1
|
Lakshmaiah Narayana J, Mechesso AF, Rather IIG, Zarena D, Luo J, Xie J, Wang G. Origami of KR-12 Designed Antimicrobial Peptides and Their Potential Applications. Antibiotics (Basel) 2024; 13:816. [PMID: 39334990 PMCID: PMC11429261 DOI: 10.3390/antibiotics13090816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This review describes the discovery, structure, activity, engineered constructs, and applications of KR-12, the smallest antibacterial peptide of human cathelicidin LL-37, the production of which can be induced under sunlight or by vitamin D. It is a moonlighting peptide that shows both antimicrobial and immune-regulatory effects. Compared to LL-37, KR-12 is extremely appealing due to its small size, lack of toxicity, and narrow-spectrum antimicrobial activity. Consequently, various KR-12 peptides have been engineered to tune peptide activity and stability via amino acid substitution, end capping, hybridization, conjugation, sidechain stapling, and backbone macrocyclization. We also mention recently discovered peptides KR-8 and RIK-10 that are shorter than KR-12. Nano-formulation provides an avenue to targeted delivery, controlled release, and increased bioavailability. In addition, KR-12 has been covalently immobilized on biomaterials/medical implants to prevent biofilm formation. These constructs with enhanced potency and stability are demonstrated to eradicate drug-resistant pathogens, disrupt preformed biofilms, neutralize endotoxins, and regulate host immune responses. Also highlighted are the safety and efficacy of these peptides in various topical and systemic animal models. Finaly, we summarize the achievements and discuss future developments of KR-12 peptides as cosmetic preservatives, novel antibiotics, anti-inflammatory peptides, and microbiota-restoring agents.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore 560078, India
| | - Abraham Fikru Mechesso
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imran Ibni Gani Rather
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - D Zarena
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
- College of Engineering, Jawaharlal Nehru Technological University, Anantapur 515002, India
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
3
|
Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics 2024; 16:1098. [PMID: 39204443 PMCID: PMC11360180 DOI: 10.3390/pharmaceutics16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antibiotic resistance poses a serious threat to public health globally, reducing the effectiveness of conventional antibiotics in treating bacterial infections. ESKAPE pathogens are a group of highly transmissible bacteria that mainly contribute to the spread of antibiotic resistance and cause significant morbidity and mortality in humans. Phylloseptins, a class of antimicrobial peptides (AMPs) derived from Phyllomedusidae frogs, have been proven to have antimicrobial activity via membrane interaction. However, their relatively high cytotoxicity and low stability limit the clinical development of these AMPs. This project aims to study the antimicrobial activity and mechanisms of a phylloseptin-like peptide, phylloseptin-TO2 (PSTO2), following rational amino acid modification. Here, PSTO2 (FLSLIPHAISAVSALAKHL-NH2), identified from the skin secretion of Phyllomedusa tomopterna, was used as the template for modification to enhance antimicrobial activity. Adding positive charges to PSTO2 through substitution with L-lysines enhanced the interaction of the peptides with cell membranes and improved their antimicrobial efficacy. The analogues SRD7 and SR2D10, which incorporated D-lysines, demonstrated significant antimicrobial effects against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) while also showing reduced haemolytic activity and cytotoxicity, resulting in a higher therapeutic index. Additionally, SRD7, modified with D-lysines, exhibited notable anti-proliferative properties against human lung cancer cell lines, including H838 and H460. This study thus provides a potential development model for new antibacterial and anti-cancer drugs combating antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (W.Y.); (J.Y.); (X.L.); (C.M.); (Y.J.); (T.W.); (T.C.); (C.S.); (M.Z.); (L.W.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Pennone V, Angelini E, Sarlah D, Lovati AB. Antimicrobial Properties and Cytotoxicity of LL-37-Derived Synthetic Peptides to Treat Orthopedic Infections. Antibiotics (Basel) 2024; 13:764. [PMID: 39200064 PMCID: PMC11350787 DOI: 10.3390/antibiotics13080764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Open fractures and prosthetic joints are prone to bacterial infections, especially those involving biofilms, and are worsened by antibiotic inefficacy and resistance. This highlights the need for targeted treatments against orthopedic infections. LL-37, a human cathelicidin, is known for its antimicrobial properties. This study aimed to synthesize and evaluate LL-37-derived antimicrobial peptides (AMPs) for antibacterial efficacy and toxicity. Several truncated LL-37 analogues were created and tested against 18 bacterial strains, both ATCC and orthopedic clinical isolates, using MIC and MBC assays. Synergy with antibiotics and resistance development were also analyzed, alongside cytotoxicity on NIH-3T3 fibroblasts and hemolytic activity assessments. Six AMPs were synthesized, with FK-16 and GF-17 emerging as the most effective. The MIC values ranged from 4.69 to 18.75 µg/mL and 2.34 to 18.75 µg/mL, respectively, against S. epidermidis and S. aureus, with the MBC values matching the MIC values. Cytotoxicity tests showed no toxicity at concentrations below 75 µg/mL for GF-17 and 150 µg/mL for FK-16. Hemolytic activity was below 1% at 18.75 µg/mL for GF-17 and 75 µg/mL for FK-16. These AMPs showed no synergistic effects with antibiotics and no resistance development. FK-16 and GF-17 effectively removed biofilms, particularly against S. epidermidis. Incorporating these AMPs into surgical materials (hydrogels, cements, etc.) could enhance infection control in orthopedic procedures, warranting further in vivo studies.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Elisa Angelini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (E.A.); (D.S.)
| | - David Sarlah
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (E.A.); (D.S.)
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| |
Collapse
|
5
|
van Teijlingen A, Edwards DC, Hu L, Lilienkampf A, Cockroft SL, Tuttle T. An active machine learning discovery platform for membrane-disrupting and pore-forming peptides. Phys Chem Chem Phys 2024; 26:17745-17752. [PMID: 38873737 PMCID: PMC11202314 DOI: 10.1039/d4cp01404a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Membrane-disrupting and pore-forming peptides (PFPs) play a substantial role in bionanotechnology and can determine the life and death of cells. The control of chemical and ion transport through cell membranes is essential to maintaining concentration gradients. Likewise, the delivery of drugs and intracellular proteins aided by pore-forming agents is of interest in treating malfunctioning cells. Known PFPs tend to be up to 50 residues in length, which is commensurate with the thickness of a lipid bilayer. Accordingly, few short PFPs are known. Here we show that the discovery of PFPs can be accelerated via an active machine learning approach. The approach identified 71 potential PFPs from the 25.6 billion octapeptide sequence space; 13 sequences were tested experimentally, and all were found to have the predicted membrane-disrupting ability, with 1 forming highly stable pores. Experimental verification of the predicted pore-forming ability demonstrated that a range of short peptides can form pores in membranes, while the positioning and characteristics of residues that favour pore-forming behaviour were identified. This approach identified more ultrashort (8-residues, unmodified, non-cyclic) PFPs than previously known. We anticipate our findings and methodology will be useful in discovering new pore-forming and membrane-disrupting peptides for a range of applications from nanoreactors to therapeutics.
Collapse
Affiliation(s)
- Alexander van Teijlingen
- 1Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Daniel C Edwards
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Liao Hu
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Tell Tuttle
- 1Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| |
Collapse
|
6
|
Brzeski J, Wyrzykowski D, Makowska J. Application of a modern theoretical approach to the study of the interaction of KR-12 peptides derived from human cathelicidins with Cu(II) ions. Dalton Trans 2024; 53:9942-9951. [PMID: 38809157 DOI: 10.1039/d4dt01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The human cationic antimicrobial protein (hCAP) corresponding to the overlapping sequences of 151-162 of hCAP named KR-12 peptide is the smallest portion of the only type of human Cathelicidin, which has been shown to be modifiable into a more effective antimicrobial. In this study, an in silico analysis, supported by potentiometric titration and isothermal titration calorimetry techniques, was performed to identify potential Cu(II) binding sites of KR-12. The analysis of the presented data at the given theoretical level (GFN2-xTB/ALPB) revealed which peptide chain fragments are involved in the most favourable KR-12-Cu(II) binding mode. Based on a quantum chemical approach, the most favourable coordination modes of Cu(II) to peptides are proposed together with the discussion of the chemical nature of the interactions. The presented results demonstrated that KR-12 interacts with metal ions mostly via the main chain's oxygen atoms; however, the two types of amino acids that are expected to be vital for the interaction of Cu(II) are D (aspartic acid) and R29 (arginine). It was demonstrated that in order to explain the complexity of the interaction process in peptide-metal ion systems, the use of theoretical methods is sometimes necessary to explain the details of the experimental results and provide an in-depth understanding of these dynamic systems.
Collapse
Affiliation(s)
- Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Joanna Makowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
7
|
Zielke C, Nielsen JE, Lin JS, Barron AE. Between good and evil: Complexation of the human cathelicidin LL-37 with nucleic acids. Biophys J 2024; 123:1316-1328. [PMID: 37919905 PMCID: PMC11163296 DOI: 10.1016/j.bpj.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
The innate immune system provides a crucial first line of defense against invading pathogens attacking the body. As the only member of the human cathelicidin family, the antimicrobial peptide LL-37 has been shown to have antiviral, antifungal, and antibacterial properties. In complexation with nucleic acids, LL-37 is suggested to maintain its beneficial health effects while also acting as a condensation agent for the nucleic acid. Complexes formed by LL-37 and nucleic acids have been shown to be immunostimulatory with a positive impact on the human innate immune system. However, some studies also suggest that in some circumstances, LL-37/nucleic acid complexes may be a contributing factor to autoimmune disorders such as psoriasis and systemic lupus erythematosus. This review provides a comprehensive discussion of research highlighting the beneficial health effects of LL-37/nucleic acid complexes, as well as discussing observed detrimental effects. We will emphasize why it is important to investigate and elucidate structural characteristics, such as condensation patterns of nucleic acids within complexation, and their mechanisms of action, to shed light on the intricate physiological effects of LL-37 and the seemingly contradictory role of LL-37/nucleic acid complexes in the innate immune response.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Schools of Medicine and of Engineering, Stanford, California.
| |
Collapse
|
8
|
Rice A, Prasad S, Brooks BR, Pastor RW. Simulating asymmetric membranes using P2 1 periodic boundary conditions. Methods Enzymol 2024; 701:309-358. [PMID: 39025575 DOI: 10.1016/bs.mie.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Molecular dynamics (MD) simulations of symmetric lipid bilayers are now well established, while those of asymmetric ones are considerably less developed. This disjunction arises in part because the surface tensions of leaflets in asymmetric bilayers can differ (unlike those of symmetric ones), and there is no simple way to determine them without assumptions. This chapter describes the use of P21 periodic boundary conditions (PBC), which allow lipids to switch leaflets, to generate asymmetric bilayers under the assumption of equal chemical potentials of lipids in opposing leaflets. A series of examples, ranging from bilayers with one lipid type to those with peptides and proteins, provides a guide for the use of P21 PBC. Critical properties of asymmetric membranes, such as spontaneous curvature, are highly sensitive to differences in the leaflet surface tensions (or differential stress), and equilibration with P21 PBC substantially reduces differential stress of asymmetric bilayers assembled with surface area-based methods. Limitations of the method are discussed. Technically, the nonstandard unit cell is difficult to parallelize and to incorporate restraints. Inherently, the assumption of equal chemical potentials, and therefore the method itself, is not applicable to all target systems. Despite these limitations, it is argued that P21 simulations should be considered when designing equilibration protocols for MD studies of most asymmetric membranes.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Samarjeet Prasad
- Laboratory of Computational Biology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
9
|
Kozuka Y, Masuda T, Isu N, Takai M. Antimicrobial Peptide Assembly on Zwitterionic Polymer Films to Slow Down Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7029-7037. [PMID: 38520398 DOI: 10.1021/acs.langmuir.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Formation of biofilms on equipment used in various fields, such as medicine, domestic sanitation, and marine transportation, can cause serious problems. The use of antibiofouling and bactericidal modifications is a promising strategy for inhibiting bacterial adhesion and biofilm formation. To further enhance the antibiofilm properties of a surface, various combinations of bactericidal modifications alongside antibiofouling modifications have been developed. Optimization of the arrangements of antimicrobial peptides on the antibiofouling surface would allow us to design longer-life antibiofilm surface modifications. In this study, a postmodification was conducted with different design using the antimicrobial peptide KR12 on an antibiofouling copolymer film consisting of 2-methacryloyloxyethyl phosphorylcholine, 3-methacryloxypropyl trimethoxysilane, and 3-(methacryloyloxy) propyl-tris(trimethylsilyloxy) silane. The distance of KR12 from the film was adjusted by combining different lengths of poly(ethylene glycol) (PEG) spacers (molecular weights are 2000 and 5000). The density of KR12 was ranged from 0.06 to 0.22 nm-2. When these modified surfaces were exposed to a nutrient-rich TSB suspension, the bacterial area formed by E. coli covered 5-127% of the original copolymer film. We found that a significant distance between the bactericidal and antibiofouling modifications, along with a higher density of bactericidal modifications, slows down the biofilm formation.
Collapse
Affiliation(s)
- Yuta Kozuka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Norifumi Isu
- LIXIL Corporation, 2-1-1 Ojima, Koto-ku, 136-8535 Tokyo, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
10
|
Tsai CT, Lin CW, Ye GL, Wu SC, Yao P, Lin CT, Wan L, Tsai HHG. Accelerating Antimicrobial Peptide Discovery for WHO Priority Pathogens through Predictive and Interpretable Machine Learning Models. ACS OMEGA 2024; 9:9357-9374. [PMID: 38434814 PMCID: PMC10905719 DOI: 10.1021/acsomega.3c08676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
The escalating menace of multidrug-resistant (MDR) pathogens necessitates a paradigm shift from conventional antibiotics to innovative alternatives. Antimicrobial peptides (AMPs) emerge as a compelling contender in this arena. Employing in silico methodologies, we can usher in a new era of AMP discovery, streamlining the identification process from vast candidate sequences, thereby optimizing laboratory screening expenditures. Here, we unveil cutting-edge machine learning (ML) models that are both predictive and interpretable, tailored for the identification of potent AMPs targeting World Health Organization's (WHO) high-priority pathogens. Furthermore, we have developed ML models that consider the hemolysis of human erythrocytes, emphasizing their therapeutic potential. Anchored in the nuanced physical-chemical attributes gleaned from the three-dimensional (3D) helical conformations of AMPs, our optimized models have demonstrated commendable performance-boasting an accuracy exceeding 75% when evaluated against both low-sequence-identified peptides and recently unveiled AMPs. As a testament to their efficacy, we deployed these models to prioritize peptide sequences stemming from PEM-2 and subsequently probed the bioactivity of our algorithm-predicted peptides vis-à-vis WHO's priority pathogens. Intriguingly, several of these new AMPs outperformed the native PEM-2 in their antimicrobial prowess, thereby underscoring the robustness of our modeling approach. To elucidate ML model outcomes, we probe via Shapley Additive exPlanations (SHAP) values, uncovering intricate mechanisms guiding diverse actions against bacteria. Our state-of-the-art predictive models expedite the design of new AMPs, offering a robust countermeasure to antibiotic resistance. Our prediction tool is available to the public at https://ai-meta.chem.ncu.edu.tw/amp-meta.
Collapse
Affiliation(s)
- Cheng-Ting Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Chia-Wei Lin
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Gen-Lin Ye
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Shao-Chi Wu
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Philip Yao
- Aurora
High School, 109 W Pioneer Trail, Aurora, Ohio 44202, United States
| | - Ching-Ting Lin
- School
of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Lei Wan
- School
of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hui-Hsu Gavin Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
- Research
Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
11
|
Zhang P, Zhang W, Sun W, Xu J, Hu H, Wang L, Wong L. Identification of gene biomarkers for brain diseases via multi-network topological semantics extraction and graph convolutional network. BMC Genomics 2024; 25:175. [PMID: 38350848 PMCID: PMC10865627 DOI: 10.1186/s12864-024-09967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Brain diseases pose a significant threat to human health, and various network-based methods have been proposed for identifying gene biomarkers associated with these diseases. However, the brain is a complex system, and extracting topological semantics from different brain networks is necessary yet challenging to identify pathogenic genes for brain diseases. RESULTS In this study, we present a multi-network representation learning framework called M-GBBD for the identification of gene biomarker in brain diseases. Specifically, we collected multi-omics data to construct eleven networks from different perspectives. M-GBBD extracts the spatial distributions of features from these networks and iteratively optimizes them using Kullback-Leibler divergence to fuse the networks into a common semantic space that represents the gene network for the brain. Subsequently, a graph consisting of both gene and large-scale disease proximity networks learns representations through graph convolution techniques and predicts whether a gene is associated which brain diseases while providing associated scores. Experimental results demonstrate that M-GBBD outperforms several baseline methods. Furthermore, our analysis supported by bioinformatics revealed CAMP as a significantly associated gene with Alzheimer's disease identified by M-GBBD. CONCLUSION Collectively, M-GBBD provides valuable insights into identifying gene biomarkers for brain diseases and serves as a promising framework for brain networks representation learning.
Collapse
Affiliation(s)
- Ping Zhang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430074, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Hu
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China.
| | - Lei Wang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China.
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Leon Wong
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
12
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024. [PMID: 38265172 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Lei R, Yang C, Sun Y, Li D, Hao L, Li Y, Wu S, Li H, Lan C, Fang X. Turning cationic antimicrobial peptide KR-12 into self-assembled nanobiotics with potent bacterial killing and LPS neutralizing activities. NANOSCALE 2024; 16:887-902. [PMID: 38105768 DOI: 10.1039/d3nr05174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gram-negative sepsis has become a substantial and escalating global healthcare challenge due to the growing antibiotic resistance crisis and the sluggish development of new antibiotics. LL-37, a unique Cathelicidin species found in humans, exhibits a wide range of bioactive properties, including direct bactericidal effects, inflammation regulation, and LPS neutralization. KR-12, the smallest yet potent peptide fragment of LL-37, has been modified to create more effective antimicrobials. In this study, we designed two myristoylated derivatives of KR-12, referred to as Myr-KR-12N and Myr-KR-12C. These derivatives displayed remarkable ability to spontaneously assemble into nanoparticles when mixed with deionized water. Myristoylated KR-12 derivatives exhibited broad-spectrum and intensified bactericidal activity by disrupting bacterial cell membranes. In particular, Myr-KR-12N showed superior capability to rescue mice from lethal E. coli-induced sepsis in comparison with the conventional antibiotic meropenem. We also confirmed that the myristoylated KR-12 nanobiotic possesses significant LPS binding capacity and effectively reduces inflammation in vitro. In an in vivo context, Myr-KR-12N outperformed polymyxin B in rescuing mice from LPS-induced sepsis. Crucially, toxicological assessments revealed that neither Myr-KR-12N nor Myr-KR-12C nanobiotics induced meaningful hemolysis or caused damage to the liver and kidneys. Collectively, our study has yielded an innovative nanobiotic with dual capabilities of bactericidal action and LPS-neutralization, offering substantial promise for advancing the clinical translation of antimicrobial peptides and the development of novel antibiotics. This addresses the critical need for effective solutions to combat Gram-negative sepsis, a pressing global medical challenge.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chujun Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yaqi Sun
- China National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dejian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Liman Hao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yang Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Shuijing Wu
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Hui Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
14
|
Memariani M, Memariani H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 2023; 40:34. [PMID: 38057654 DOI: 10.1007/s11274-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Mechesso AF, Su Y, Xie J, Wang G. Enhanced Antimicrobial Screening Sensitivity Enabled the Identification of an Ultrashort Peptide KR-8 for Engineering of LL-37mini to Combat Drug-Resistant Pathogens. ACS Infect Dis 2023; 9:2215-2225. [PMID: 37812567 DOI: 10.1021/acsinfecdis.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Identification of novel antibiotics is of top importance because of the threat of antibiotic-resistant pathogens. Antimicrobial screening in Mueller-Hinton broth is frequently the first step in antimicrobial discovery. Although widely utilized, this medium is not ideal as it could mask activity of candidates such as human cathelicidin LL-37 against methicillin-resistant Staphylococcus aureus (MRSA). This study identified a sensitive medium where LL-37 displayed excellent activity against numerous pathogens, including MRSA. Our screen of ultrashort overlapping LL-37 peptides in this medium led to the identification of KR-8, four residues shorter than KR-12. Hence, our screen condition may increase positive compound hits during antimicrobial screening. KR-8 provided an appealing template for us to design LL-37mini, which was potent against MRSA, Escherichia coli, and Pseudomonas aeruginosa but not toxic to mammalian cells. LL-37mini also inhibited bacterial attachment and biofilm formation and disrupted preformed biofilms in vitro and killed MRSA in murine wound biofilms in vivo. Consistent with membrane targeting, MRSA failed to develop resistance to LL-37mini in a multiple-passage experiment. Because LL-37mini can be made cost effectively, it can be developed into new antibiofilm and antimicrobial agents.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
16
|
Kalimuthu S, Pudipeddi A, Braś G, Tanner JA, Rapala-Kozik M, Leung YY, Neelakantan P. A heptadeca amino acid peptide subunit of cathelicidin LL-37 has previously unreported antifungal activity. APMIS 2023; 131:584-600. [PMID: 37150907 DOI: 10.1111/apm.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Yeasts such as Candida albicans, albeit being ubiquitous members of the skin, oral and vaginal microbiome, can cause superficial to life-threatening infections. Human cathelicidin LL-37-based peptides have antibacterial activity and yet, their antifungal activity remains to be thoroughly characterized. The aim of this study was to comprehensively investigate the activity of LL-37-based peptides against C. albicans. LL-37 and its derivatives were tested for their ability to kill C. albicans planktonic cells in the presence of various biological matrices (serum, plasma, saliva and urine), that have been reported to inactivate peptides. The antibiofilm activity, resistance development and biocompatibility were investigated for the lead peptide. GK-17, a 17 amino acid peptide, showed remarkable stability to fungal aspartyl proteases and rapidly killed planktonic C. albicans despite the presence of biological matrices. GK-17 also inhibited adhesion to biotic and abiotic substrates, inhibited biofilm formation and eradicated preformed biofilms in the presence of biological matrices. Compared to nystatin, GK-17 had a lower propensity to allow for resistance development by C. albicans. The peptide showed concentration-dependent biocompatibility to red blood cells, with only 30% hemolysis even at 4× the fungicidal concentration. Taken together, GK-17 is a novel antifungal peptide with promising effects against C. albicans.
Collapse
Affiliation(s)
- Shanthini Kalimuthu
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Akhila Pudipeddi
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Grażyna Braś
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Julian A Tanner
- School of Biomedical Sciences, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | | |
Collapse
|
17
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Mourenza A, Ganesan R, Camarero JA. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. RSC Chem Biol 2023; 4:722-735. [PMID: 37799576 PMCID: PMC10549238 DOI: 10.1039/d3cb00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 10/07/2023] Open
Abstract
The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs. Many of these novel peptide scaffolds have been shown to have a high tolerance to sequence variability in those residues not involved in disulfide bonds, able to cross biological membranes, and efficiently target complex biomolecular interactions. Hence, these unique properties make the use of these scaffolds ideal for many biotechnological applications, including the design of novel peptide antibiotics. This article provides an overview of the new developments in the use of several disulfide-rich cyclic polypeptides, including cyclotides, θ-defensins, and sunflower trypsin inhibitor peptides, among others, in the development of novel antimicrobial peptides against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alvaro Mourenza
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Rajasekaran Ganesan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy Los Angeles CA90033 USA +1-(323) 442-1417
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Los Angeles CA90033 USA
| |
Collapse
|
19
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
20
|
Mitra A, Paul S. Pathways of hLL-37 17-29 Aggregation Give Insight into the Mechanism of α-Amyloid Formation. J Phys Chem B 2023; 127:8162-8175. [PMID: 37707359 DOI: 10.1021/acs.jpcb.3c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
α-amyloids present a novel self-assembly principle that can be utilized to prepare functional biomaterials. Evidence of α-amyloid formation in the active core of the human LL-37 protein (comprising residues 17 to 29) was associated with this peptide's membranolytic property. Though mechanistic pathways of β-amyloid formation are known, such studies are scarce in α-amyloids. Modern computational techniques allow such mechanistic studies in molecular detail. Here, we propose aggregation pathways in hLL-3717-29 through molecular dynamics simulations. We first identified oligomers among peptides based on a distance criterion. The distribution of oligomers was then used to build Markov state models from which pathways were obtained using the framework of transition path theory. We checked the structural stability of the peptides during oligomerization, which is crucial from their functional point of view. We also investigated the key residues that participate in oligomer formation, the interactions between them, and the effect of residue mutations on the binding free energy of the peptides. Our findings suggest that larger oligomers are produced from the association of smaller and intermediate oligomers. The peptides retain their helical structure during aggregation with transient occurrences of 3-10 helix and turns. Hydrophobic interactions are vital in the aggregation of these peptides with Ile24 playing a crucial role. Mutation of this residue to alanine decreases the peptides' binding free energy, resulting in reduced aggregation tendency.
Collapse
Affiliation(s)
- Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
21
|
Cho J, Manna AC, Snelling HS, Cheung AL. GraS signaling in Staphylococcus aureus is regulated by a single D35 residue in the extracellular loop. Microbiol Spectr 2023; 11:e0198223. [PMID: 37728380 PMCID: PMC10581149 DOI: 10.1128/spectrum.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
Bacterial two-component systems are crucial features of bacterial pathogens such as methicillin-resistant Staphylococcus aureus to overcome environmental and antimicrobial stresses by activating regulons to interfere with the bactericidal mechanisms. GraRS is a unique subset of two-component systems belonging to the intramembrane-sensing histidine kinase family (IM-HK) and is responsible for resistance to cationic host defense peptides. However, the precise manner by which the short 9-residue extracellular loop of the membrane sensor GraS detects the antimicrobial peptides and transduces the signal is not comprehensively understood. Here, we show that a single point mutation (D35A) in the extracellular loop of GraS blocked activation of GraRS, but this effect was also abrogated with graS mutations in the N-terminal transmembrane segments without any accompanying effect on GraS protein expression. Additionally, mutations in H120 and T172 in the dimerization/histidine phosphotransfer (DHp) domain of GraS increased activation without any accompanying enhancement in dimerization, likely due to disruption of the H120-T172 interaction that restricts rotational movements of the DHp helices since swapping H120 and T172 did not alter GraS activation. Notably, the enhancing effects of H120 and T172 mutations were abolished with a D35 mutation, highlighting the pivotal role of D35 in the 9-residue extracellular loop of GraS in GraR phosphorylation. In summary, our study delivers the significance of the D35 in the extracellular loop of GraS and ensuing changes in the N-terminal transmembrane helices as a model to illustrate signaling in the IM-HK subset of two-component regulatory systems. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen capable of infecting skin, blood, internal organs, and artificial medical devices. Generally, personal hygiene and a robust immune system can limit the spread of this pathogen; however, MRSA possesses an assortment of phenotypic tools to survive the hostile host environment including host defense peptides. More specifically, S. aureus utilizes two-component systems to sense noxious environmental cues to respond to harmful environmental elements. Our study focused on a two-component system called GraRS that S. aureus deploys against host defense peptides. We showed that one single residue in the extracellular loop of GraS and the adjacent membrane segment controlled the activation of GraRS, indicating the importance of a well-tuned-charged residue in the extracellular loop of GraS for sensing activity.
Collapse
Affiliation(s)
- Junho Cho
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Adhar C. Manna
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Helah S. Snelling
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
22
|
Escobar K, Carrera I, Naveas N, Pulido R, Manso M, Guarnieri JPDO, Lancellotti M, Cotta MA, Corrales-Ureña YR, Rischka K, Hernandez-Montelongo J. Functionalization of breast implants by cyclodextrin in-situ polymerization: a local drug delivery system for augmentation mammaplasty. Front Bioeng Biotechnol 2023; 11:1254299. [PMID: 37811378 PMCID: PMC10557261 DOI: 10.3389/fbioe.2023.1254299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Mammaplasty is a widely performed surgical procedure worldwide, utilized for breast reconstruction, in the context of breast cancer treatment, and aesthetic purposes. To enhance post-operative outcomes and reduce risks (hematoma with required evacuation, capsular contracture, implant-associated infection and others), the controlled release of medicaments can be achieved using drug delivery systems based on cyclodextrins (CDs). In this study, our objective was to functionalize commercially available silicone breast implants with smooth and textured surfaces through in-situ polymerization of two CDs: β-CD/citric acid and 2-hydroxypropyl-β-CD/citric acid. This functionalization serves as a local drug delivery system for the controlled release of therapeutic molecules that potentially can be a preventive treatment for post-operative complications in mammaplasty interventions. Initially, we evaluated the pre-treatment of sample surfaces with O2 plasma, followed by chitosan grafting. Subsequently, in-situ polymerization using both types of CDs was performed on implants. The results demonstrated that the proposed pre-treatment significantly increased the polymerization yield. The functionalized samples were characterized using microscopic and physicochemical techniques. To evaluate the efficacy of the proposed system for controlled drug delivery in augmentation mammaplasty, three different molecules were utilized: pirfenidone (PFD) for capsular contracture prevention, Rose Bengal (RB) as anticancer agent, and KR-12 peptide (KR-12) to prevent bacterial infection. The release kinetics of PFD, RB, and KR-12 were analyzed using the Korsmeyer-Peppas and monolithic solution mathematical models to identify the respective delivery mechanisms. The antibacterial effect of KR-12 was assessed against Staphylococcus epidermidis and Pseudomonas aeruginosa, revealing that the antibacterial rate of functionalized samples loaded with KR-12 was dependent on the diffusion coefficients. Finally, due to the immunomodulatory properties of KR-12 peptide on epithelial cells, this type of cells was employed to investigate the cytotoxicity of the functionalized samples. These assays confirmed the superior properties of functionalized samples compared to unprotected implants.
Collapse
Affiliation(s)
- Karen Escobar
- Department of Mathematical and Physical Sciences, UC Temuco, Temuco, Chile
| | - Ignacio Carrera
- Department of Mathematical and Physical Sciences, UC Temuco, Temuco, Chile
| | - Nelson Naveas
- Department of Applied Physics, Centre for Micro Analysis of Materials and Nicolás Cabrera Institute of Materials Science, Autonomous University of Madrid, Madrid, Spain
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta, Chile
| | - Ruth Pulido
- Department of Applied Physics, Centre for Micro Analysis of Materials and Nicolás Cabrera Institute of Materials Science, Autonomous University of Madrid, Madrid, Spain
- Departamento de Química, Universidad de Antofagasta, Antofagasta, Chile
| | - Miguel Manso
- Department of Applied Physics, Centre for Micro Analysis of Materials and Nicolás Cabrera Institute of Materials Science, Autonomous University of Madrid, Madrid, Spain
| | | | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil
| | - Monica A. Cotta
- Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, Brazil
| | | | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Bremen, Germany
| | - Jacobo Hernandez-Montelongo
- Department of Mathematical and Physical Sciences, UC Temuco, Temuco, Chile
- Department of Translational Bioengineering, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
23
|
Liu C, Henning-Knechtel A, Österlund N, Wu J, Wang G, Gräslund RAO, Kirmizialtin S, Luo J. Oligomer Dynamics of LL-37 Truncated Fragments Probed by α-Hemolysin Pore and Molecular Simulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206232. [PMID: 37170734 DOI: 10.1002/smll.202206232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/01/2023] [Indexed: 05/13/2023]
Abstract
Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Anja Henning-Knechtel
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, UAE
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Jinming Wu
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | | | - Serdal Kirmizialtin
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, UAE
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, 5232, Switzerland
| |
Collapse
|
24
|
Vasconcelos MA, da Silva BR, Andrade AL, de Azevedo Pinheiro A, Evaristo FFV, Arruda FVS, Lorenzón EN, Cilli EM, Teixeira EH. Antimicrobial and Antibiofilm Activity of Synthetic Peptide [W7]KR12-KAEK Against Enterococcus faecalis Strains. Curr Microbiol 2023; 80:325. [PMID: 37606794 DOI: 10.1007/s00284-023-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
The emergence of infections caused by microorganisms in the oral cavity and increasing concerns regarding the use of antibiotics have resulted in the development of novel antimicrobial molecules, such as antimicrobial synthetic peptides. The purpose of this study was to evaluate the antimicrobial and antibiofilm activities of the native peptide KR-12 and its derivative, the synthetic peptide [W7]KR12-KAEK, against planktonic and biofilms Enterococcus faecalis strains. The methods used to evaluate the antimicrobial activity in planktonic cultures include minimum inhibitory concentration and minimum bactericidal concentration assays. The effects of [W7]KR12-KAEK on biofilm formation and mature biofilms were evaluated by quantifying biomass (crystal violet staining) and counting colony-forming units. Structural assessments of the biofilms and cellular morphological changes were performed using scanning electron microscopy. Peptide [W7]KR12-KAEK showed potential antimicrobial activity against planktonic cells. Interestingly, the native peptide KR-12 showed no antimicrobial activity. Moreover, it inhibited biofilm formation and disrupted the mature biofilms of E. faecalis strains. These results suggest that [W7]KR12-KAEK may be a potential molecule for the development of auxiliary antimicrobial therapies against oral infections.
Collapse
Affiliation(s)
- Mayron Alves Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Universidade do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil
- Faculdade de Educação de Itapipoca (FACEDI), Universidade Estadual do Ceará, Itapipoca, CE, Brazil
| | - Bruno Rocha da Silva
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Francisco Vassiliepe Sousa Arruda
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- UNINTA, Sobral, CE, Brazil
| | | | - Eduardo Maffud Cilli
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
25
|
Acharya Y, Taneja KK, Haldar J. Dual functional therapeutics: mitigating bacterial infection and associated inflammation. RSC Med Chem 2023; 14:1410-1428. [PMID: 37593575 PMCID: PMC10429821 DOI: 10.1039/d3md00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/21/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of antimicrobial resistance, coupled with the occurrence of persistent systemic infections, has already complicated clinical therapy efforts. Moreover, infections are also accompanied by strong inflammatory responses, generated by the host's innate and adaptive immune systems. The closely intertwined relationship between bacterial infection and inflammation has multiple implications on the ability of antibacterial therapeutics to tackle infection and inflammation. Particularly, uncontrolled inflammatory responses to infection can lead to sepsis, a life-threatening physiological condition. In this review, we discuss dual-functional antibacterial therapeutics that have potential to be developed for treating inflammation associated with bacterial infections. Immense research is underway that aims to develop new therapeutic agents that, when administered, regulate the excess inflammatory response, i.e. they have immunomodulatory properties along with the desired antibacterial activity. The classes of antibiotics that have immunomodulatory function in addition to antibacterial activity have been reviewed. Host defense peptides and their synthetic mimics are amongst the most sought-after solutions to develop such dual-functional therapeutics. This review also highlights the important classes of peptidomimetics that exhibit both antibacterial and immunomodulatory properties.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Kashish Kumar Taneja
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
26
|
Malhotra K, Buznyk O, Islam MM, Edin E, Basu S, Groleau M, Dégué DS, Fagerholm P, Fois A, Lesage S, Jangamreddy JR, Šimoliūnas E, Liszka A, Patra HK, Griffith M. Phosphorylcholine and KR12-Containing Corneal Implants in HSV-1-Infected Rabbit Corneas. Pharmaceutics 2023; 15:1658. [PMID: 37376106 DOI: 10.3390/pharmaceutics15061658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
| | - Oleksiy Buznyk
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, 65061 Odessa, Ukraine
| | - Mohammad Mirazul Islam
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Elle Edin
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sankar Basu
- Department of Microbiology, Asutosh College, Affiliated with University of Calcutta, Kolkata 700026, India
| | - Marc Groleau
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Delali Shana Dégué
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Per Fagerholm
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Adrien Fois
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Aneta Liszka
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
27
|
Krishnamoorthy R, Adhikari P, Anaikutti P. Design, synthesis, and characterization of non-hemolytic antimicrobial peptides related to human cathelicidin LL-37. RSC Adv 2023; 13:15594-15605. [PMID: 37228679 PMCID: PMC10204126 DOI: 10.1039/d3ra02473c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
We designed and synthesised the N-terminally labeled cationic and hydrophobic peptides, i.e., FFKKSKEKIGKEFKKIVQKI (P1) and FRRSRERIGREFRRIVQRI (P2) related to the human cathelicidin LL-37 peptide. The integrity and molecular weight of the peptides were confirmed by mass spectrometry. The purity and homogeneity of peptides P1 and P2 were determined by comparing LCMS or analytical HPLC chromatograms. The circular dichroism spectroscopy reveals the conformational transitions upon interaction with membranes. Predictably, peptides P1 and P2 showed a random coil structure in the buffer and formed α-helix secondary structure in TFE and SDS micelles. This assessment was further confirmed by 2D NMR spectroscopic methods. The analytical HPLC binding assay measurements revealed that peptides P1 and P2 display preferential interactions with the anionic lipid bilayer (POPC:POPG) moderately than zwitterionic (POPC). The efficacies of the peptides were tested against Gram-positive and Gram-negative bacteria. It is imperative to note here that the arginine-rich P2 exerted higher activity against all the test organisms as compared with that shown by the lysine-rich peptide P1. To test the toxicity of these peptides, a hemolytic assay was performed. P1 and P2 showed very little to no toxicity for a hemolytic assay, which is significant for P1 and P2 to be used as potential therapeutic agents in practical applications. Both peptides P1 and P2 were non-hemolytic and appeared to be more promising as they demonstrated wide-spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Rajavenkatesh Krishnamoorthy
- Organic and Bioorganic Chemistry Laboratory, CSIR-CLRI Adyar Chennai-600020 Tamil Nadu India
- Department of Chemistry, Sethu Institute of Technology Kariapatti Virudunagar-626115 Tamil Nadu India
| | - Priyanka Adhikari
- Centre for GMP Extraction Facility (Dept. of Biotechnology), National Institute of Pharmaceutical Education and Research Guwahati-781101 Assam India
| | - Parthiban Anaikutti
- Centre for GMP Extraction Facility (Dept. of Biotechnology), National Institute of Pharmaceutical Education and Research Guwahati-781101 Assam India
| |
Collapse
|
28
|
Blasi-Romero A, Ångström M, Franconetti A, Muhammad T, Jiménez-Barbero J, Göransson U, Palo-Nieto C, Ferraz N. KR-12 Derivatives Endow Nanocellulose with Antibacterial and Anti-Inflammatory Properties: Role of Conjugation Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24186-24196. [PMID: 37167266 DOI: 10.1021/acsami.3c04237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This work combines the wound-healing-related properties of the host defense peptide KR-12 with wood-derived cellulose nanofibrils (CNFs) to obtain bioactive materials, foreseen as a promising solution to treat chronic wounds. Amine coupling through carbodiimide chemistry, thiol-ene click chemistry, and Cu(I)-catalyzed azide-alkyne cycloaddition were investigated as methods to covalently immobilize KR-12 derivatives onto CNFs. The effects of different coupling chemistries on the bioactivity of the KR12-CNF conjugates were evaluated by assessing their antibacterial activities against Escherichia coli and Staphylococcus aureus. Potential cytotoxic effects and the capacity of the materials to modulate the inflammatory response of lipopolysaccharide (LPS)-stimulated RAW 245.6 macrophages were also investigated. The results show that KR-12 endowed CNFs with antibacterial activity against E. coli and exhibited anti-inflammatory properties and those conjugated by thiol-ene chemistry were the most bioactive. This finding is attributed to a favorable peptide conformation and accessibility (as shown by molecular dynamics simulations), driven by the selective chemistry and length of the linker in the conjugate. The results represent an advancement in the development of CNF-based materials for chronic wound care. This study provides new insights into the effect of the conjugation chemistry on the bioactivity of immobilized host defense peptides, which we believe to be of great value for the use of host defense peptides as therapeutic agents.
Collapse
Affiliation(s)
- Anna Blasi-Romero
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Molly Ångström
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | | | - Taj Muhammad
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio-Bizkaia 48160, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Bilbao 48009, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Carlos Palo-Nieto
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
29
|
Sowers A, Wang G, Xing M, Li B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023; 11:1129. [PMID: 37317103 PMCID: PMC10223199 DOI: 10.3390/microorganisms11051129] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been investigated for their potential use as an alternative to antibiotics due to the increased demand for new antimicrobial agents. AMPs, widely found in nature and obtained from microorganisms, have a broad range of antimicrobial protection, allowing them to be applied in the treatment of infections caused by various pathogenic microorganisms. Since these peptides are primarily cationic, they prefer anionic bacterial membranes due to electrostatic interactions. However, the applications of AMPs are currently limited owing to their hemolytic activity, poor bioavailability, degradation from proteolytic enzymes, and high-cost production. To overcome these limitations, nanotechnology has been used to improve AMP bioavailability, permeation across barriers, and/or protection against degradation. In addition, machine learning has been investigated due to its time-saving and cost-effective algorithms to predict AMPs. There are numerous databases available to train machine learning models. In this review, we focus on nanotechnology approaches for AMP delivery and advances in AMP design via machine learning. The AMP sources, classification, structures, antimicrobial mechanisms, their role in diseases, peptide engineering technologies, currently available databases, and machine learning techniques used to predict AMPs with minimal toxicity are discussed in detail.
Collapse
Affiliation(s)
- Alexa Sowers
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
30
|
Abbasi M, Behmard E, Yousefi MH, Shekarforoush SS, Mahmoodi S. Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches. Arch Microbiol 2023; 205:199. [PMID: 37069440 DOI: 10.1007/s00203-023-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Antibiotic-resistant pathogens have become a great universal health concern. Antimicrobial peptides (AMPs) are small amphipathic and cationic polypeptides with high therapeutic potential against various microorganisms containing drug-resistant strains. Two major groups of these peptides, which have antibacterial activity against Gram-positive and Gram-negative bacteria, antiviral activity, and even antifungal activity, are defensins and cathelicidins. Hybridization of various AMPs is an appropriate approach to achieving new fusion AMPs with high antibacterial activity but low cellular toxicity. In the current research, the amino-acid sequence of human cathelicidin LL-37 (2-31) and Human beta-defensin (hBD)-129 were combined, and the fusion protein was evaluated by bioinformatics tool. The designed AMP gene sequence was commercially synthesized and cloned in the pET-28a expression vector. The LL-37/hBD-129 fusion protein was expressed in E.coli BL21-gold (DE3). The expression of the recombinant protein was evaluated using the SDS-PAGE method. The LL37/hBD-129 was successfully expressed as a recombinant hybrid AMP in E.coli BL21-gold (DE3) strain. Purification of the expressed AMP was performed by Ni-NTA column affinity chromatography, and the purified AMP was validated using the Western blot technic. Finally, the antimicrobial activity of the fusion AMP against Staphylococcus aureus and Escherichia coli bacteria was assessed. Based on the in silico analysis and experimental evaluations, the fusion AMP showed a significant antimicrobial effect on E. coli and Staphylococcus aureus bacteria.
Collapse
Affiliation(s)
- Mahsa Abbasi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmail Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
31
|
Leite ML, Duque HM, Rodrigues GR, da Cunha NB, Franco OL. The LL-37 domain: a clue to cathelicidin immunomodulatory response? Peptides 2023; 165:171011. [PMID: 37068711 DOI: 10.1016/j.peptides.2023.171011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response. AVAILABILITY OF DATA AND MATERIAL: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, Brasil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
32
|
Zhang Q, Ul Ain Q, Schulz C, Pircher J. Role of antimicrobial peptide cathelicidin in thrombosis and thromboinflammation. Front Immunol 2023; 14:1151926. [PMID: 37090695 PMCID: PMC10114025 DOI: 10.3389/fimmu.2023.1151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Thrombosis is a frequent cause of cardiovascular mortality and hospitalization. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. In recent years the pathophysiological understanding of thrombus formation has significantly advanced and inflammation has become a crucial element. Neutrophils as most frequent immune cells in the blood and their released mediators play a key role herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties has also shown to modulates thrombosis and thus presents a potential therapeutic target. In this article we review direct and indirect (immune- and endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation system. Further we discuss its implications for large vessel thrombosis and consecutive thromboinflammation as well as immunothrombosis in sepsis and COVID-19 and give an outlook for potential therapeutic prospects.
Collapse
Affiliation(s)
- Qing Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
- *Correspondence: Joachim Pircher,
| |
Collapse
|
33
|
Shih CC, Liao WC, Ke HY, Kuo CW, Tsao CM, Tsai WC, Chiu YL, Huang HC, Wu CC. Antimicrobial peptide cathelicidin LL-37 preserves intestinal barrier and organ function in rats with heat stroke. Biomed Pharmacother 2023; 161:114565. [PMID: 36958193 DOI: 10.1016/j.biopha.2023.114565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Global warming increases the incidence of heat stroke (HS) and HS causes the reduction of visceral blood flow during hyperthermia, leading to intestinal barrier disruption, microbial translocation, systemic inflammation and multiple organ failure. Cathelicidin LL-37 exhibits antimicrobial activities, helps innate immunity within the gut to maintain intestinal homeostasis, and augments intestinal wound healing and barrier function. Thus, we evaluated the effects and possible mechanisms of cathelicidin LL-37 on HS. Wistar rats were placed in a heating-chamber of 42 ̊C to induce HS. Changes in rectal temperature, hemodynamic parameters, and survival rate were measured during the experimental period. Blood samples and ilea were collected to analyze the effects of LL-37 on systemic inflammation, multiple organ dysfunction, and intestinal injury. Furthermore, LS174T and HT-29 cells were used to assess the underlying mechanisms. Our data showed cathelicidin LL-37 ameliorated the damage of intestinal cells induced by HS. Intestinal injury, systemic inflammation, and nitrosative stress (high nitric oxide level) caused by continuous hyperthermia were attenuated in HS rats treated with cathelicidin LL-37, and hence, improved multiple organ dysfunction, coagulopathy, and survival rate. These beneficial effects of cathelicidin LL-37 were attributed to the protection of intestinal goblet cells (by increasing transepithelial resistance, mucin-2 and Nrf2 expression) and the improvement of intestinal barrier function (less cyclooxygenase-2 expression and FITC-dextran translocation). Interestingly, high cathelicidin expression in the ileal samples of inflammatory bowel disease patients was associated with better clinical outcome. These results suggest that cathelicidin LL-37 could prevent heat stress-induced intestinal damage and heat-related illnesses.
Collapse
Affiliation(s)
- Chih-Chin Shih
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Wei-Chieh Liao
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Wen Kuo
- Department of Nephrology, Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University, Taipei, Taiwan, ROC
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsieh-Chou Huang
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
34
|
Calderón-Rivera N, Múnera-Jaramillo J, Jaramillo-Berrio S, Suesca E, Manrique-Moreno M, Leidy C. Cardiolipin Strongly Inhibits the Leakage Activity of the Short Antimicrobial Peptide ATRA-1 in Comparison to LL-37, in Model Membranes Mimicking the Lipid Composition of Staphylococcus aureus. MEMBRANES 2023; 13:304. [PMID: 36984691 PMCID: PMC10051595 DOI: 10.3390/membranes13030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cardiolipin is one of the main phospholipid components of Staphylococcus aureus membranes. This lipid is found at varying concentrations in the bilayer, depending on the growth stage of the bacteria, and as a response to environmental stress. Cardiolipin is an anionic phospholipid with four acyl chains, which modulates the bending properties of the membrane due to its inverted conical shape. It has been shown to inhibit the pore forming activity of several antimicrobial peptides, in general doubling the peptide concentration needed to induce leakage. Here we find that the short snake-derived antimicrobial peptide ATRA-1 is inhibited by several orders of magnitude in the presence of cardiolipin in saturated membranes (DMPG) compared to the human cathelicidin LL-37, which is only inhibited two-fold in its leakage-inducing concentration. The ATRA-1 is too short to span the membrane and its leakage activity is likely related to detergent-like alterations of bilayer structure. Fluorescence spectroscopy shows only a minor effect on ATRA-1 binding to DMPG membranes due to the presence of cardiolipin. However, FTIR spectroscopy shows that the acyl chain structure of DMPG membranes, containing cardiolipin, become more organized in the presence of ATRA-1, as reflected by an increase in the gel to liquid-crystalline phase transition temperature. Instead, a depression in the melting temperature is induced by ATRA-1 in DMPG in the absence of cardiolipin. In comparison, LL-37 induces a depression of the main phase transition of DMPG even in the presence of cardiolipin. These data suggest that cardiolipin inhibits the penetration of ATRA-1 into the membrane core, impeding its capacity to disrupt lipid packing.
Collapse
Affiliation(s)
- Nathalia Calderón-Rivera
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Jessica Múnera-Jaramillo
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin 050010, Antioquia, Colombia
| | - Sara Jaramillo-Berrio
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin 050010, Antioquia, Colombia
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Cundinamarca, Colombia
| |
Collapse
|
35
|
Singh P, Szigyártó IC, Ricci M, Gaál A, Quemé‐Peña MM, Kitka D, Fülöp L, Turiák L, Drahos L, Varga Z, Beke‐Somfai T. Removal and identification of external protein corona members from RBC-derived extracellular vesicles by surface manipulating antimicrobial peptides. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e78. [PMID: 38938416 PMCID: PMC11080927 DOI: 10.1002/jex2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/29/2024]
Abstract
In the last years, extracellular vesicles (EVs), secreted by various cells and body fluids have shown extreme potential in biomedical applications. Increasing number of studies suggest that a protein corona could adhere to the surface of EVs which can have a fundamental effect on their function, targeting and therapeutical efficacy. However, removing and identifying these corona members is currently a challenging task to achieve. In this study we have employed red blood cell-derived extracellular vesicles (REVs) as a model system and three membrane active antimicrobial peptides (AMPs), LL-37, FK-16 and CM15, to test whether they can be used to remove protein corona members from the surface of vesicles. These AMPs were reported to preferentially exert their membrane-related activity via one of the common helical surface-covering models and do not significantly affect the interior of lipid bilayer bodies. The interaction between the peptides and the REVs was followed by biophysical techniques, such as flow-linear dichroism spectroscopy which provided the effective applicable peptide concentration for protein removal. REV samples were then subjected to subsequent size exclusion chromatography and to proteomics analysis. Based on the comparison of control REVs with the peptide treated samples, seventeen proteins were identified as external protein corona members. From the three investigated AMPs, FK-16 can be considered as the best candidate to further optimize EV-related applicability of AMPs. Our results on the REV model system envisage that membrane active peptides may become a useful set of tools in engineering and modifying surfaces of EVs and other lipid-based natural particles.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
| | - Imola Cs. Szigyártó
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| | - Maria Ricci
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| | - Anikó Gaál
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Mayra Maritza Quemé‐Peña
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
| | - Diána Kitka
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Lívia Fülöp
- Department of Medical ChemistryUniversity of SzegedSzegedHungary
| | - Lilla Turiák
- Institute of Organic ChemistryMS Proteomics Research Group, Research Centre for Natural SciencesBudapestHungary
| | - László Drahos
- Institute of Organic ChemistryMS Proteomics Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Zoltán Varga
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Tamás Beke‐Somfai
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| |
Collapse
|
36
|
Yang M, Liu S, Zhang C. Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
37
|
Hatlem D, Christensen M, Broeker NK, Kristiansen PE, Lund R, Barbirz S, Linke D. A trimeric coiled-coil motif binds bacterial lipopolysaccharides with picomolar affinity. Front Cell Infect Microbiol 2023; 13:1125482. [PMID: 36875521 PMCID: PMC9978483 DOI: 10.3389/fcimb.2023.1125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.
Collapse
Affiliation(s)
- Daniel Hatlem
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| | | | - Nina K. Broeker
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | | | - Reidar Lund
- Kjemisk Institutt, Universitetet i Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | - Dirk Linke
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| |
Collapse
|
38
|
Memariani H, Memariani M. Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 2023; 39:99. [PMID: 36781570 DOI: 10.1007/s11274-023-03545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Notwithstanding ceaseless endeavors toward developing effective antibiofilm chemotherapeutics, biofilm-associated infections continue to be one of the most perplexing challenges confronting medicine today. Endogenous host defense peptides, such as the human cathelicidin LL-37, are being propounded as promising options for treating such infectious diseases. Over the past decennium, LL-37 has duly received tremendous research attention by virtue of its broad-spectrum antimicrobial activity and immunomodulatory properties. No attempt has hitherto been made, as far as we are aware, to comprehensively review the antibiofilm effects of LL-37. Accordingly, the intent in this paper is to provide a fairly all-embracing review of the literature available on the subject. Accumulating evidence suggests that LL-37 is able to prevent biofilm establishment by different bacterial pathogens such as Acinetobacter baumannii, Aggregatibacter actinomycetemcomitans, Bacteroides fragilis, Burkholderia thailandensis, Cutibacterium acnes, Escherichia coli, Francisella tularensis, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Inhibition of bacterial adhesion, downregulation of biofilm-associated genes, suppression of quorum-sensing pathways, degradation of biofilm matrix, and eradication of biofilm-residing cells are the major mechanisms responsible for antibiofilm properties of LL-37. In terms of its efficacy and safety in vivo, there are still many questions to be answered. Undoubtedly, LL-37 can open up new windows of opportunity to prevent and treat obstinate biofilm-mediated infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Kato H, Ohta K, Akagi M, Fukada S, Sakuma M, Naruse T, Nishi H, Shigeishi H, Takechi M, Aikawa T. LL-37-dsRNA Complexes Modulate Immune Response via RIG-I in Oral Keratinocytes. Inflammation 2023; 46:808-823. [PMID: 36763254 DOI: 10.1007/s10753-023-01787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Recognition of nucleic acids as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) promotes an inflammatory response. On the other hand, LL-37, an antimicrobial peptide, is a multifunctional modulator of immune response, though whether it modulates inflammatory responses induced by nucleic acids in oral keratinocytes is unknown. In this study, we firstly investigated the effect of LL-37 on CXCL10 induced by DAMPs and PAMPs in immortalized oral keratinocytes, RT7. Furthermore, the effects of LL-37 on translocation of exogenous nucleic acids into cytoplasm as well as cytosolic receptor, RIG-I on immune responses mediated by LL-37-nucleic acid complexes were examined. From these results, LL-37 enhanced necrotic cell supernatant (NCS)-induced CXCL10 expression in RT7, while the response was decreased by RNase. Complexes of LL-37 and double-stranded (ds) RNA, Poly(I:C) enhanced CXCL10 expression in comparison with each alone, which were associated with NF-κB activation. Furthermore, LL-37 was shown to bind with ds nucleotides and translocate into cytoplasm. Knockdown of RIG-I decreased expression of CXCL10 induced by LL-37-Poly(I:C) complexes, and RIG-I were co-localized with Poly(I:C) entered by LL-37 in cytoplasm. LL-37 modulates dsRNA-mediated inflammatory response via RIG-I in oral keratinocytes, which may play an important role in the pathogenesis of oral inflammatory diseases.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
- Department of Dentistry, Oral and Maxillofacial Surgery, National Hospital Organization Kure Medical Centerand, Chugoku Cancer Center , 3-1 Aoyama-Cho, Kure, 737-0023, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Misaki Akagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shohei Fukada
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Takako Naruse
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Masaaki Takechi
- Department of Dentistry, Oral and Maxillofacial Surgery, National Hospital Organization Kure Medical Centerand, Chugoku Cancer Center , 3-1 Aoyama-Cho, Kure, 737-0023, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
40
|
Muhammad T, Strömstedt AA, Gunasekera S, Göransson U. Transforming Cross-Linked Cyclic Dimers of KR-12 into Stable and Potent Antimicrobial Drug Leads. Biomedicines 2023; 11:biomedicines11020504. [PMID: 36831040 PMCID: PMC9953701 DOI: 10.3390/biomedicines11020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Is it possible to enhance structural stability and biological activity of KR-12, a truncated antimicrobial peptide derived from the human host defense peptide LL-37? Based on the mapping of essential residues in KR-12, we have designed backbone-cyclized dimers, cross-linked via a disulfide bond to improve peptide stability, while at the same time improving on-target activity. Circular dichroism showed that each of the dimers adopts a primarily alpha-helical conformation (55% helical content) when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new cross-linked cyclic form. Compared to KR-12, one of the cross-linked dimers showed 16-fold more potent antimicrobial activity against human pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans and 8-fold increased activity against Escherichia coli. Furthermore, these peptides retained antimicrobial activity at physiologically relevant conditions, including in the presence of salts and in human serum, and with selective Gram-negative antibacterial activity in rich growth media. In addition to giving further insight into the structure-activity relationship of KR-12, the current work demonstrates that by combining peptide stabilization strategies (dimerization, backbone cyclization, and cross-linking via a disulfide bond), KR-12 can be engineered into a potent antimicrobial peptide drug lead with potential utility in a therapeutic context.
Collapse
|
41
|
Schoberleitner I, Faserl K, Sarg B, Egle D, Brunner C, Wolfram D. Quantitative Proteomic Characterization of Foreign Body Response towards Silicone Breast Implants Identifies Chronological Disease-Relevant Biomarker Dynamics. Biomolecules 2023; 13:biom13020305. [PMID: 36830674 PMCID: PMC9953687 DOI: 10.3390/biom13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The etiology of exaggerated fibrous capsule formation around silicone mammary implants (SMI) is multifactorial but primarily induced by immune mechanisms towards the foreign material silicone. The aim of this work was to understand the disease progression from implant insertion and immediate tissue damage response reflected in (a) the acute wound proteome and (b) the adsorption of chronic inflammatory wound proteins at implant surfaces. An intraindividual relative quantitation TMT-liquid chromatography-tandem mass spectrometry approach was applied to the profile wound proteome formed around SMI in the first five days post-implantation. Compared to plasma, the acute wound profile resembled a more complex composition comprising plasma-derived and locally differentially expressed proteins (DEPs). DEPs were subjected to a functional enrichment analysis, which revealed the dysregulation of signaling pathways mainly involved in immediate inflammation response and ECM turnover. Moreover, we found time-course variations in protein enrichment immediately post-implantation, which were adsorbed to SMI surfaces after 6-8 months. Characterization of the expander-adhesive proteome by a label-free approach uncovered a long-term adsorbed acute wound and the fibrosis-associated proteome. Our findings propose a wound biomarker panel for the early detection and diagnosis of excessive fibrosis that could potentially broaden insights into the characteristics of fibrotic implant encapsulation.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Klaus Faserl
- Protein Core Facility, Biocenter, Institute of Medical Chemistry, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Bettina Sarg
- Protein Core Facility, Biocenter, Institute of Medical Chemistry, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Daniel Egle
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Christine Brunner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-504-82050
| |
Collapse
|
42
|
de Szalay S, Wertz PW. Protective Barriers Provided by the Epidermis. Int J Mol Sci 2023; 24:ijms24043145. [PMID: 36834554 PMCID: PMC9961209 DOI: 10.3390/ijms24043145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The skin is the largest organ of the body and consists of an epidermis, dermis and subcutaneous adipose tissue. The skin surface area is often stated to be about 1.8 to 2 m2 and represents our interface with the environment; however, when one considers that microorganisms live in the hair follicles and can enter sweat ducts, the area that interacts with this aspect of the environment becomes about 25-30 m2. Although all layers of the skin, including the adipose tissue, participate in antimicrobial defense, this review will focus mainly on the role of the antimicrobial factors in the epidermis and at the skin surface. The outermost layer of the epidermis, the stratum corneum, is physically tough and chemically inert which protects against numerous environmental stresses. It provides a permeability barrier which is attributable to lipids in the intercellular spaces between the corneocytes. In addition to the permeability barrier, there is an innate antimicrobial barrier at the skin surface which involves antimicrobial lipids, peptides and proteins. The skin surface has a low surface pH and is poor in certain nutrients, which limits the range of microorganisms that can survive there. Melanin and trans-urocanic acid provide protection from UV radiation, and Langerhans cells in the epidermis are poised to monitor the local environment and to trigger an immune response as needed. Each of these protective barriers will be discussed.
Collapse
Affiliation(s)
- Sarah de Szalay
- Sarah de Szalay Consulting, LLC, Wesy Milford, NJ 07480, USA
| | - Philip W. Wertz
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
43
|
John JV, Sharma NS, Tang G, Luo Z, Su Y, Weihs S, Shahriar SMS, Wang G, McCarthy A, Dyke J, Zhang YS, Khademhosseini A, Xie J. Nanofiber Aerogels with Precision Macrochannels and LL-37-Mimic Peptides Synergistically Promote Diabetic Wound Healing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2206936. [PMID: 36714167 PMCID: PMC9881731 DOI: 10.1002/adfm.202206936] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 05/16/2023]
Abstract
Fast healing of diabetic wounds remains a major clinical challenge. Herein, this work reports a strategy to combine nanofiber aerogels containing precision macrochannels and the LL-37-mimic peptide W379 for rapid diabetic wound healing. Nanofiber aerogels consisting of poly(glycolide-co-lactide) (PGLA 90:10)/gelatin and poly-p-dioxanone (PDO)/gelatin short electrospun fiber segments were prepared by partially anisotropic freeze-drying, crosslinking, and sacrificial templating with three-dimensional (3D)-printed meshes, exhibiting nanofibrous architecture and precision micro-/macrochannels. Like human cathelicidin LL-37, W379 peptide at a concentration of 3 μg/mL enhanced the migration and proliferation of keratinocytes and dermal fibroblasts in a cell scratch assay and a proliferation assay. In vivo studies show that nanofiber aerogels with precision macrochannels can greatly promote cell penetration compared to aerogels without macrochannels. Relative to control and aerogels with and without macrochannels, adding W379 peptides to aerogels with precision macrochannels shows the best efficacy in healing diabetic wounds in mice in terms of cell infiltration, neovascularization, and re-epithelialization. The fast re-epithelization could be due to upregulation of phospho-extracellular signal-regulated kinase (p38 MAPK) after treatment with W379. Together, the approach developed in this work could be promising for the treatment of diabetic wounds and other chronic wounds.
Collapse
Affiliation(s)
- Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shelbie Weihs
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S. M. Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Justin Dyke
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
44
|
Decker AP, Su Y, Mishra B, Verma A, Lushnikova T, Xie J, Wang G. Peptide Stability Is Important but Not a General Requirement for Antimicrobial and Antibiofilm Activity In Vitro and In Vivo. Mol Pharm 2023; 20:738-749. [PMID: 36485036 DOI: 10.1021/acs.molpharmaceut.2c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide stability to proteases has been a major requirement for developing peptide therapeutics. This study investigates the effects of peptide stability on antimicrobial and antibiofilm activity under various conditions. For this purpose, two human cathelicidin-derived peptides differing in stability to proteases were utilized. While GF-17, a peptide derived from the major antimicrobial region of human LL-37, can be rapidly cleaved by proteases, the engineered peptide 17BIPHE2 is resistant to multiple proteases. In the standard antimicrobial susceptibility, killing kinetics, and membrane permeabilization assays conducted in vitro using planktonic bacteria, these two peptides displayed similar potency. The two peptides were also similarly active against methicillin-resistant Staphylococcus aureus (MRSA) USA300 prior to biofilm formation. However, 17BIPHE2 was superior to GF-17 in disrupting preformed biofilms probably due to both enhanced stability and slightly higher DNA binding capacity. In a wax moth model, 17BIPHE2 better protected insects from MRSA infection-caused death than GF-17, consistent with the slower degradation of 17BIPHE2 than GF-17. Here, peptide antimicrobial activity was found to be critical for in vivo efficacy. When incorporated in the nanofiber/microneedle delivery device, GF-17 and 17BIPHE2 displayed a similar effect in eliminating MRSA in murine chronic wounds, underscoring the advantage of nanofibers in protecting the peptide from degradation. Since nanoformulation can ease the requirement of peptide stability, it opens the door to a direct use of natural peptides or their cocktails for antimicrobial treatment, accelerating the search of effective antibiofilm peptides to treat chronic wounds.
Collapse
Affiliation(s)
- Aaron P Decker
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Atul Verma
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
45
|
In silico assessment of missense point mutations on human cathelicidin LL-37. J Mol Graph Model 2023; 118:108368. [PMID: 36335830 DOI: 10.1016/j.jmgm.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cathelicidin antimicrobial peptides are a diverse family of cationic amphipathic peptides with multiple activities. In humans, cathelicidin LL-37 is one of the main host defense peptides with a remarkable medical and biotechnological potential. Deregulation of LL-37 expression has been associated with inflammatory diseases. However the effects of point mutations driven by single nucleotide polymorphisms (SNPs) on LL-37 are unknown. Here we applied an array of computational tools to investigate the effects of such mutations on LL-37 structure and activity. Due to the fact that, on cathelicidins, the prodomain is more conserved than the mature peptide, the SNP effect predictions were biased and, overall, resulted in neutral effects; and due to the slight changes in physicochemical properties, the antimicrobial predictions indicated the maintenance of such activity. Nonetheless, R07P, R07W, R29Q, R29W mutations reduced the peptide net charge, which in turn could result in less active LL-37 variants. Molecular dynamics data indicated that R07Q and N30Y mutations altered the LL-37 structure, leading to potential deleterious effects. In addition, the helix dipole is altered in G03A, R07P, R07W and L31P mutations, which could also alter the antimicrobial activity. Our results indicated that despite the mutations did not alter the residues from LL-37 active core, they could influence the antimicrobial activity and consequently, could be involved in inflammatory diseases.
Collapse
|
46
|
Jiang X, Yang C, Qiu J, Ma D, Xu C, Hu S, Han W, Yuan B, Lu Y. Nanomolar LL-37 induces permeability of a biomimetic mitochondrial membrane. NANOSCALE 2022; 14:17654-17660. [PMID: 36413063 DOI: 10.1039/d2nr05409d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
LL-37, the only human host cathelicidin peptide, is proposed to be able to induce host cell apoptosis through mitochondrial membrane permeabilization (MMP). Detailed pathways of the LL-37-triggered MMP are however still disputed. It is generally believed that cationic peptides permeate a membrane mostly in conditions of micromolar peptide concentrations and negatively charged membranes, which are not usually satisfied in the mitochondrial circumstance. Herein, using a variety of single-molecule techniques, we show that nanomolar LL-37 specifically induces permeability of a phosphoethanolamine (PE)-rich biomimetic mitochondrial membrane in a protein-independent manner. The insertion dynamics of single LL-37 molecules exhibit different metastable states in bilayers composed of different lipids. Moreover, the PE lipids significantly facilitate adsorption and accumulation of LL-37 on the PE-rich bilayer, and produce deeper insertion of peptide oligomers, especially tetramers, into the bilayer. This work offers an alternative pathway of the LL-37-triggered MMP and apoptosis.
Collapse
Affiliation(s)
- Xin Jiang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Chenguang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qiu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Dongfei Ma
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Shuxin Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
48
|
Cardoso MH, Meneguetti BT, Oliveira-Júnior NG, Macedo MLR, Franco OL. Antimicrobial peptide production in response to gut microbiota imbalance. Peptides 2022; 157:170865. [PMID: 36038014 DOI: 10.1016/j.peptides.2022.170865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
The gut microbiota presents essential functions in the immune response. The gut epithelium acts as a protective barrier and, therefore, can produce several antimicrobial peptides (AMPs) that can act against pathogenic microorganisms, including bacteria. Several factors cause a disturbance in gut microbiota, including the exacerbated and erroneous use of antibiotics. Antibiotic therapy has been closely related to bacterial resistance and is also correlated with undesired side-effects to the host, including the eradication of commensal bacteria. Consequently, this results in gut microbiota imbalance and inflammatory bowel diseases (IBD) development. In this context, AMPs in the gut epithelium play a restructuring role for gut microbiota. Some naturally occurring AMPs are selective for pathogenic bacteria, thus preserving the health microbiota. Therefore, AMPs produced by the host's epithelial cells represent effective molecules in treating gut bacterial infections. Bearing this in mind, this review focused on describing the importance of the host's AMPs in gut microbiota modulation and their role as anti-infective agents against pathogenic bacteria.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil; Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil.
| | - Beatriz T Meneguetti
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Nelson G Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil.
| |
Collapse
|
49
|
Lee SG, Kiattiburut W, Khongkha T, Schinkel SCB, Lunn Y, Decker AP, Mohammadi A, Vera-Cruz A, Misra A, Angel JB, Anderson DJ, Baker M, Kaul R, Wang G, Tanphaichitr N. 17BIPHE2, an engineered cathelicidin antimicrobial peptide with low susceptibility to proteases, is an effective spermicide and microbicide against Neisseria gonorrhoeae. Hum Reprod 2022; 37:2503-2517. [PMID: 36053257 PMCID: PMC9724780 DOI: 10.1093/humrep/deac188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/03/2022] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is 17BIPHE2, an engineered cathelicidin antimicrobial peptide with low susceptibility to proteases, a better spermicide in cervicovaginal fluid (CVF) than its parental peptides, LL-37 and GF-17? SUMMARY ANSWER At the same mass concentration, 17BIPHE2 exhibited the highest spermicidal activity on human sperm resuspended in CVF-containing medium. WHAT IS KNOWN ALREADY LL-37 and its truncated peptide GF-17 exert both spermicidal and microbicidal activities, although they are prone to proteolytic degradation in body fluids. STUDY DESIGN, SIZE, DURATION Spermicidal activities of 17BIPHE2 were evaluated in vitro in mouse and human sperm, both resuspended in medium, and then on human sperm incubated in CVF-containing medium; in the latter condition, the spermicidal activity and peptide stability in CVF of 17BIPHE2 were compared with that of LL-37 and GF-17. The in vivo contraceptive effects of 17BIPHE2 and the reversibility thereof were then assessed in mice. Finally, in vitro microbicidal effects of 17BIPHE2 on Neisseria gonorrhoeae were determined. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm motility and plasma membrane integrity were assessed by videomicroscopy and exclusion of Sytox Green, a membrane-impermeable fluorescent dye, respectively. Successful in vitro fertilization (IVF) was determined by the presence of two pronuclei in oocytes following their coincubation with capacitated untreated or 17BIPHE2-treated sperm. Sperm alone or with 17BIPHE2 were transcervically injected into female mice and successful in vivo fertilization was indicated by the formation of two-cell embryos 42-h postinjection, and by pregnancy through pup delivery 21-25 days afterwards. Peptide intactness was assessed by immunoblotting and HPLC. Reversibility of the contraceptive effects of 17BIPHE2 was evaluated by resumption of pregnancy of the female mice, pretranscervically injected with 17BIPHE2, following natural mating with fertile males. Minimum inhibitory/bactericidal concentrations of 17BIPHE2 on N. gonorrhoeae were obtained through microdilution broth assay. MAIN RESULTS AND THE ROLE OF CHANCE At the same mass concentration, 17BIPHE2 was a more effective spermicide than LL-37 or GF-17 on human sperm resuspended in CVF-containing medium, with the spermicidal concentration of 32.4 µM. This was mainly due to lower susceptibility of 17BIPHE2 to CVF proteases. Importantly, the reproductive tract of mouse females treated three times with 32.4 µM 17BIPHE2 remained normal and their fecundity resumed after stopping 17BIPHE2 treatment. LIMITATIONS, REASONS FOR CAUTION For ethical reasons, the inhibitory effects of 17BIPHE2 on fertilization and pregnancy cannot presently be performed in women. Also, while our study has proven the effectiveness of 17BIPHE2 as a spermicide for mouse and human sperm in vitro, dosage formulation (e.g. in hydrogel) of 17BIPHE2 still needs to be developed to allow 17BIPHE2 to remain in the vagina/uterine cavity with controlled release for its spermicidal action. WIDER IMPLICATIONS OF THE FINDINGS Since 17BIPHE2 also exerted bactericidal activity against N. gonorrhoeae at its spermicidal concentration, it is a promising candidate to be developed into a vaginal multipurpose prevention technology agent, thus empowering women against unplanned pregnancies and sexually transmitted infections. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Canadian Institutes of Health Research (PJT 173268 to N.T.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Seung Gee Lee
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Thitiporn Khongkha
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Yvonne Lunn
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aaron P Decker
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Avid Mohammadi
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ana Vera-Cruz
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Avika Misra
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Deborah J Anderson
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Mark Baker
- Department of Biological Science, University of Newcastle, Callaghan, NSW, Australia
| | - Rupert Kaul
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics/Gynecology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
50
|
Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232112874. [PMID: 36361660 PMCID: PMC9658076 DOI: 10.3390/ijms232112874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Unlike the α-helical and β-sheet antimicrobial peptides (AMPs), our knowledge on amino acid-rich AMPs is limited. This article conducts a systematic study of rich AMPs (>25%) from different life kingdoms based on the Antimicrobial Peptide Database (APD) using the program R. Of 3425 peptides, 724 rich AMPs were identified. Rich AMPs are more common in animals and bacteria than in plants. In different animal classes, a unique set of rich AMPs is deployed. While histidine, proline, and arginine-rich AMPs are abundant in mammals, alanine, glycine, and leucine-rich AMPs are common in amphibians. Ten amino acids (Ala, Cys, Gly, His, Ile, Lys, Leu, Pro, Arg, and Val) are frequently observed in rich AMPs, seven (Asp, Glu, Phe, Ser, Thr, Trp, and Tyr) are occasionally observed, and three (Met, Asn, and Gln) were not yet found. Leucine is much more frequent in forming rich AMPs than either valine or isoleucine. To date, no natural AMPs are simultaneously rich in leucine and lysine, while proline, tryptophan, and cysteine-rich peptides can simultaneously be rich in arginine. These findings can be utilized to guide peptide design. Since multiple candidates are potent against antibiotic-resistant bacteria, rich AMPs stand out as promising future antibiotics.
Collapse
|