate I/R-induced myocardial injury via targeting ARC, which offers a new therapeutic strategy for MI/RI.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Xiao-Wen Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Chao-Jun Yang
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Tao Zheng
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
12
|
Su J, Fang M, Tian B, Luo J, Jin C, Wang X, Ning Z, Li X. Atorvastatin protects cardiac progenitor cells from hypoxia-induced cell growth inhibition via MEG3/miR-22/HMGB1 pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1257-1265. [PMID: 30481260 DOI: 10.1093/abbs/gmy133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) induced by ischemia myocardial infarction (MI) is one of the major causes of morbidity and mortality all around the world. Atorvastatin, a hydroxymethylglutaryl coenzyme A reductase inhibitor, has been demonstrated to benefit patients with ischemic or non-ischemic-induced HF, but the mechanism is still poorly understood. Increasing evidence indicates that lncRNAs play important role in variety of human disease. However, the role and underlying molecular mechanisms remain largely unclear. In our work, we applied 0.5% O2 to generate a hypoxia cardiac progenitor cell (CPC) model. Then, CCK8 and EdU assays were employed to investigate the role of atorvastatin in hypoxia CPC cell model. We found that hypoxia inhibits CPC viability and proliferation through modulating MEG3 expression, while atorvastatin application can protect CPCs from hypoxia-induced injury through inhibiting MEG3 expression. Then, we demonstrated that repression of MEG3 inhibited the hypoxia-induced injury of CPCs and overexpression of MEG3 inhibited the protective effect of atorvastatin in the hypoxia-induced injury of CPCs. Furthermore, our study illustrated that atorvastatin played its role in CPC viability and proliferation by modulating the expression of HMGB1 through the MEG3/miR-22 pathway. Our study, for the first time, uncovered the molecular mechanism of atorvastatin's protective role in cardiomyocytes under hypoxia condition, which may provide an exploitable target in developing effective therapy drugs for MI patients.
Collapse
Affiliation(s)
- Jinwen Su
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Ming Fang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Bei Tian
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Jun Luo
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Can Jin
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Xuejun Wang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Xinming Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| |
Collapse
|
13
|
Fang Z, Luo W, Luo Y. Protective effect of α-mangostin against CoCl2-induced apoptosis by suppressing oxidative stress in H9C2 rat cardiomyoblasts. Mol Med Rep 2018; 17:6697-6704. [PMID: 29512772 DOI: 10.3892/mmr.2018.8680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/01/2018] [Indexed: 12/07/2022] Open
Abstract
Garcinia mangostana (a fruit) has been commonly used as a traditional drug in the treatment of various types of diseases. The aim of the present study was to evaluate the potential protective effect of α‑mangostin (α‑MG), a primary constituent extracted from the hull of the G. mangostana fruit (mangosteen), against CoCl2‑induced apoptotic damage in H9C2 rat cardiomyoblasts. α‑MG was demonstrated to significantly improve the viability of the CoCl2‑treated cells by up to 79.6%, attenuating CoCl2‑induced damage. Further studies revealed that α‑MG exerted a positive effect in terms of decreased reactive oxygen species generation, malondialdehyde concentration, cellular apoptosis, and increased superoxide dismutase activity. Furthermore, treatment with CoCl2 increased the cleavage of caspase‑9, caspase‑3 and apoptosis regulator BAX, and reduced apoptosis regulator Bcl‑2 in H9C2 cells, as measured by reverse transcription‑quantitative polymerase chain reaction and western blotting, which were significantly reversed by co‑treatment with α‑MG (0.06 and 0.3 mM). In conclusion, these results demonstrated that α‑MG protects H9C2 cells against CoCl2‑induced hypoxic injury, indicating that α‑MG is a potential therapeutic agent for cardiac hypoxic injury.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wanjun Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanli Luo
- International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
14
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
15
|
Lu D, Liu J, Jiao J, Long B, Li Q, Tan W, Li P. Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem 2013; 288:8491-8504. [PMID: 23382383 DOI: 10.1074/jbc.m112.442061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis can occur in the myocardium under a variety of pathological conditions, including myocardial infarction and heart failure. The forkhead family of transcription factor Foxo3a plays a pivotal role in apoptosis; however, its role in regulating cardiac apoptosis remains to be fully elucidated. We showed that enforced expression of Foxo3a inhibits cardiomyocyte apoptosis, whereas knockdown of endogenous Foxo3a sensitizes cardiomyocytes to undergo apoptosis. The apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein. Here, we demonstrate that it attenuates the release of calcium from the sarcoplasmic reticulum and inhibits calcium elevations in the cytoplasm and mitochondria provoked by oxidative stress in cardiomyocytes. Furthermore, Foxo3a is shown to maintain cytoplasmic and mitochondrial calcium homeostasis through ARC. We observed that Foxo3a knock-out mice exhibited enlarged myocardial infarction sizes upon ischemia/reperfusion, and ARC transgenic mice demonstrated reduced myocardial infarction and balanced calcium levels in mitochondria and sarcoplasmic reticulum. Moreover, we showed that Foxo3a activates ARC expression by directly binding to its promoter. This study reveals that Foxo3a maintains calcium homeostasis and inhibits cardiac apoptosis through trans-activation of the ARC promoter. These findings provided novel evidence that Foxo3a and ARC constitute an anti-apoptotic pathway that regulates calcium homeostasis in the heart.
Collapse
Affiliation(s)
- Daoyuan Lu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinping Liu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianqin Jiao
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Long
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Tan
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifeng Li
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612.
| |
Collapse
|
16
|
Nakamura Y, Asakura Y, Piras BA, Hirai H, Tastad CT, Verma M, Christ AJ, Zhang J, Yamazaki T, Yoshiyama M, Asakura A. Increased angiogenesis and improved left ventricular function after transplantation of myoblasts lacking the MyoD gene into infarcted myocardium. PLoS One 2012; 7:e41736. [PMID: 22848585 PMCID: PMC3404994 DOI: 10.1371/journal.pone.0041736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/28/2012] [Indexed: 01/05/2023] Open
Abstract
Skeletal myoblast transplantation has therapeutic potential for repairing damaged heart. However, the optimal conditions for this transplantation are still unclear. Recently, we demonstrated that satellite cell-derived myoblasts lacking the MyoD gene (MyoD(-/-)), a master transcription factor for skeletal muscle myogenesis, display increased survival and engraftment compared to wild-type controls following transplantation into murine skeletal muscle. In this study, we compare cell survival between wild-type and MyoD(-/-) myoblasts after transplantation into infarcted heart. We demonstrate that MyoD(-/-) myoblasts display greater resistance to hypoxia, engraft with higher efficacy, and show a larger improvement in ejection fraction than wild-type controls. Following transplantation, the majority of MyoD(-/-) and wild-type myoblasts form skeletal muscle fibers while cardiomyocytes do not. Importantly, the transplantation of MyoD(-/-) myoblasts induces a high degree of angiogenesis in the area of injury. DNA microarray data demonstrate that paracrine angiogenic factors, such as stromal cell-derived factor-1 (SDF-1) and placental growth factor (PlGF), are up-regulated in MyoD(-/-) myoblasts. In addition, over-expression and gene knockdown experiments demonstrate that MyoD negatively regulates gene expression of these angiogenic factors. These results indicate that MyoD(-/-) myoblasts impart beneficial effects after transplantation into an infarcted heart, potentially due to the secretion of paracrine angiogenic factors and enhanced angiogenesis in the area of injury. Therefore, our data provide evidence that a genetically engineered myoblast cell type with suppressed MyoD function is useful for therapeutic stem cell transplantation.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Cardiovascular Division Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Internal Medicine and Cardiology, Osaka City University Medical School, Osaka, Japan
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Bryan A. Piras
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Hiroyuki Hirai
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Christopher T. Tastad
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Mayank Verma
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Amanda J. Christ
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jianyi Zhang
- Cardiovascular Division Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Takanori Yamazaki
- Department of Internal Medicine and Cardiology, Osaka City University Medical School, Osaka, Japan
| | - Minoru Yoshiyama
- Department of Internal Medicine and Cardiology, Osaka City University Medical School, Osaka, Japan
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
17
|
Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 2012; 32:1552-62. [PMID: 22596221 DOI: 10.1161/atvbaha.111.224915] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The major cardiac syndromes, myocardial infarction and heart failure, are responsible for a large portion of deaths worldwide. Genetic and pharmacological manipulations indicate that cell death is an important component in the pathogenesis of both diseases. Cells die primarily by apoptosis or necrosis, and autophagy has been associated with cell death. Apoptosis has long been recognized as a highly regulated process. Recent data indicate that a significant subset of necrotic deaths is also programmed. In the review, we discuss the molecular mechanisms that underlie these forms of cell death and their interconnections. The possibility is raised that small molecules aimed at inhibiting cell death may provide novel therapies for these common and lethal heart syndromes.
Collapse
|
18
|
Ludwig-Galezowska AH, Flanagan L, Rehm M. Apoptosis repressor with caspase recruitment domain, a multifunctional modulator of cell death. J Cell Mol Med 2011; 15:1044-53. [PMID: 21129150 PMCID: PMC3822617 DOI: 10.1111/j.1582-4934.2010.01221.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional inhibitor of apoptosis that is physiologically expressed predominantly in post-mitotic cells such as cardiomyocytes, skeletal muscle cells and neurons. ARC was also found to be up-regulated in many forms of malignant tumours. ARC impairs the cellular apoptotic responsiveness to a wide range of stresses and insults, including extrinsic apoptosis initiation via death receptor ligands, dysregulation of cellular Ca2+ homeostasis and endoplasmatic reticulum (ER) stress, genotoxic drugs, ionizing radiation, oxidative stress and hypoxia. ARC is subject to both transcriptional and post-translational regulation and exhibits its function through a multitude of molecular interactions with upstream transducers of apoptosis signals. This review summarizes, structures and comments on the published knowledge regarding ARC and its roles in modulating apoptotic cell death responsiveness in physiological and pathophysiological contexts.
Collapse
|
19
|
Zhang J, Xie Y, Xu Y, Pan Y, Shao C. Hydrogen sulfide contributes to hypoxia-induced radioresistance on hepatoma cells. JOURNAL OF RADIATION RESEARCH 2011; 52:622-628. [PMID: 21952317 DOI: 10.1269/jrr.11004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Growing evidence has demonstrated that, as an endogenous signaling gasotransmitter, hydrogen sulfide (H(2)S) plays an important role in regulating numerous biological functions. The role of H(2)S in hypoxia-induced radioresistance on hepatoma cells was investigated in the present work. Results showed that, when HepG2 cells were maintained in hypoxia circumstances for 4 h, the cellular radioresistance was extensively increased so that the oxygen enhancement ratio of the survival fraction approached 2.68. Under this hypoxic condition, when the cells were treated with DL-propargylglycine (PPG) and aminooxyacetic acid (AOAA), a specific inhibitor of H(2)S synthase of cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) respectively, radiation responses including cell killing, micronuclei (MN) formation, and caspase-3 activity were significantly enhanced. However, treatment of cells with low concentrations of NaHS (≤ 100 µM) protected cells from these radiation damages. Western bolting assay showed that CSE and CBS were over-expressed in the irradiated hypoxic cells in a dose dependent manner. Moreover, when the hypoxic HepG2 cells were treated with NaHS together with glibenclamide, a specific inhibitor of K(+)(ATP) channels, the role of exogenous H(2)S in radioprotection was partly eliminated. This study demonstrated that H(2)S contributed to hypoxia-induced radioresistance probably via the opening of K(+)(ATP) channels, which suggests that the endogenous H(2)S synthase could be a potential radiotherapeutic target for a hypoxic tumor.
Collapse
Affiliation(s)
- Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
20
|
Abstract
Apoptosis is a tightly regulated, cell deletion process that plays an important role in various cardiovascular diseases, such as myocardial infarction, reperfusion injury, and heart failure. Since cardiomyocyte loss is the most important determinant of patient morbidity and mortality, fully understanding the regulatory mechanisms of apoptotic signaling is crucial. In fact, the inhibition of cardiac apoptosis holds promise as an effective therapeutic strategy for cardiovascular diseases. Caspase, a critical enzyme in the induction and execution of apoptosis, has been the main potential target for achieving anti-apoptotic therapy. Studies suggest, however, that a caspase-independent pathway may also play an important role in cardiac apoptosis, although the mechanism and potential significance of caspase-independent apoptosis in the heart remain poorly understood. Herein we discuss the role of apoptosis in various cardiovascular diseases, provide an update on current knowledge about the molecular mechanisms that govern apoptosis, and discuss the clinical implications of anti-apoptotic therapies.
Collapse
Affiliation(s)
- Nam-Ho Kim
- Division of Cardiology, Department of Internal Medicine, Wonkwang University Medical School, Iksan, Korea
| | | |
Collapse
|
21
|
Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72:19-44. [PMID: 20148665 DOI: 10.1146/annurev.physiol.010908.163111] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell death was once viewed as unregulated. It is now clear that at least a portion of cell death is a regulated cell suicide process. This type of death can exhibit multiple morphologies. One of these, apoptosis, has long been recognized to be actively mediated, and many of its underlying mechanisms have been elucidated. Moreover, necrosis, the traditional example of unregulated cell death, is also regulated in some instances. Autophagy is usually a survival mechanism but can occur in association with cell death. Little is known, however, about how autophagic cells die. Apoptosis, necrosis, and autophagy occur in cardiac myocytes during myocardial infarction, ischemia/reperfusion, and heart failure. Pharmacological and genetic inhibition of apoptosis and necrosis lessens infarct size and improves cardiac function in these disorders. The roles of autophagy in ischemia/reperfusion and heart failure are unresolved. A better understanding of these processes and their interrelationships may allow for the development of novel therapies for the major heart syndromes.
Collapse
Affiliation(s)
- Russell S Whelan
- Wilf Family Cardiovascular Research Institute and the Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
22
|
Abstract
The emergence of mitochondria as critical regulators of cardiac myocyte survival and death has revolutionized the field of cardiac biology. Indeed, it is now well recognized that mitochondrial dysfunction plays a crucial role in the pathogenesis of multiple cardiac diseases. A panoply of mitochondrial proteins/complexes ranging from canonical apoptosis proteins such as Bcl2 and Bax, through the mitochondrial permeability transition pore, to ion channels such as mitochondrial K(ATP) channels and connexin-43 have now been implicated as critical regulators of cardiac cell death. The purpose of this review, therefore, is to focus on these mitochondrial mediators/inhibitors of cell death and to address the specific mechanisms that underlie their ability to influence cardiac pathology.
Collapse
Affiliation(s)
- Christopher P Baines
- The Dalton Cardiovascular Research Center, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
23
|
Andringa KK, King AL, Eccleston HB, Mantena SK, Landar A, Jhala NC, Dickinson DA, Squadrito GL, Bailey SM. Analysis of the liver mitochondrial proteome in response to ethanol and S-adenosylmethionine treatments: novel molecular targets of disease and hepatoprotection. Am J Physiol Gastrointest Liver Physiol 2010; 298:G732-45. [PMID: 20150243 PMCID: PMC2867419 DOI: 10.1152/ajpgi.00332.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 02/08/2010] [Indexed: 01/31/2023]
Abstract
S-adenosylmethionine (SAM) minimizes alcohol hepatotoxicity; however, the molecular mechanisms responsible for SAM hepatoprotection remain unknown. Herein, we use proteomics to determine whether the hepatoprotective action of SAM against early-stage alcoholic liver disease is linked to alterations in the mitochondrial proteome. For this, male rats were fed control or ethanol-containing liquid diets +/- SAM and liver mitochondria were prepared for proteomic analysis. Two-dimensional isoelectric focusing (2D IEF/SDS-PAGE) and blue native gel electrophoresis (BN-PAGE) were used to determine changes in matrix and oxidative phosphorylation (OxPhos) proteins, respectively. SAM coadministration minimized alcohol-dependent inflammation and preserved mitochondrial respiration. SAM supplementation preserved liver SAM levels in ethanol-fed rats; however, mitochondrial SAM levels were increased by ethanol and SAM treatments. With use of 2D IEF/SDS-PAGE, 30 proteins showed significant changes in abundance in response to ethanol, SAM, or both. Classes of proteins affected by ethanol and SAM treatments were chaperones, beta oxidation proteins, sulfur metabolism proteins, and dehydrogenase enzymes involved in methionine, glycine, and choline metabolism. BN-PAGE revealed novel changes in the levels of 19 OxPhos proteins in response to ethanol, SAM, or both. Ethanol- and SAM-dependent alterations in the proteome were not linked to corresponding changes in gene expression. In conclusion, ethanol and SAM treatment led to multiple changes in the liver mitochondrial proteome. The protective effects of SAM against alcohol toxicity are mediated, in part, through maintenance of proteins involved in key mitochondrial energy conserving and biosynthetic pathways. This study demonstrates that SAM may be a promising candidate for treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Kelly K Andringa
- Dept. of Environmental Health Sciences, Univ. of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Ge X, Liu X. The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 2009; 14:164-72. [PMID: 19130235 DOI: 10.1007/s10495-008-0296-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Postconditioning protects the heart against ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. However, the molecular mechanism by which postconditioning suppresses apoptosis remains to be fully understood. Apoptosis repressor with caspase recruitment domain (ARC) has been demonstrated to possess the ability to protect cardiomyocytes from apoptosis induced by ischemia/reperfusion. It is not yet clear as to whether ARC contributes to the inhibitory effect of postconditioning against cardiomyocyte apoptosis. METHODS The cultured cardiomyocytes from 1-day old male Sprague-Dawley rats were exposed to 3 h hypoxia followed by 3 h of reoxygenation. Cells were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia before 3 h of reoxygenation. RESULTS Hypoxia/reoxygenation led to a decrease of endogenous ARC protein levels. In contrast, postconditioning could block the reduction of endogenous ARC protein levels. Interestingly, inhibition of endogenous ARC expression by ARC antisense oligodeoxynucleotides reduced the inhibitory effect of postconditioning against apoptosis. Furthermore, our data showed that postconditioning suppressed the loss of mitochondrial membrane potential, Bax activation and the release of mitochondrial cytochrome c to cytosol. However, these inhibitory effects of postconditioning disappeared upon knockdown of endogenous ARC. CONCLUSION Our data for the first time demonstrate that ARC plays an essential role in mediating the cardioprotective effect of postconditioning against apoptosis initiated by the mitochondrial pathway.
Collapse
Affiliation(s)
- YuZhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, Chinese PLA General Hospital, 100853 Beijing, China.
| | | | | |
Collapse
|