1
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d'Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
3
|
Khumukcham SS, Penugurti V, Bugide S, Dwivedi A, Kumari A, Kesavan PS, Kalali S, Mishra YG, Ramesh VA, Nagarajaram HA, Mazumder A, Manavathi B. HPIP and RUFY3 are noncanonical guanine nucleotide exchange factors of Rab5 to regulate endocytosis-coupled focal adhesion turnover. J Biol Chem 2023; 299:105311. [PMID: 37797694 PMCID: PMC10641178 DOI: 10.1016/j.jbc.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-β1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.
Collapse
Affiliation(s)
| | - Vasudevarao Penugurti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Suresh Bugide
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anju Dwivedi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anita Kumari
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - P S Kesavan
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Hyderabad, Telangana, India
| | - Sruchytha Kalali
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Vakkalagadda A Ramesh
- Laboratory of Computational Biology, Centre for DNA Finger Printing and Diagnostics (CDFD), Hyderabad, Telangana, India; Laboratory of Computational Biology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Aprotim Mazumder
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Hyderabad, Telangana, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Contadini C, Ferri A, Di Martile M, Cirotti C, Del Bufalo D, De Nicola F, Pallocca M, Fanciulli M, Sacco F, Donninelli G, Capone A, Volpe E, Keller N, Miki S, Kawauchi D, Stupack D, Furnari F, Barilà D. Caspase-8 as a novel mediator linking Src kinase signaling to enhanced glioblastoma malignancy. Cell Death Differ 2023; 30:417-428. [PMID: 36460775 PMCID: PMC9950463 DOI: 10.1038/s41418-022-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Caspase-8 is a cysteine protease that plays an essential role in apoptosis. Consistently with its canonical proapoptotic function, cancer cells may genetically or epigenetically downregulate its expression. Unexpectedly, Caspase-8 is often retained in cancer, suggesting the presence of alternative mechanisms that may be exploited by cancer cells to their own benefit. In this regard, we reported that Src tyrosine kinase, which is aberrantly activated in many tumors, promotes Caspase-8 phosphorylation on Tyrosine 380 (Y380) preventing its full activation. Here, we investigated the significance of Caspase-8 expression and of its phosphorylation on Y380 in glioblastoma, a brain tumor where both Caspase-8 expression and Src activity are often aberrantly upregulated. Transcriptomic analyses identified inflammatory response as a major target of Caspase-8, and in particular, NFκB signaling as one of the most affected pathways. More importantly, we could show that Src-dependent phosphorylation of Caspase-8 on Y380 drives the assembly of a multiprotein complex that triggers NFκB activation, thereby inducing the expression of inflammatory and pro-angiogenic factors. Remarkably, phosphorylation on Y380 sustains neoangiogenesis and resistance to radiotherapy. In summary, our work identifies a novel interplay between Src kinase and Caspase-8 that allows cancer cells to hijack Caspase-8 to sustain tumor growth.
Collapse
Affiliation(s)
- Claudia Contadini
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Alessandra Ferri
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Marta Di Martile
- UOSD Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Cirotti
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Donatella Del Bufalo
- UOSD Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Matteo Pallocca
- UOSD SAFU, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Francesca Sacco
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Gloria Donninelli
- Laboratory of Molecular Neuroimmunology, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Alessia Capone
- Laboratory of Molecular Neuroimmunology, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Elisabetta Volpe
- Laboratory of Molecular Neuroimmunology, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Nadine Keller
- University of California San Diego Moores Cancer Center, La Jolla, CA, 92093-0803, USA
| | - Shunichiro Miki
- Department of Medicine, Division of Regenerative Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Daisuke Kawauchi
- Department of Medicine, Division of Regenerative Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Dwayne Stupack
- University of California San Diego Moores Cancer Center, La Jolla, CA, 92093-0803, USA
| | - Frank Furnari
- Department of Medicine, Division of Regenerative Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Daniela Barilà
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy.
| |
Collapse
|
5
|
Fernandez C, Burgos A, Morales D, Rosales-Rojas R, Canelo J, Vergara-Jaque A, Vieira GV, da Silva RAA, Sales KU, Conboy MJ, Bae EJ, Park KS, Torres VA, Garrido M, Cerda O, Conboy IM, Cáceres M. TMPRSS11a is a novel age-altered, tissue specific regulator of migration and wound healing. FASEB J 2021; 35:e21597. [PMID: 33908663 DOI: 10.1096/fj.202002253rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
Aging is a gradual biological process characterized by a decrease in cellular and organism functions. Aging-related processes involve changes in the expression and activity of several proteins. Here, we identified the transmembrane protease serine 11a (TMPRSS11a) as a new age-specific protein that plays an important role in skin wound healing. TMPRSS11a levels increased with age in rodent and human skin and gingival samples. Strikingly, overexpression of TMPRSS11a decreased cell migration and spreading, and inducing cellular senescence. Mass spectrometry, bioinformatics, and functional analyses revealed that TMPRSS11a interacts with integrin β1 through an RGD sequence contained within the C-terminal domain and that this motif was relevant for cell migration. Moreover, TMPRSS11a was associated with cellular senescence, as shown by overexpression and downregulation experiments. In agreement with tissue-specific expression of TMPRSS11a, shRNA-mediated downregulation of this protein improved wound healing in the skin, but not in the skeletal muscle of old mice, where TMPRSS11a is undetectable. Collectively, these findings indicate that TMPRSS11a is a tissue-specific factor relevant for wound healing, which becomes elevated with aging, promoting cellular senescence and inhibiting cell migration and skin repair.
Collapse
Affiliation(s)
- Christian Fernandez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andres Burgos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto Rosales-Rojas
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Javiera Canelo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Gabriel Viliod Vieira
- Departament of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Katiuchia Uzzun Sales
- Departament of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Eun Ji Bae
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Kang-Sik Park
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
6
|
Rivas S, Silva P, Reyes M, Sepúlveda H, Solano L, Acuña J, Guerrero M, Varas-Godoy M, Quest AFG, Montecino M, Torres VA. The RabGEF ALS2 is a hypoxia inducible target associated with the acquisition of aggressive traits in tumor cells. Sci Rep 2020; 10:22302. [PMID: 33339852 PMCID: PMC7749157 DOI: 10.1038/s41598-020-79270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/07/2020] [Indexed: 11/09/2022] Open
Abstract
Tumor hypoxia and the hypoxia inducible factor-1, HIF-1, play critical roles in cancer progression and metastasis. We previously showed that hypoxia activates the endosomal GTPase Rab5, leading to tumor cell migration and invasion, and that these events do not involve changes in Rab protein expression, suggesting the participation of intermediate activators. Here, we identified ALS2, a guanine nucleotide exchange factor that is upregulated in cancer, as responsible for increased Rab5-GTP loading, cell migration and metastasis in hypoxia. Specifically, hypoxia augmented ALS2 mRNA and protein levels, and these events involved HIF-1α-dependent transcription, as shown by RNAi, pharmacological inhibition, chromatin immunoprecipitation and bioinformatics analyses, which identified a functional HIF-1α-binding site in the proximal promoter region of ALS2. Moreover, ALS2 and Rab5 activity were elevated both in a model of endogenous HIF-1α stabilization (renal cell carcinoma) and by following expression of stable non-hydroxylatable HIF-1α. Strikingly, ALS2 upregulation in hypoxia was required for Rab5 activation, tumor cell migration and invasion, as well as experimental metastasis in C57BL/6 mice. Finally, immunohistochemical analyses in patient biopsies with renal cell carcinoma showed that elevated HIF-1α correlates with increased ALS2 expression. Hence, this study identifies ALS2 as a novel hypoxia-inducible gene associated with tumor progression and metastasis.
Collapse
Affiliation(s)
- Solange Rivas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Hugo Sepúlveda
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Luis Solano
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Juan Acuña
- Laboratory of Pathological Anatomy, Hospital San José, Santiago, Chile
| | - Marisol Guerrero
- Laboratory of Pathological Anatomy, Hospital San José, Santiago, Chile
| | - Manuel Varas-Godoy
- Center for Cell Biology and Biomedicine (CEBICEM), Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Biomedical Sciences Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Independencia, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Hernández-Cáceres MP, Cereceda K, Hernández S, Li Y, Narro C, Rivera P, Silva P, Ávalos Y, Jara C, Burgos P, Toledo-Valenzuela L, Lagos P, Cifuentes Araneda F, Perez-Leighton C, Bertocchi C, Clegg DJ, Criollo A, Tapia-Rojas C, Burgos PV, Morselli E. Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics. Mol Cell Oncol 2020; 7:1789418. [PMID: 32944643 DOI: 10.1080/23723556.2020.1789418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-fat diet (HFD)-induced obesity is associated with increased cancer risk. Long-term feeding with HFD increases the concentration of the saturated fatty acid palmitic acid (PA) in the hypothalamus. We previously showed that, in hypothalamic neuronal cells, exposure to PA inhibits the autophagic flux, which is the whole autophagic process from the synthesis of the autophagosomes, up to their lysosomal fusion and degradation. However, the mechanism by which PA impairs autophagy in hypothalamic neurons remains unknown. Here, we show that PA-mediated reduction of the autophagic flux is not caused by lysosomal dysfunction, as PA treatment does not impair lysosomal pH or the activity of cathepsin B.Instead, PA dysregulates autophagy by reducing autophagosome-lysosome fusion, which correlates with the swelling of endolysosomal compartments that show areduction in their dynamics. Finally, because lysosomes undergo constant dynamic regulation by the small Rab7 GTPase, we investigated the effect of PA treatment on its activity. Interestingly, we found PA treatment altered the activity of Rab7. Altogether, these results unveil the cellular process by which PA exposure impairs the autophagic flux. As impaired autophagy in hypothalamic neurons promotes obesity, and balanced autophagy is required to inhibit malignant transformation, this could affect tumor initiation, progression, and/or response to therapy of obesity-related cancers.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Karina Cereceda
- Translational Medicine Laboratory, Fundación Arturo López Pérez Cancer Center, Santiago, Chile.,Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Ying Li
- Tsinghua University-Pekin University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Carla Narro
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Patricia Rivera
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Patricio Silva
- Advanced Center for Chronic Diseases (Accdis), Universidad De Chile, Santiago, Chile.,Instituto De Investigación En Ciencias Odontológicas (ICOD), Facultad De Odontología, Universidad De Chile, Santiago, Chile
| | - Yenniffer Ávalos
- Departamento De Biología, Facultad De Química Y Biología, Universidad De Santiago De Chile, Santiago, Chile
| | - Claudia Jara
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Paulina Burgos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Flavia Cifuentes Araneda
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Deborah J Clegg
- College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (Accdis), Universidad De Chile, Santiago, Chile.,Instituto De Investigación En Ciencias Odontológicas (ICOD), Facultad De Odontología, Universidad De Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
8
|
Reyes M, Peña-Oyarzún D, Silva P, Venegas S, Criollo A, Torres VA. Nuclear accumulation of β-catenin is associated with endosomal sequestration of the destruction complex and increased activation of Rab5 in oral dysplasia. FASEB J 2020; 34:4009-4025. [PMID: 31990106 DOI: 10.1096/fj.201902345rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Potentially malignant lesions, commonly referred to as dysplasia, are associated with malignant transformation by mechanisms that remain unclear. We recently reported that increased Wnt secretion promotes the nuclear accumulation of β-catenin and expression of target genes in oral dysplasia. However, the mechanisms accounting for nuclear re-localization of β-catenin in oral dysplasia remain unclear. In this study, we show that endosomal sequestration of the β-catenin destruction complex allows nuclear accumulation of β-catenin in oral dysplasia, and that these events depended on the endocytic protein Rab5. Tissue immunofluorescence analysis showed aberrant accumulation of enlarged early endosomes in oral dysplasia biopsies, when compared with healthy oral mucosa. These observations were confirmed in cell culture models, by comparing dysplastic oral keratinocytes (DOK) and non-dysplastic oral keratinocytes (OKF6). Intriguingly, DOK depicted higher levels of active Rab5, a critical regulator of early endosomes, when compared with OKF6. Increased Rab5 activity in DOK was necessary for nuclear localization of β-catenin and Tcf/Lef-dependent transcription, as shown by expression of dominant negative and constitutively active mutants of Rab5, along with immunofluorescence, subcellular fractionation, transcription, and protease protection assays. Mechanistically, elevated Rab5 activity in DOK accounted for endosomal sequestration of components of the destruction complex, including GSK3β, Axin, and adenomatous polyposis coli (APC), as observed in Rab5 dominant negative experiments. In agreement with these in vitro observations, tissue immunofluorescence analysis showed increased co-localization of GSK3β, APC, and Axin, with early endosome antigen 1- and Rab5-positive early endosomes in clinical samples of oral dysplasia. Collectively, these data indicate that increased Rab5 activity and endosomal sequestration of the β-catenin destruction complex leads to stabilization and nuclear accumulation of β-catenin in oral dysplasia.
Collapse
Affiliation(s)
- Montserrat Reyes
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sebastián Venegas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
10
|
Arriagada C, Silva P, Millet M, Solano L, Moraga C, Torres VA. Focal adhesion kinase-dependent activation of the early endocytic protein Rab5 is associated with cell migration. J Biol Chem 2019; 294:12836-12845. [PMID: 31292193 DOI: 10.1074/jbc.ra119.008667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) is a central regulator of integrin-dependent cell adhesion and migration and has recently been shown to co-localize with endosomal proteins. The early endocytic protein Rab5 controls integrin trafficking, focal adhesion disassembly, and cell migration and has been shown to be activated upon integrin engagement by mechanisms that remain unclear. Because FAK is a critical regulator of integrin-dependent signaling and Rab5 recapitulates FAK-mediated effects, we evaluated the possibility that FAK activates Rab5 and contributes to cell migration. Pulldown assays revealed that Rab5-GTP levels are decreased upon treatment with a pharmacological inhibitor of FAK, PF562,271, in resting A549 cells. These events were associated with decreased peripheral Rab5 puncta and a reduced number of early endosome antigen 1 (EEA1)-positive early endosomes. Accordingly, as indicated by FAK inhibition experiments and in FAK-null fibroblasts, adhesion-induced FAK activity increased Rab5-GTP levels. In fact, expression of WT FAK and FAK/Y180A/M183A (open conformation), but not FAK/Arg454 (kinase-dead), augmented Rab5-GTP levels in FAK-null fibroblasts and A549 cells. Moreover, expression of a GDP-bound Rab5 mutant (Rab5/S34N) or shRNA-mediated knockdown of endogenous Rab5 prevented FAK-induced A549 cell migration, whereas expression of WT or GTP-bound Rab5 (Rab5/Q79L), but not Rab5/S34N, promoted cell migration in FAK-null fibroblasts. Mechanistically, FAK co-immunoprecipitated with the GTPase-activating protein p85α in a phosphorylation (Tyr397)-dependent manner, preventing Rab5-GTP loading, as shown by knockdown and transfection recovery experiments. Taken together, these results reveal that FAK activates Rab5, leading to cell migration.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile.,Faculty of Health Sciences, Universidad Central de Chile, Santiago 8380000, Chile
| | - Martial Millet
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Luis Solano
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Moraga
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile .,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
11
|
Marshall JDS, Whitecross DE, Mellor P, Anderson DH. Impact of p85α Alterations in Cancer. Biomolecules 2019; 9:biom9010029. [PMID: 30650664 PMCID: PMC6359268 DOI: 10.3390/biom9010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in the regulation of cell signaling, proliferation, survival, migration and vesicle trafficking in normal cells and is frequently deregulated in many cancers. The p85α protein is the most characterized regulatory subunit of the class IA PI3Ks, best known for its regulation of the p110-PI3K catalytic subunit. In this review, we will discuss the impact of p85α mutations or alterations in expression levels on the proteins p85α is known to bind and regulate. We will focus on alterations within the N-terminal half of p85α that primarily regulate Rab5 and some members of the Rho-family of GTPases, as well as those that regulate PTEN (phosphatase and tensin homologue deleted on chromosome 10), the enzyme that directly counteracts PI3K signaling. We highlight recent data, mapping the interaction surfaces of the PTEN⁻p85α breakpoint cluster region homology (BH) domain, which sheds new light on key residues in both proteins. As a multifunctional protein that binds and regulates many different proteins, p85α mutations at different sites have different impacts in cancer and would necessarily require distinct treatment strategies to be effective.
Collapse
Affiliation(s)
- Jeremy D S Marshall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Dielle E Whitecross
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
12
|
Morlon-Guyot J, El Hajj H, Martin K, Fois A, Carrillo A, Berry L, Burchmore R, Meissner M, Lebrun M, Daher W. A proteomic analysis unravels novel CORVET and HOPS proteins involved in Toxoplasma gondii
secretory organelles biogenesis. Cell Microbiol 2018; 20:e12870. [DOI: 10.1111/cmi.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Hiba El Hajj
- Departments of Internal Medicine and Experimental Pathology, Immunology and Microbiology; American University of Beirut; Beirut Lebanon
| | - Kevin Martin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Adrien Fois
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Amandine Carrillo
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | | | - Markus Meissner
- Wellcome Centre for Molecular Parasitology; University of Glasgow; Glasgow UK
- Department of Veterinary Sciences, Experimental Parasitology; Ludwig-Maximilians-Universität München; Munich Germany
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| |
Collapse
|
13
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
14
|
Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol 2018; 82:105-117. [PMID: 29410361 DOI: 10.1016/j.semcdb.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/22/2022]
Abstract
Caspase-8 is involved in a number of cellular functions, with the most well established being the control of cell death. Yet caspase-8 is unique among the caspases in that it acts as an environmental sensor, transducing a range of signals to cells, modulating responses that extend far beyond simple survival. Ranging from the control of apoptosis and necroptosis and gene regulation to cell adhesion and migration, caspase-8 uses proteolytic and non-proteolytic functions to alter cell behavior. Novel interacting partners provide mechanisms for caspase-8 to position itself at signaling nodes that affect a variety of signaling pathways. Here, we examine the catalytic and noncatalytic modes of action by which caspase-8 influences cell adhesion and migration. The mechanisms vary from post-cleavage remodeling of the cytoskeleton to signaling elements that control focal adhesion turnover. This is facilitated by caspase-8 interaction with a host of cell proteins ranging from the proteases caspase-3 and calpain-2 to adaptor proteins such as p85 and Crk, to the Src family of tyrosine kinases.
Collapse
|
15
|
Abstract
Roles for cell death in development, homeostasis, and the control of infections and cancer have long been recognized. Although excessive cell damage results in passive necrosis, cells can be triggered to engage molecular programs that result in cell death. Such triggers include cellular stress, oncogenic signals that engage tumor suppressor mechanisms, pathogen insults, and immune mechanisms. The best-known forms of programmed cell death are apoptosis and a recently recognized regulated necrosis termed necroptosis. Of the two best understood pathways of apoptosis, the extrinsic and intrinsic (mitochondrial) pathways, the former is induced by the ligation of death receptors, a subset of the TNF receptor (TNFR) superfamily. Ligation of these death receptors can also induce necroptosis. The extrinsic apoptosis and necroptosis pathways regulate each other and their balance determines whether cells live. Integral in the regulation and initiation of death receptor-mediated activation of programmed cell death is the aspartate-specific cysteine protease (caspase)-8. This review describes the role of caspase-8 in the initiation of extrinsic apoptosis execution and the mechanism by which caspase-8 inhibits necroptosis. The importance of caspase-8 in the development and homeostasis and the way that dysfunctional caspase-8 may contribute to the development of malignancies in mice and humans are also explored.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Silva P, Mendoza P, Rivas S, Díaz J, Moraga C, Quest AFG, Torres VA. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis. Oncotarget 2018; 7:29548-62. [PMID: 27121131 PMCID: PMC5045416 DOI: 10.18632/oncotarget.8794] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pablo Mendoza
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Solange Rivas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Moraga
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC) and Program of Cell and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Mendoza PA, Silva P, Díaz J, Arriagada C, Canales J, Cerda O, Torres VA. Calpain2 mediates Rab5-driven focal adhesion disassembly and cell migration. Cell Adh Migr 2017; 12:185-194. [PMID: 29099266 DOI: 10.1080/19336918.2017.1377388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The early endosome protein Rab5 was recently shown to promote cell migration by enhancing focal adhesion disassembly through mechanisms that remain elusive. Focal adhesion disassembly is associated to proteolysis of talin, in a process that requires calpain2. Since calpain2 has been found at vesicles and endosomal compartments, we hypothesized that Rab5 stimulates calpain2 activity, leading to enhanced focal adhesion disassembly in migrating cells. We observed that calpain2 co-localizes with EEA1-positive early endosomes and co-immunoprecipitates with EEA1 and Rab5 in A549 lung carcinoma cells undergoing spreading, whereas Rab5 knock-down decreased the accumulation of calpain2 at early endosomal-enriched fractions. In addition, Rab5 silencing decreased calpain2 activity, as shown by cleavage of the fluorogenic substrate tBOC-LM-CMAC and the endogenous substrate talin. Accordingly, Rab5 promoted focal adhesion disassembly in a calpain2-dependent manner, as expression of GFP-Rab5 accelerated focal adhesion disassembly in nocodazole-synchronized cells, whereas pharmacological inhibition of calpain2 with N-acetyl-Leu-Leu-Met prevented both focal adhesion disassembly and cell migration induced by Rab5. In summary, these data uncover Rab5 as a novel regulator of calpain2 activity and focal adhesion proteolysis leading to cell migration.
Collapse
Affiliation(s)
- Pablo A Mendoza
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,b Molecular Pathology Laboratory , Institute of Biochemistry and Microbiology, Sciences Faculty, Universidad Austral de Chile , Valdivia , Chile
| | - Patricio Silva
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,c Faculty of Health Sciences, Universidad Central de Chile , Santiago , Chile
| | - Jorge Díaz
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,d Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santiago , Chile
| | - Cecilia Arriagada
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile
| | - Jimena Canales
- e Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Oscar Cerda
- e Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile.,f Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Chile , Santiago , Chile
| | - Vicente A Torres
- a Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile , Santiago , Chile.,d Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santiago , Chile
| |
Collapse
|
18
|
Chan L, Hong J, Pan J, Li J, Wen Z, Shi H, Ding J, Luo X. Role of Rab5 in the formation of macrophage-derived foam cell. Lipids Health Dis 2017; 16:170. [PMID: 28899395 PMCID: PMC5596464 DOI: 10.1186/s12944-017-0559-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
Abstract
Background Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Methods Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Results Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Conclusions Rab5 plays an important role in modulating the intracellular cholesterol of macrophages and consequently mediating the formation of foam cells.
Collapse
Affiliation(s)
- Lokwern Chan
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Jin Hong
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Zhichao Wen
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, People's Republic of China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
19
|
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends Cell Biol 2017; 27:322-339. [PMID: 28188028 DOI: 10.1016/j.tcb.2017.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Apoptosis is a crucial program of cell death that controls development and homeostasis of multicellular organisms. The main initiators and executors of this process are the Cysteine-dependent ASPartate proteASES - caspases. A number of regulatory circuits tightly control caspase processing and activity. One of the most important, yet, at the same time still poorly understood control mechanisms of activation of caspases involves their post-translational modifications. The addition and/or removal of chemical groups drastically alters the catalytic activity of caspases or stimulates their nonapoptotic functions. In this review, we will describe and discuss the roles of key caspase modifications such as phosphorylation, ubiquitination, nitrosylation, glutathionylation, SUMOylation, and acetylation in the regulation of apoptotic cell death and cell survival.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
20
|
Caspase-8 expression and its Src-dependent phosphorylation on Tyr380 promote cancer cell neoplastic transformation and resistance to anoikis. Exp Cell Res 2016; 347:114-122. [PMID: 27432652 DOI: 10.1016/j.yexcr.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022]
Abstract
Caspase-8 expression is lost in a small percentage of tumors suggesting that the retention of its functionality may positively contribute to tumor progression. Consistently, several non-apoptotic functions of Caspase-8 have been identified and Caspase-8 has been shown to modulate cell adhesion, migration and to promote tumor progression. We have previously identified the Src-dependent phosphorylation of Caspase-8 on Tyr380 as a molecular mechanism to downregulate the proapoptotic function of Caspase-8; this phosphorylation occurs in colon cancer and may promote cell migration in neuroblastoma cell lines. However, the occurrence of Caspase-8 phosphorylation on Tyr380 and its significance in different carcinoma cellular models, have not been clarified yet. Here we show that Caspase-8 expression may promote cell transformation in glioblastoma and in hepatocarcinoma cell lines. In these systems Caspase-8 is phosphorylated on Tyr380 in a Src kinase dependent manner and this phosphorylation is required for transformation and it is enhanced by hypoxic conditions. Using a cancer cellular model characterized by Src constitutive activation engineered to express either Caspase-8-wt or Caspase-8-Y380F we could show that Caspase-8 expression and its phosphorylation on Tyr380, but not its enzymatic activity, promote in vitro cell transformation and resistance to anoikis. This work demonstrates a dual role for Caspase-8 in cancer, suggesting that Tyr380 phosphorylation may represent a molecular switch to hijack its activity from tumor suppressor to tumor promoter.
Collapse
|
21
|
Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene 2016; 35:5629-5640. [PMID: 27109099 PMCID: PMC5095593 DOI: 10.1038/onc.2016.99] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/18/2015] [Accepted: 12/25/2015] [Indexed: 12/14/2022]
Abstract
Caspase-8 is a key initiator of apoptotic cell death where it functions as the apical protease in death receptor-mediated apoptosis triggered via the death-inducing signalling complex (DISC). However, the observation that caspase-8 is upregulated in many common tumour types led to the discovery of alternative non-apoptotic, pro-survival functions, many of which are contingent on phosphorylation of a tyrosine residue (Y380) found in the linker region between the two catalytic domains of the enzyme. Furthermore, Src-mediated Y380 phosphorylation leads to increased resistance to CD95-induced apoptosis; however, the mechanism underlying this impaired response to extrinsic apoptotic stimuli has not been identified. Consequently, we have employed a number of model systems to further dissect this protective mechanism. First, using an in vitro DISC model together with recombinant procaspase-8 variants, we show that Y380 phosphorylation inhibits procaspase-8 activation at the CD95 DISC, thereby preventing downstream activation of the caspase cascade. Second, we validated this finding in a cellular context using transfected neuroblastoma cell lines deficient in caspase-8. Reconstitution of these lines with phosphomimetic-caspase-8 results in increased resistance to CD95-mediated apoptosis and enhanced cell migration. When the in vitro DISC is assembled in the presence of cell lysate, caspase-8 Y380 phosphorylation attenuates DISC activity by inhibiting procaspase-8 autoproteolytic activity but not recruitment or homodimerization of caspase-8 within the complex. Once incorporated into the DISC, phosphorylated caspase-8 is unable to be released from the complex; this inhibits further cycling and release of active catalytic subunits into the cytoplasm, thus resulting in increased apoptotic resistance. Taken together, our novel findings expand our understanding of the key mechanisms underlying the anti-apoptotic functions of caspase-8 which may act as a critical block to existing antitumour therapies. Importantly, reversal or inhibition of caspase-8 phosphorylation may prove a valuable avenue to explore for sensitization of resistant tumours to extrinsic apoptotic stimuli.
Collapse
|
22
|
Tsang JLY, Jia SH, Parodo J, Plant P, Lodyga M, Charbonney E, Szaszi K, Kapus A, Marshall JC. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src. PLoS One 2016; 11:e0153946. [PMID: 27101103 PMCID: PMC4839753 DOI: 10.1371/journal.pone.0153946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival.
Collapse
Affiliation(s)
- Jennifer LY Tsang
- Division of Critical Care, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Critical Care, Department of Medicine, Niagara Health System, Niagara, Ontario, Canada
- * E-mail:
| | - Song Hui Jia
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Jean Parodo
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Pamela Plant
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Emmanuel Charbonney
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche de “Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Katalin Szaszi
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Surgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Surgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 2015; 6:135-44. [PMID: 26317377 PMCID: PMC4601184 DOI: 10.1080/21541248.2015.1050152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023] Open
Abstract
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon.
Collapse
Affiliation(s)
- N Porther
- Department of Biological Sciences; Florida International University; Miami, FL USA
| | - MA Barbieri
- Department of Biological Sciences; Florida International University; Miami, FL USA
- Biomolecular Sciences Institute; Florida International University; Miami, FL USA
- Fairchild Tropical Botanic Garden; Coral Gables, FL USA
- International Center of Tropical Botany; Florida International University; Miami, FL USA
| |
Collapse
|
24
|
Torres VA. Rab'ing tumor cell migration and invasion: focal adhesion disassembly driven by Rab5. Cell Adh Migr 2015; 8:84-7. [PMID: 24727246 DOI: 10.4161/cam.28510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The small GTPase Rab5 has been extensively studied in the context of endocytic trafficking because it is critical in the regulation of early endosome dynamics. In addition to this canonical role, evidence obtained in recent years implicates Rab5 in the regulation of cell migration. This novel role of Rab5 is based not only on an indirect relationship between cell migration and endosomal trafficking as separate processes, but also on the direct regulation of signaling proteins implicated in cell migration. However, the precise mechanisms underlying this connection have remained elusive. Recent studies have shown that the activation of Rab5 is a critical event for maintaining the dynamics of focal adhesions, which is fundamental in regulating not only cell migration but also tumor cell invasion.
Collapse
Affiliation(s)
- Vicente A Torres
- Institute for Research in Dental Sciences; Faculty of Dentistry; Universidad de Chile; Santiago, Chile
| |
Collapse
|
25
|
Díaz J, Mendoza P, Silva P, Quest AFG, Torres VA. A novel caveolin-1/p85α/Rab5/Tiam1/Rac1 signaling axis in tumor cell migration and invasion. Commun Integr Biol 2014; 7:972850. [PMID: 26842651 PMCID: PMC4594484 DOI: 10.4161/19420889.2014.972850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
The small GTPase Rab5 has been frequently studied in the context of intracellular trafficking, but evidence obtained more recently has implicated Rab5 as a critical regulator of cell adhesion, migration and invasion in both normal and tumor cells. These recent findings showing that Rab5 promotes Rac1 activation and focal adhesion dynamics have highlighted the question as to what the upstream regulators of Rab5 activity might be and how these are connected to cell migration. The efforts to shed light on this issue identified in metastatic cancer cells a novel Caveolin‑1/p85α/Rab5/Tiam1/Rac1 signaling axis relevant to cancer cell migration and invasion. In this addendum, we highlight aspects concerning Rab5 regulation in this context.
Collapse
Affiliation(s)
- Jorge Díaz
- Institute for Research in Dental Sciences;
Faculty of Dentistry; Universidad de Chile;
Santiago, Chile
- Center for Molecular Studies of the Cell
(CEMC); Advanced Center for Chronic Diseases (ACCDiS); Cell
and Molecular Biology Program; Biomedical Sciences Institute (ICBM);
Faculty of Medicine; Universidad de Chile; Santiago,
Chile
| | - Pablo Mendoza
- Institute for Research in Dental Sciences;
Faculty of Dentistry; Universidad de Chile;
Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences;
Faculty of Dentistry; Universidad de Chile;
Santiago, Chile
| | - Andrew FG Quest
- Center for Molecular Studies of the Cell
(CEMC); Advanced Center for Chronic Diseases (ACCDiS); Cell
and Molecular Biology Program; Biomedical Sciences Institute (ICBM);
Faculty of Medicine; Universidad de Chile; Santiago,
Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences;
Faculty of Dentistry; Universidad de Chile;
Santiago, Chile
| |
Collapse
|
26
|
Díaz J, Mendoza P, Ortiz R, Díaz N, Leyton L, Stupack D, Quest AFG, Torres VA. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion. J Cell Sci 2014; 127:2401-6. [PMID: 24659799 DOI: 10.1242/jcs.141689] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion.
Collapse
Affiliation(s)
- Jorge Díaz
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Santiago, Chile Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile
| | - Pablo Mendoza
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Santiago, Chile
| | - Rina Ortiz
- Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile
| | - Natalia Díaz
- Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile
| | - Lisette Leyton
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile Program of Cell and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile
| | - Dwayne Stupack
- Moores UCSD Cancer Center, University of California, La Jolla, CA 92093, USA
| | - Andrew F G Quest
- Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile Program of Cell and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Calle Sergio Livingstone 943, Santiago, Chile Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Avenida Independencia 1027, Santiago, Chile
| |
Collapse
|
27
|
Graf RP, Keller N, Barbero S, Stupack D. Caspase-8 as a regulator of tumor cell motility. Curr Mol Med 2014; 14:246-54. [PMID: 24467204 PMCID: PMC4106798 DOI: 10.2174/1566524014666140128111951] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 01/31/2023]
Abstract
The caspases are a family of ubiquitously expressed cysteine proteases best known for their roles in programmed cell death. However, caspases play a number of other roles in vertebrates. In the case of caspase-8, loss of expression is an embryonic lethal phenotype, and caspase-8 plays roles in suppressing cellular necrosis, promoting differentiation and immune signaling, regulating autophagy, and promoting cellular migration. Apoptosis and migration require localization of caspase-8 in the periphery of the cells, where caspase-8 acts as part of distinct biosensory complexes that either promote migration in appropriate cellular microenvironments, or cell death in inappropriate settings. In the cellular periphery, caspase-8 interacts with components of the focal adhesion complex in a tyrosine-kinase dependent manner, promoting both cell migration in vitro and metastasis in vivo. Mechanistically, caspase-8 interacts with components of both focal adhesions and early endosomes, enhancing focal adhesion turnover and promoting rapid integrin recycling to the cell surface. Clinically, this suggests that the expression of caspase-8 may not always be a positive prognostic sign, and that the role of caspase-8 in cancer progression is likely context-dependent.
Collapse
Affiliation(s)
| | | | | | - D Stupack
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 0803, 3855 Health Sciences Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
POT1b regulates phagocytosis and NO production by modulating activity of the small GTPase Rab5. Biochem Biophys Res Commun 2013; 439:413-7. [DOI: 10.1016/j.bbrc.2013.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 01/08/2023]
|
29
|
Kasmapour B, Cai L, Gutierrez MG. Spatial distribution of phagolysosomes is independent of the regulation of lysosome position by Rab34. Int J Biochem Cell Biol 2013; 45:2057-65. [PMID: 23871933 DOI: 10.1016/j.biocel.2013.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 11/20/2022]
Abstract
Within a cell, the regulation of organelle positioning is considered to be critical in spatio-temporal responses. The position of late endocytic organelles (named here lysosomes for simplicity) is tightly controlled and has a functional impact on processes like endocytosis, phagocytosis and autophagocytosis. The cytoplasmic distribution profile of lysosomes can be easily determined in cells where the cytoplasm/nuclear ratio in a cross-section area is high. However, determining lysosomal position in cells with lower cytoplasm/nuclear ratio, such as macrophages is more challenging. Here, we describe a method that can be efficiently and accurately used to determine the position of organelles in macrophages using confocal microscopy in two-dimensional (2D) images. Using this approach in macrophages, we confirmed previous observations in epithelial cells that both changes in cytoplasmic pH and the levels of active Rab34 induced a re-distribution of lysosomes to the cell centre or periphery. Noteworthy is that this Rab34-dependent re-distribution of lysosomes did not significantly affect the spatial distribution profile of phagolysosomes in the cytoplasm. We conclude that although Rab34 regulates both lysosomal positioning and lysosome to phagosome fusion, the latter effect is not due to the regulation of the cytoplasmic accessibility of lysosomes to phagosomes by Rab34.
Collapse
Affiliation(s)
- Bahram Kasmapour
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | |
Collapse
|
30
|
Mendoza P, Ortiz R, Díaz J, Quest AFG, Leyton L, Stupack D, Torres VA. Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. J Cell Sci 2013; 126:3835-47. [PMID: 23813952 DOI: 10.1242/jcs.119727] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Migration and invasion are essential steps associated with tumor cell metastasis and increasing evidence points towards endosome trafficking being essential in this process. Indeed, the small GTPase Rab5, a crucial regulator of early endosome dynamics, promotes cell migration in vitro and in vivo. Precisely how Rab5 participates in these events remains to be determined. Considering that focal adhesions represent structures crucial to cell migration, we specifically asked whether Rab5 activation promoted focal adhesion disassembly and thereby facilitated migration and invasion of metastatic cancer cells. Pulldown and biosensor assays revealed that Rab5-GTP loading increased at the leading edge of migrating tumor cells. Additionally, targeting of Rab5 by different shRNA sequences, but not control shRNA, decreased Rab5-GTP levels, leading to reduced cell spreading, migration and invasiveness. Re-expression in knockdown cells of wild-type Rab5, but not the S34N mutant (GDP-bound), restored these properties. Importantly, Rab5 association with the focal adhesion proteins vinculin and paxillin increased during migration, and expression of wild-type, but not GDP-bound Rab5, accelerated focal adhesion disassembly, as well as FAK dephosphorylation on tyrosine 397. Finally, Rab5-driven invasiveness required focal adhesion disassembly, as treatment with the FAK inhibitor number 14 prevented Matrigel invasion and matrix metalloproteinase release. Taken together, these observations show that Rab5 activation is required to enhance cancer cell migration and invasion by promoting focal adhesion disassembly.
Collapse
Affiliation(s)
- Pablo Mendoza
- Department of Basic and Communitarian Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380-492, Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
Graf R, Barbero S, Keller N, Chen L, Uryu S, Schlaepfer D, Stupack D. Src-inducible association of CrkL with procaspase-8 promotes cell migration. Cell Adh Migr 2013; 7:362-9. [PMID: 23751956 DOI: 10.4161/cam.25284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Procaspase-8, the zymogen form of the apoptosis-initiator caspase-8, undergoes phosphorylation following integrin-mediated cell attachment to an extracellular matrix substrate. Concordant with cell attachment to fibronectin, a population of procaspase-8 becomes associated with a peripheral insoluble compartment that includes focal complexes and lamellar microfilaments. Phosphorylation of procaspase-8 both impairs its maturation to the proapoptotic form and can promote cell migration. Here we show that the cytoskeletal adaptor protein CrkL promotes caspase-8 recruitment to the peripheral spreading edge of cells, and that the catalytic domain of caspase-8 directly interacts with the SH2 domain of CrkL. We show that the interaction is abolished by shRNA-mediated silencing of Src, in Src-deficient MEFs, and by pharmacologic inhibitors of the kinase. The results provide insight into how tyrosine kinases may act to coordinate the suppression caspase-8 mediated apoptosis, while promoting cell invasion.
Collapse
Affiliation(s)
- Ryon Graf
- Department of Reproductive Medicine; Division of Gynecologic Oncology; University of California San Diego School of Medicine; La Jolla, CA USA; The UCSD Moores Cancer Center; La Jolla, CA USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Xiao J, Broz P, Puri AW, Deu E, Morell M, Monack DM, Bogyo M. A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases. J Am Chem Soc 2013; 135:9130-8. [PMID: 23701470 DOI: 10.1021/ja403521u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caspases are cysteine proteases that play essential roles in apoptosis and inflammation. Unfortunately, their highly conserved active sites and overlapping substrate specificities make it difficult to use inhibitors or activity-based probes to study the function, activation, localization, and regulation of individual members of this family. Here we describe a strategy to engineer a caspase to contain a latent nucleophile that can be targeted by a probe containing a suitably placed electrophile, thereby allowing specific, irreversible inhibition and labeling of only the engineered protease. To accomplish this, we have identified a non-conserved residue on the small subunit of all caspases that is near the substrate-binding pocket and that can be mutated to a non-catalytic cysteine residue. We demonstrate that an active-site probe containing an irreversible binding acrylamide electrophile can specifically target this cysteine residue. Here we validate the approach using the apoptotic mediator, caspase-8, and the inflammasome effector, caspase-1. We show that the engineered enzymes are functionally identical to the wild-type enzymes and that the approach allows specific inhibition and direct imaging of the engineered targets in cells. Therefore, this method can be used to image localization and activation as well as the functional contributions of individual caspase proteases to the process of cell death or inflammation.
Collapse
Affiliation(s)
- Junpeng Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid. PLoS One 2013; 8:e55250. [PMID: 23418437 PMCID: PMC3572128 DOI: 10.1371/journal.pone.0055250] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/21/2012] [Indexed: 12/28/2022] Open
Abstract
Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria.
Collapse
|
34
|
Fiandalo M, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol 2012; 34:165-175. [PMID: 23070001 PMCID: PMC3721730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".
Collapse
|
35
|
Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 2011; 441:23-37. [DOI: 10.1042/bj20111164] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α–p110 and p85α–PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α–PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.
Collapse
|
36
|
Gailite I, Egger-Adam D, Wodarz A. The phosphoinositide-associated protein Rush hour regulates endosomal trafficking in Drosophila. Mol Biol Cell 2011; 23:433-47. [PMID: 22160599 PMCID: PMC3268723 DOI: 10.1091/mbc.e11-02-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endocytosis regulates multiple cellular processes, including the protein composition of the plasma membrane, intercellular signaling, and cell polarity. We have identified the highly conserved protein Rush hour (Rush) and show that it participates in the regulation of endocytosis. Rush localizes to endosomes via direct binding of its FYVE (Fab1p, YOTB, Vac1p, EEA1) domain to phosphatidylinositol 3-phosphate. Rush also directly binds to Rab GDP dissociation inhibitor (Gdi), which is involved in the activation of Rab proteins. Homozygous rush mutant flies are viable but show genetic interactions with mutations in Gdi, Rab5, hrs, and carnation, the fly homologue of Vps33. Overexpression of Rush disrupts progression of endocytosed cargo and increases late endosome size. Lysosomal marker staining is decreased in Rush-overexpressing cells, pointing to a defect in the transition between late endosomes and lysosomes. Rush also causes formation of endosome clusters, possibly by affecting fusion of endosomes via an interaction with the class C Vps/homotypic fusion and vacuole protein-sorting (HOPS) complex. These results indicate that Rush controls trafficking from early to late endosomes and from late endosomes to lysosomes by modulating the activity of Rab proteins.
Collapse
Affiliation(s)
- Ieva Gailite
- Stammzellbiologie, Abteilung Anatomie und Zellbiologie, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | |
Collapse
|
37
|
Yang PS, Yin PH, Tseng LM, Yang CH, Hsu CY, Lee MY, Horng CF, Chi CW. Rab5A is associated with axillary lymph node metastasis in breast cancer patients. Cancer Sci 2011; 102:2172-8. [PMID: 21895870 DOI: 10.1111/j.1349-7006.2011.02089.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The expression of Rab proteins has been associated with cancer. However, few data are available on Rab5A expression in human breast cancer or its impact on disease progression. First, we examined the functional role of Rab5A in breast cancer cells. The expression of Rab5A in MDA-MB-231 cells can be stimulated by epidermal growth factor in a dose-dependent manner. The epidermal growth factor-induced increase of Rab5A expression correlated well with enhanced migration in wound healing migration assays in these cells. Furthermore, we evaluated the expression of Rab5A in breast cancer specimens using immunohistochemical staining, then analyzed the relationship between the expression of Rab5A and clinicopathological parameters. The increased expression of Rab5A protein in 123 breast cancer samples was associated with higher histological grade (P = 0.004), more lymphovascular invasion (P = 0.027), more axillary lymph node (LN) metastasis (P = 0.008), and a higher number of axillary LN metastases (P = 0.043). Among 218 axillary LNs of more than 10 breast cancer patients with node metastases, 167 metastatic LNs were found to have increased Rab5A expression. Rab5A is associated with axillary LN metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Po-Sheng Yang
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
It is becoming clear that intracellular signaling events are intimately linked with the membrane transport processes. In addition to the long known role of endocytosis in downregulating plasma membrane receptors, more recent data uncover several sophisticated modes by which endocytosis affects the type and duration of signals. Particularly striking are various roles of endocytic compartments as membrane platforms for compartmentalized assembly or sequestration of specific signaling complexes. Here we review some recent examples illustrating how endosomes may mediate ligand-stimulated apoptotic signaling and how multivesicular bodies affect Wnt signaling by regulated sequestration of signaling molecules or their secretion in exosomes. We also discuss evidence documenting the involvement of endocytic proteins in the regulation of p53 activity and stability, which suggests a possible cross-talk between endocytic processes and transcriptional responses.
Collapse
Affiliation(s)
- Anna Hupalowska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, Warsaw, Poland
| | | |
Collapse
|
39
|
Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schütze S. Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol 2011; 90:467-75. [DOI: 10.1016/j.ejcb.2010.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023] Open
|
40
|
Leclerc EA, Gazeilles L, Serre G, Guerrin M, Jonca N. The ubiquitous dermokine delta activates Rab5 function in the early endocytic pathway. PLoS One 2011; 6:e17816. [PMID: 21423773 PMCID: PMC3053396 DOI: 10.1371/journal.pone.0017816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
The expression of the recently identified dermokine (Dmkn) gene leads to four families of proteins with as yet unknown functions. The secreted α, β and γ isoforms share an epidermis-restricted expression pattern, whereas the δ isoform is intracellular and ubiquitous. To get an insight into Dmknδ function, we performed yeast two-hybrid screening and identified the small GTPases Rab5 as partners for Dmknδ. The Rab5 proteins are known to regulate membrane docking and fusion in the early endocytic pathway. GST pull-down assays confirmed the direct interaction between Rab5 and Dmknδ. Transient expression of Dmknδ in HeLa cells led to the formation of punctate structures colocalized with endogenous Rab5 and clathrin, indicating Dmknδ involvement in the early steps of endocytosis. Dmknδ indeed colocalized with transferrin at early stages of endocytosis, but did not modulate its endocytosis or recycling kinetics. We also showed that Dmknδ was able to bind both inactive (GDP-bound) and active (GTP-bound) forms of Rab5 in vitro but preferentially targeted GDP-bound form in HeLa cells. Interestingly, Dmknδ expression rescued the Rab5S34N-mediated inhibition of endosome fusion. Moreover, Dmknδ caused the enlargement of vesicles positive for Rab5 by promoting GTP loading onto the small GTPase. Together our data reveal that Dmknδ activates Rab5 function and thus is involved in the early endosomal trafficking.
Collapse
Affiliation(s)
- Emilie A. Leclerc
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Leila Gazeilles
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Guy Serre
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Marina Guerrin
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
| | - Nathalie Jonca
- UMR 5165 “Epidermis Differentiation and Rheumatoid Autoimmunity Unit”, CNRS – University Toulouse III (IFR 150, INSERM – CNRS – University Toulouse III – CHU), CHU Purpan, Toulouse, France
- * E-mail:
| |
Collapse
|
41
|
Mitra S, Cheng KW, Mills GB. Rab GTPases implicated in inherited and acquired disorders. Semin Cell Dev Biol 2010; 22:57-68. [PMID: 21147240 DOI: 10.1016/j.semcdb.2010.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/05/2023]
Abstract
The endocytotic machinery imports, transports and exports receptors and associated molecules between the plasma membrane and various cytoplasmic chambers resulting in selective recycling, degradation, or secretion of molecules and signaling complexes. Trafficking of receptors, growth factors, nutrients, cytokines, integrins as well as pathogens dictates the kinetics and magnitude of signal transduction cascades. Understandably, alterations in the 'fate' of such cargo complexes have profound physiologic and pathophysiologic implications. Rab GTPases regulate endocytosis by decorating intracellular vesicles and targeting these vesicles along with their cargoes to appropriate subcellular compartments. In the last decade, the number of genetic diseases driven by germline mutations in Rab GTPases or their interacting proteins, has increased and there is growing evidence of aberrant Rab GTPase function in acquired pathophysiologies such as immune deficiency, infection, obesity, diabetes and cancer.
Collapse
Affiliation(s)
- Shreya Mitra
- Department of Systems Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77054-1942, USA.
| | | | | |
Collapse
|
42
|
Zhao Y, Sui X, Ren H. From procaspase-8 to caspase-8: revisiting structural functions of caspase-8. J Cell Physiol 2010; 225:316-20. [PMID: 20568107 DOI: 10.1002/jcp.22276] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Caspase-8 is well-characterized to initiate an apoptotic pathway triggered by the external stimuli. The proximity-driven model recently has been proposed to interpret the activation mechanism of caspase-8 in so-far unprecedent detail, in which dimerization, autocleavage, and inhibitor of caspase-8 are indispensable. Intriguingly, death effector domains (DEDs) and ubiquitination after active caspase-8 is released into cytosol can also promote cell apoptosis indirectly. In addition to the proapoptotic role of caspase-8, there is emerging evidence to indicate that the precursor of caspase-8, procaspase-8, has an important function in cell adhesion and migration. Phosphorylation of caspase-8 by c-src controls these functions by preventing the conversion of procaspase-8 to caspase-8. This provides a mechanism to switch these opposing functions. In the migratory role, procaspase-8 interacts with the phosphatidylinositol-3-OH kinase (PI3K) regulatory subunit p85alpha and c-src to modulate signaling by Rac and extracellular signal-regulated kinase (ERK) 1/2, and promotes calpain2 activation. Here, the focus of this review is to highlight three respective aspects of caspase-8, including precursor functions, activation mechanism and maintenance of activity.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Oncology, The First Affiliated Hospital of Medical School of Xi'an Jiao Tong University, Xi'an Shaanxi Province, PR China.
| | | | | |
Collapse
|
43
|
Ehrenschwender M, Siegmund D, Wicovsky A, Kracht M, Dittrich-Breiholz O, Spindler V, Waschke J, Kalthoff H, Trauzold A, Wajant H. Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation. Cell Death Differ 2010; 17:1435-47. [PMID: 20379197 DOI: 10.1038/cdd.2010.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Constitutively active PI3K catalytic subunit alpha (PIK3CA) interfered with apoptosis induction downstream of death receptor-signaling complex formation allowing robust caspase-8 activation without triggering the execution steps of apoptosis. In mutant PIK3CA-expressing cells, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and CD95L stimulated nuclear factor kappaB (NFkappaB) activation, invasion, and transition to an amoeboid-like morphology. NFkappaB activation and adoption of amoeboid shape were inhibited by caspase-8 knockdown or FLIP-S expression, but only the cell morphology alterations required caspase-8 activity. Furthermore, we identified caspase-8-mediated, caspase-3-independent cleavage of the protein kinase rho-associated, coiled-coil containing protein kinase 1 as a novel mechanism for acquiring amoeboid shape and enhanced invasiveness in response to TRAIL and CD95L. Taken together, we provide evidence that mutated PIK3CA converts the 'tumor surveillance' activity of cancer cell-expressed death receptors and caspase-8 toward tumor promotion.
Collapse
Affiliation(s)
- M Ehrenschwender
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Torres VA, Mielgo A, Barbero S, Hsiao R, Wilkins JA, Stupack DG. Rab5 mediates caspase-8-promoted cell motility and metastasis. Mol Biol Cell 2009; 21:369-76. [PMID: 19923319 PMCID: PMC2808229 DOI: 10.1091/mbc.e09-09-0769] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Integrins signaling promotes nonapoptotic functions of caspase-8 via activation of small GTPases from the Rab and Rac families. Integrin ligation promotes Rab5 activity, which mediates subsequent activation of Rac1, cytoskeletal remodeling, and enhanced cell motility. Caspase-8 is a key apical sensory protein that governs cell responses to environmental cues, alternatively promoting apoptosis, proliferation, and cell migration. The proteins responsible for integration of these pathways, however, have remained elusive. Here, we reveal that Rab5 regulates caspase-8–dependent signaling from integrins. Integrin ligation leads to Rab5 activation, association with integrins, and activation of Rac, in a caspase-8–dependent manner. Rab5 activation promotes colocalization and coprecipitation of integrins with caspase-8, concomitant with Rab5 recruitment to integrin-rich regions such as focal adhesions and membrane ruffles. Moreover, caspase-8 expression promotes Rab5-mediated internalization and the recycling of β1 integrins, increasing cell migration independently of caspase catalytic activity. Conversely, Rab5 knockdown prevented caspase-8–mediated integrin signaling for Rac activation, cell migration, and apoptotic signaling, respectively. Similarly, Rab5 was critical for caspase-8–driven cell migration in vivo, because knockdown of Rab5 compromised the ability of caspase-8 to promote metastasis under nonapoptotic conditions. These studies identify Rab5 as a key integrator of caspase-8–mediated signal transduction downstream of integrins, regulating cell survival and migration in vivo and in vitro.
Collapse
Affiliation(s)
- Vicente A Torres
- Department of Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mielgo A, Torres VA, Schmid MC, Graf R, Zeitlin SG, Lee P, Shields DJ, Barbero S, Jamora C, Stupack DG. The death effector domains of caspase-8 induce terminal differentiation. PLoS One 2009; 4:e7879. [PMID: 19924290 PMCID: PMC2774162 DOI: 10.1371/journal.pone.0007879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/15/2009] [Indexed: 11/19/2022] Open
Abstract
The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.
Collapse
Affiliation(s)
- Ainhoa Mielgo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Vicente A. Torres
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Michael C. Schmid
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Ryon Graf
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Samantha G. Zeitlin
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Pedro Lee
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - David J. Shields
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Simone Barbero
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Colin Jamora
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Dwayne G. Stupack
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Paclitaxel promotes a caspase 8-mediated apoptosis through death effector domain association with microtubules. Oncogene 2009; 28:3551-62. [PMID: 19668227 PMCID: PMC2851247 DOI: 10.1038/onc.2009.210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubule-perturbing drugs have become front line chemotherapeutics, inducing cell cycle crisis as a major mechanism of action. However, these agents exhibit pleiotropic effects on cells, and can induce apoptosis via other means. Paclitaxel, a microtubule-stabilizing agent, induces a caspase-dependent apoptosis, though the precise mechanism(s) remain unclear. Here, we used genetic approaches to evaluate the role of caspase 8 in paclitaxel-mediated apoptosis. We observed that caspase 8-expressing cells are more sensitive to paclitaxel than caspase 8-deficient cells. Mechanistically, caspase 8 was found associated with microtubules, and this interaction increased following paclitaxel-treatment. The prodomains (DEDs) of caspase 8 were sufficient for interaction with microtubules, but the caspase 8 holoprotein was required for apoptosis. DED-only forms of caspase 8 were found in both primary and tumor cell lines, associating with perinuclear microtubules and the centrosome. Microtubule-association, and paclitaxel-sensitivity, depends upon a critical lysine (K156) within a microtubule-binding motif (KLD) in DED-b of caspase 8. The results reveal an unexpected pathway of apoptosis mediated by caspase 8.
Collapse
|