1
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Zou Y, Wang Y, Duan D, Suo X, Zhang Y. Identification and bioinformatics analysis of the DUS gene in Eimeria media. BMC Vet Res 2025; 21:5. [PMID: 39762967 PMCID: PMC11702072 DOI: 10.1186/s12917-024-04362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025] Open
Abstract
This study aims to explore the coding sequence (CDS) of the putative DUS gene in Eimeria media and assess its potential biological functions during the parasite's lifecycle. Initially, oocysts were isolated from fecal samples of rabbits infected with E. media, from which DNA and RNA were extracted. These extractions were used as templates for PCR to successfully amplify the CDS of the DUS gene, confirming its presence within the E. media genome. Further analysis using quantitative PCR (qPCR) demonstrated significantly higher expression of the DUS gene in the precocious line (PL) compared to the wild type (WT). This differential expression highlights a potential functional role for the DUS gene in influencing the development and sporulation processes of E. media, which may contribute to the precocious phenotype. Additionally, bioinformatics analysis provided insights into the evolutionary trends and structural characteristics of the DUS gene across different species, suggesting a broader biological significance. The elevated expression of the DUS gene in the PL suggests its critical involvement in the growth and reproductive processes of the parasite. This finding opens new avenues for research aimed at controlling E. media infection through targeted interventions in the DUS gene expression pathways.
Collapse
Affiliation(s)
- Yijin Zou
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yiyan Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Diyi Duan
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yuanyuan Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Kilz LM, Zimmermann S, Marchand V, Bourguignon V, Sudol C, Brégeon D, Hamdane D, Motorin Y, Helm M. Differential redox sensitivity of tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:12784-12797. [PMID: 39460624 PMCID: PMC11602153 DOI: 10.1093/nar/gkae964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Various transfer RNA (tRNA) modifications have recently been shown to regulate stress-dependent gene expression by modulating messenger RNA translation. Among these modifications, dihydrouridine stands out for its increase of tRNA structural flexibility. However, whether and how dihydrouridine synthesis reacts to environmental stimuli is largely unknown. In this study, we manipulated the intracellular redox state of Escherichia coli using paraquat, revealing differential sensitivities of the three tRNA-dihydrouridine synthases towards oxidative stress. Using liquid chromatography-mass spectrometry quantification of dihydrouridine in various knockout strains, we validated the use of a specific RNA sequencing method, namely AlkAnilineSeq, for the precise mapping of dihydrouridines throughout E. coli tRNAs. We found DusA showing high activity, followed by DusB and DusC, whose activity was decreased under paraquat treatment. The relative sensitivity is most plausibly explained by a paraquat-dependent drop of NADPH availability. These findings are substantiated by in vitro kinetics, revealing DusA as the most active enzyme, followed by DusB, while DusC showed little activity, likely related to the efficacy of the redox reaction of the flavin coenzyme with NADPH. Overall, our study underscores the intricate interplay between redox dynamics and tRNA modification processes, revealing a new facet of the regulatory mechanisms influencing cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lea-Marie Kilz
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Simone Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Claudia Sudol
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Damien Brégeon
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
| | - Djemel Hamdane
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
4
|
Matsuura J, Akichika S, Wei FY, Suzuki T, Yamamoto T, Watanabe Y, Valášek LS, Mukasa A, Tomizawa K, Chujo T. Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation. Commun Biol 2024; 7:1238. [PMID: 39354220 PMCID: PMC11445529 DOI: 10.1038/s42003-024-06942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
Collapse
Affiliation(s)
- Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takahiro Yamamoto
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Watanabe
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Toubdji S, Thullier Q, Kilz LM, Marchand V, Yuan Y, Sudol C, Goyenvalle C, Jean-Jean O, Rose S, Douthwaite S, Hardy L, Baharoglu Z, de Crécy-Lagard V, Helm M, Motorin Y, Hamdane D, Brégeon D. Exploring a unique class of flavoenzymes: Identification and biochemical characterization of ribosomal RNA dihydrouridine synthase. Proc Natl Acad Sci U S A 2024; 121:e2401981121. [PMID: 39078675 PMCID: PMC11317573 DOI: 10.1073/pnas.2401981121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Dihydrouridine (D), a prevalent and evolutionarily conserved base in the transcriptome, primarily resides in tRNAs and, to a lesser extent, in mRNAs. Notably, this modification is found at position 2449 in the Escherichia coli 23S rRNA, strategically positioned near the ribosome's peptidyl transferase site. Despite the prior identification, in E. coli genome, of three dihydrouridine synthases (DUS), a set of NADPH and FMN-dependent enzymes known for introducing D in tRNAs and mRNAs, characterization of the enzyme responsible for D2449 deposition has remained elusive. This study introduces a rapid method for detecting D in rRNA, involving reverse transcriptase-blockage at the rhodamine-labeled D2449 site, followed by PCR amplification (RhoRT-PCR). Through analysis of rRNA from diverse E. coli strains, harboring chromosomal or single-gene deletions, we pinpoint the yhiN gene as the ribosomal dihydrouridine synthase, now designated as RdsA. Biochemical characterizations uncovered RdsA as a unique class of flavoenzymes, dependent on FAD and NADH, with a complex structural topology. In vitro assays demonstrated that RdsA dihydrouridylates a short rRNA transcript mimicking the local structure of the peptidyl transferase site. This suggests an early introduction of this modification before ribosome assembly. Phylogenetic studies unveiled the widespread distribution of the yhiN gene in the bacterial kingdom, emphasizing the conservation of rRNA dihydrouridylation. In a broader context, these findings underscore nature's preference for utilizing reduced flavin in the reduction of uridines and their derivatives.
Collapse
Affiliation(s)
- Sabrine Toubdji
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France
| | - Quentin Thullier
- Université de Lorraine, CNRS, Institut National de la Santé et de la Recherche Médicale, Ingénierie-Biologie-Santé en Lorraine, Epitranscriptomique et Séquençage Core Facility, F-54000Nancy, France
- Université de Lorraine, CNRS, Ingénierie Moléculaire, Cellulaire et Physiopathologie, F-54000Nancy, France
| | - Lea-Marie Kilz
- Institut für Pharmazeutische und Biomedizinische Wissenschaften, Johannes Gutenberg-Universität, MainzD-55128, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, Institut National de la Santé et de la Recherche Médicale, Ingénierie-Biologie-Santé en Lorraine, Epitranscriptomique et Séquençage Core Facility, F-54000Nancy, France
- Université de Lorraine, CNRS, Ingénierie Moléculaire, Cellulaire et Physiopathologie, F-54000Nancy, France
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL32611
| | - Claudia Sudol
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France
| | - Catherine Goyenvalle
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230Odense M, Denmark
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230Odense M, Denmark
| | - Léo Hardy
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Mark Helm
- Institut für Pharmazeutische und Biomedizinische Wissenschaften, Johannes Gutenberg-Universität, MainzD-55128, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, Institut National de la Santé et de la Recherche Médicale, Ingénierie-Biologie-Santé en Lorraine, Epitranscriptomique et Séquençage Core Facility, F-54000Nancy, France
- Université de Lorraine, CNRS, Ingénierie Moléculaire, Cellulaire et Physiopathologie, F-54000Nancy, France
| | - Djemel Hamdane
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France
| | - Damien Brégeon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
| |
Collapse
|
6
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
7
|
Sudol C, Kilz LM, Marchand V, Thullier Q, Guérineau V, Goyenvalle C, Faivre B, Toubdji S, Lombard M, Jean-Jean O, de Crécy-Lagard V, Helm M, Motorin Y, Brégeon D, Hamdane D. Functional redundancy in tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:5880-5894. [PMID: 38682613 PMCID: PMC11162810 DOI: 10.1093/nar/gkae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.
Collapse
Affiliation(s)
- Claudia Sudol
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Lea-Marie Kilz
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Quentin Thullier
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Catherine Goyenvalle
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Bruno Faivre
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Sabrine Toubdji
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Murielle Lombard
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL 32610, USA
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Damien Brégeon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Djemel Hamdane
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
8
|
Ji J, Yu NJ, Kleiner RE. Sequence- and Structure-Specific tRNA Dihydrouridylation by hDUS2. ACS CENTRAL SCIENCE 2024; 10:803-812. [PMID: 38680565 PMCID: PMC11046453 DOI: 10.1021/acscentsci.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs, and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site; however, the molecular basis for this exquisite selectivity is unknown, and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based cross-linking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes and in vitro dihydrouridylation assays. We find that hDUS2 exclusively modifies U20 across diverse tRNA substrates and identify a minimal GU sequence within the tRNA D loop that underlies selective substrate modification. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anticancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform for studying RNA modifying enzymes with sequence-defined activity-based probes.
Collapse
Affiliation(s)
- Jingwei Ji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Bou-Nader C, Pecqueur L, de Crécy-Lagard V, Hamdane D. Integrative Approach to Probe Alternative Redox Mechanisms in RNA Modifications. Acc Chem Res 2023; 56:3142-3152. [PMID: 37916403 PMCID: PMC10999249 DOI: 10.1021/acs.accounts.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA modifications found in most RNAs, particularly in tRNAs and rRNAs, reveal an abundance of chemical alterations of nucleotides. Over 150 distinct RNA modifications are known, emphasizing a remarkable diversity of chemical moieties in RNA molecules. These modifications play pivotal roles in RNA maturation, structural integrity, and the fidelity and efficiency of translation processes. The catalysts responsible for these modifications are RNA-modifying enzymes that use a striking array of chemistries to directly influence the chemical landscape of RNA. This diversity is further underscored by instances where the same modification is introduced by distinct enzymes that use unique catalytic mechanisms and cofactors across different domains of life. This phenomenon of convergent evolution highlights the biological importance of RNA modification and the vast potential within the chemical repertoire for nucleotide alteration. While shared RNA modifications can hint at conserved enzymatic pathways, a major bottleneck is to identify alternative routes within species that possess a modified RNA but are devoid of known RNA-modifying enzymes. To address this challenge, a combination of bioinformatic and experimental strategies proves invaluable in pinpointing new genes responsible for RNA modifications. This integrative approach not only unveils new chemical insights but also serves as a wellspring of inspiration for biocatalytic applications and drug design. In this Account, we present how comparative genomics and genome mining, combined with biomimetic synthetic chemistry, biochemistry, and anaerobic crystallography, can be judiciously implemented to address unprecedented and alternative chemical mechanisms in the world of RNA modification. We illustrate these integrative methodologies through the study of tRNA and rRNA modifications, dihydrouridine, 5-methyluridine, queuosine, 8-methyladenosine, 5-carboxymethylamino-methyluridine, or 5-taurinomethyluridine, each dependent on a diverse array of redox chemistries, often involving organic compounds, organometallic complexes, and metal coenzymes. We explore how vast genome and tRNA databases empower comparative genomic analyses and enable the identification of novel genes that govern RNA modification. Subsequently, we describe how the isolation of a stable reaction intermediate can guide the synthesis of a biomimetic to unveil new enzymatic pathways. We then discuss the usefulness of a biochemical "shunt" strategy to study catalytic mechanisms and to directly visualize reactive intermediates bound within active sites. While we primarily focus on various RNA-modifying enzymes studied in our laboratory, with a particular emphasis on the discovery of a SAM-independent methylation mechanism, the strategies and rationale presented herein are broadly applicable for the identification of new enzymes and the elucidation of their intricate chemistries. This Account offers a comprehensive glimpse into the evolving landscape of RNA modification research and highlights the pivotal role of integrated approaches to identify novel enzymatic pathways.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, 32611, USA
- University of Florida, Genetics Institute, Gainesville, Florida, 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
10
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
11
|
Ji J, Yu NJ, Kleiner RE. A minimal sequence motif drives selective tRNA dihydrouridylation by hDUS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565616. [PMID: 37961591 PMCID: PMC10635142 DOI: 10.1101/2023.11.04.565616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site, however the molecular basis for this exquisite selectivity is unknown and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based crosslinking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes and in vitro dihydrouridylation assays. We find that hDUS2 modifies U20 in the D loop of diverse tRNA substrates and identify a minimal GU motif within the tRNA tertiary fold required for directing its activity. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anti-cancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform to studying RNA modifying enzymes with sequence-defined activity-based probes.
Collapse
|
12
|
Dai W, Yu NJ, Kleiner RE. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins. Acc Chem Res 2023; 56:2726-2739. [PMID: 37733063 PMCID: PMC11025531 DOI: 10.1021/acs.accounts.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
Collapse
Affiliation(s)
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
13
|
Draycott AS, Schaening-Burgos C, Rojas-Duran MF, Gilbert WV. D-Seq: Genome-wide detection of dihydrouridine modifications in RNA. Methods Enzymol 2023; 692:3-22. [PMID: 37925185 DOI: 10.1016/bs.mie.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
In addition to A, C, G and U, RNA contains over 100 additional chemically distinct residues. An abundant modified base frequently found in tRNAs, dihydrouridine (D) has recently been mapped to over 100 positions in mRNAs in yeast and human cells. Multiple highly conserved dihydrouridine synthases associate with and modify mRNA, suggesting there are many D sites yet to be found. Because D alters RNA structure, installation of D in mRNA is likely to effect multiple steps in mRNA metabolism including processing, trafficking, translation, and degradation. Here, we introduce D-seq, a method to chart the D landscape at single nucleotide resolution. The included protocols start with RNA isolation and carry through D-seq library preparation and data analysis. While the protocols below are tailored to map Ds in mRNA, the D-seq method is generalizable to any RNA type of interest, including non-coding RNAs, which have also recently been identified as dihydrouridine synthase targets.
Collapse
Affiliation(s)
- Austin S Draycott
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New, Haven, CT, United States
| | | | - Maria F Rojas-Duran
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New, Haven, CT, United States
| | - Wendy V Gilbert
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New, Haven, CT, United States.
| |
Collapse
|
14
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Lombard M, Reed CJ, Pecqueur L, Faivre B, Toubdji S, Sudol C, Brégeon D, de Crécy-Lagard V, Hamdane D. Evolutionary Diversity of Dus2 Enzymes Reveals Novel Structural and Functional Features among Members of the RNA Dihydrouridine Synthases Family. Biomolecules 2022; 12:1760. [PMID: 36551188 PMCID: PMC9775027 DOI: 10.3390/biom12121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dihydrouridine (D) is an abundant modified base found in the tRNAs of most living organisms and was recently detected in eukaryotic mRNAs. This base confers significant conformational plasticity to RNA molecules. The dihydrouridine biosynthetic reaction is catalyzed by a large family of flavoenzymes, the dihydrouridine synthases (Dus). So far, only bacterial Dus enzymes and their complexes with tRNAs have been structurally characterized. Understanding the structure-function relationships of eukaryotic Dus proteins has been hampered by the paucity of structural data. Here, we combined extensive phylogenetic analysis with high-precision 3D molecular modeling of more than 30 Dus2 enzymes selected along the tree of life to determine the evolutionary molecular basis of D biosynthesis by these enzymes. Dus2 is the eukaryotic enzyme responsible for the synthesis of D20 in tRNAs and is involved in some human cancers and in the detoxification of β-amyloid peptides in Alzheimer's disease. In addition to the domains forming the canonical structure of all Dus, i.e., the catalytic TIM-barrel domain and the helical domain, both participating in RNA recognition in the bacterial Dus, a majority of Dus2 proteins harbor extensions at both ends. While these are mainly unstructured extensions on the N-terminal side, the C-terminal side extensions can adopt well-defined structures such as helices and beta-sheets or even form additional domains such as zinc finger domains. 3D models of Dus2/tRNA complexes were also generated. This study suggests that eukaryotic Dus2 proteins may have an advantage in tRNA recognition over their bacterial counterparts due to their modularity.
Collapse
Affiliation(s)
- Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Sabrine Toubdji
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Claudia Sudol
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| |
Collapse
|
16
|
Arguello AE, Li A, Sun X, Eggert TW, Mairhofer E, Kleiner RE. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun 2022; 13:4176. [PMID: 35853884 PMCID: PMC9296451 DOI: 10.1038/s41467-022-31876-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
Epitranscriptomic RNA modifications can regulate fundamental biological processes, but we lack approaches to map modification sites and probe writer enzymes. Here we present a chemoproteomic strategy to characterize RNA 5-methylcytidine (m5C) dioxygenase enzymes in their native context based upon metabolic labeling and activity-based crosslinking with 5-ethynylcytidine (5-EC). We profile m5C dioxygenases in human cells including ALKBH1 and TET2 and show that ALKBH1 is the major hm5C- and f5C-forming enzyme in RNA. Further, we map ALKBH1 modification sites transcriptome-wide using 5-EC-iCLIP and ARP-based sequencing to identify ALKBH1-dependent m5C oxidation in a variety of tRNAs and mRNAs and analyze ALKBH1 substrate specificity in vitro. We also apply targeted pyridine borane-mediated sequencing to measure f5C sites on select tRNA. Finally, we show that f5C at the wobble position of tRNA-Leu-CAA plays a role in decoding Leu codons under stress. Our work provides powerful chemical approaches for studying RNA m5C dioxygenases and mapping oxidative m5C modifications and reveals the existence of novel epitranscriptomic pathways for regulating RNA function. Kleiner and co-workers profile RNA 5-methylcytidine (m5C) dioxygenase enzymes using an activity-based metabolic probing strategy. They reveal ALKBH1 as the major 5-formylcytidine (f5C) writer and characterize modification sites across mRNA and tRNA.
Collapse
Affiliation(s)
- A Emilia Arguello
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Tanner W Eggert
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | | | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
17
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
18
|
Finet O, Yague-Sanz C, Marchand F, Hermand D. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biol 2022; 19:735-750. [PMID: 35638108 PMCID: PMC9176250 DOI: 10.1080/15476286.2022.2078094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universal dihydrouridine (D) epitranscriptomic mark results from a reduction of uridine by the Dus family of NADPH-dependent reductases and is typically found within the eponym D-loop of tRNAs. Despite its apparent simplicity, D is structurally unique, with the potential to deeply affect the RNA backbone and many, if not all, RNA-connected processes. The first landscape of its occupancy within the tRNAome was reported 20 years ago. Its potential biological significance was highlighted by observations ranging from a strong bias in its ecological distribution to the predictive nature of Dus enzymes overexpression for worse cancer patient outcomes. The exquisite specificity of the Dus enzymes revealed by a structure-function analyses and accumulating clues that the D distribution may expand beyond tRNAs recently led to the development of new high-resolution mapping methods, including Rho-seq that established the presence of D within mRNAs and led to the demonstration of its critical physiological relevance.
Collapse
Affiliation(s)
- Olivier Finet
- URPHYM-GEMO, The University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
19
|
Dai W, Li A, Yu NJ, Nguyen T, Leach RW, Wühr M, Kleiner RE. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol 2021; 17:1178-1187. [PMID: 34556860 PMCID: PMC8551019 DOI: 10.1038/s41589-021-00874-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.
Collapse
Affiliation(s)
- Wei Dai
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Thao Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,
| |
Collapse
|
20
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
21
|
Partially modified tRNAs for the study of tRNA maturation and function. Methods Enzymol 2021; 658:225-250. [PMID: 34517948 DOI: 10.1016/bs.mie.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer RNA (tRNA) is the most highly and diversely modified class of RNA in all domains of life. However, we still have only a limited understanding of the concerted action of the many enzymes that modify tRNA during tRNA maturation and the synergistic functions of tRNA modifications for protein synthesis. Here, we describe the preparation of in vitro transcribed tRNAs with a partial set of defined modifications and the use of partially modified tRNAs in biochemical assays. By comparing the affinity and activity of tRNA modification enzymes for partially modified and unmodified tRNAs, we gain insight into the preferred pathways of tRNA maturation. Additionally, partially modified tRNAs will be highly useful to investigate the importance of tRNA modifications for tRNA function during translation including the interaction with aminoacyl-tRNA synthases, translation factors and the ribosome. Thereby, the methods described here lay the foundation for understanding the mechanistic function of tRNA modifications.
Collapse
|
22
|
Faivre B, Lombard M, Fakroun S, Vo CDT, Goyenvalle C, Guérineau V, Pecqueur L, Fontecave M, De Crécy-Lagard V, Brégeon D, Hamdane D. Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes. RNA Biol 2021; 18:2278-2289. [PMID: 33685366 DOI: 10.1080/15476286.2021.1899653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusBMCap), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusBMCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.
Collapse
Affiliation(s)
- Bruno Faivre
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Murielle Lombard
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Soufyan Fakroun
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Chau-Duy-Tam Vo
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | | | - Vincent Guérineau
- Institue De Chimie De Substances Naturelles, Centre De Recherche De Gif CNRS, Gif-sur-Yvette, France
| | - Ludovic Pecqueur
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Marc Fontecave
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Valérie De Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, Gainesville, FL, USA
| | - Damien Brégeon
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Djemel Hamdane
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| |
Collapse
|
23
|
Schultz SKL, Kothe U. tRNA elbow modifications affect the tRNA pseudouridine synthase TruB and the methyltransferase TrmA. RNA (NEW YORK, N.Y.) 2020; 26:1131-1142. [PMID: 32385137 PMCID: PMC7430675 DOI: 10.1261/rna.075473.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 05/20/2023]
Abstract
tRNAs constitute the most highly modified class of RNA. Every tRNA contains a unique set of modifications, and Ψ55, m5U54, and m7G46 are frequently found within the elbow of the tRNA structure. Despite the abundance of tRNA modifications, we are only beginning to understand the orchestration of modification enzymes during tRNA maturation. Here, we investigated whether pre-existing modifications impact the binding affinity or catalysis by tRNA elbow modification enzymes. Specifically, we focused on the Escherichia coli enzymes TruB, TrmA, and TrmB which generate Ψ55, m5U54, and m7G46, respectively. tRNAs containing a single modification were prepared, and the binding and activity preferences of purified E. coli TrmA, TruB, and TrmB were examined in vitro. TruB preferentially binds and modifies unmodified tRNA. TrmA prefers to modify unmodified tRNA, but binds most tightly to tRNA that already contains Ψ55. In contrast, binding and modification by TrmB is insensitive to the tRNA modification status. Our results suggest that TrmA and TruB are likely to act on mostly unmodified tRNA precursors during the early stages of tRNA maturation whereas TrmB presumably acts on later tRNA intermediates that are already partially modified. In conclusion, we uncover the mechanistic basis for the preferred modification order in the E. coli tRNA elbow region.
Collapse
Affiliation(s)
- Sarah Kai-Leigh Schultz
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
24
|
Bou-Nader C, Brégeon D, Pecqueur L, Fontecave M, Hamdane D. Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases. Biochemistry 2018; 57:5407-5414. [DOI: 10.1021/acs.biochem.8b00584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Damien Brégeon
- CNRS, IBPS, Biology of Aging and Adaptation, Sorbonne Université, 7 quai Saint Bernard, Paris 7525 Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| |
Collapse
|
25
|
Bou-Nader C, Montémont H, Guérineau V, Jean-Jean O, Brégeon D, Hamdane D. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario. Nucleic Acids Res 2018; 46:1386-1394. [PMID: 29294097 PMCID: PMC5814906 DOI: 10.1093/nar/gkx1294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional base modifications are important to the maturation process of transfer RNAs (tRNAs). Certain modifications are abundant and present at several positions in tRNA as for example the dihydrouridine, a modified base found in the three domains of life. Even though the function of dihydrourine is not well understood, its high content in tRNAs from psychrophilic bacteria or cancer cells obviously emphasizes a central role in cell adaptation. The reduction of uridine to dihydrouridine is catalyzed by a large family of flavoenzymes named dihydrouridine synthases (Dus). Prokaryotes have three Dus (A, B and C) wherein DusB is considered as an ancestral protein from which the two others derived via gene duplications. Here, we unequivocally established the complete substrate specificities of the three Escherichia coli Dus and solved the crystal structure of DusB, enabling for the first time an exhaustive structural comparison between these bacterial flavoenzymes. Based on our results, we propose an evolutionary scenario explaining how substrate specificities has been diversified from a single structural fold.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Hugo Montémont
- Sorbonne Universités, UPMC University, Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Vincent Guérineau
- Institue de Chimie de Substances Naturelles, Centre de Recherche de Gif CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Olivier Jean-Jean
- Sorbonne Universités, UPMC University, Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Damien Brégeon
- Sorbonne Universités, UPMC University, Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
26
|
McKenney KM, Rubio MAT, Alfonzo JD. Binding synergy as an essential step for tRNA editing and modification enzyme codependence in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2018; 24:56-66. [PMID: 29042505 PMCID: PMC5733570 DOI: 10.1261/rna.062893.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/02/2017] [Indexed: 05/10/2023]
Abstract
Transfer RNAs acquire a variety of naturally occurring chemical modifications during their maturation; these fine-tune their structure and decoding properties in a manner critical for protein synthesis. We recently reported that in the eukaryotic parasite, Trypanosoma brucei, a methylation and deamination event are unexpectedly interconnected, whereby the tRNA adenosine deaminase (TbADAT2/3) and the 3-methylcytosine methyltransferase (TbTrm140) strictly rely on each other for activity, leading to formation of m3C and m3U at position 32 in several tRNAs. Still however, it is not clear why these two enzymes, which work independently in other systems, are strictly codependent in T. brucei Here, we show that these enzymes exhibit binding synergism, or a mutual increase in binding affinity, that is more than the sum of the parts, when added together in a reaction. Although these enzymes interact directly with each other, tRNA binding assays using enzyme variants mutated in critical binding and catalytic sites indicate that the observed binding synergy stems from contributions from tRNA-binding domains distal to their active sites. These results provide a rationale for the known interactions of these proteins, while also speaking to the modulation of substrate specificity between seemingly unrelated enzymes. This information should be of value in furthering our understanding of how tRNA modification enzymes act together to regulate gene expression at the post-transcriptional level and provide a basis for the interdependence of such activities.
Collapse
Affiliation(s)
- Katherine M McKenney
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mary Anne T Rubio
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Juan D Alfonzo
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S. Cooperativity between different tRNA modifications and their modification pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:409-418. [PMID: 29222069 DOI: 10.1016/j.bbagrm.2017.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Ribonucleotide modifications perform a wide variety of roles in synthesis, turnover and functionality of tRNA molecules. The presence of particular chemical moieties can refine the internal interaction network within a tRNA molecule, influence its thermodynamic stability, contribute novel chemical properties and affect its decoding behavior during mRNA translation. As the lack of specific modifications in the anticodon stem and loop causes disrupted proteome homeostasis, diminished response to stress conditions, and the onset of human diseases, the underlying modification cascades have recently gained particular scientific and clinical interest. Nowadays, a complicated but conclusive image of the interconnectivity between different enzymatic modification cascades and their resulting tRNA modifications emerges. Here we summarize the current knowledge in the field, focusing on the known instances of cross talk among the enzymatic tRNA modification pathways and the consequences on the dynamic regulation of the tRNA modificome by various factors. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
28
|
|
29
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Nomura Y, Ohno S, Nishikawa K, Yokogawa T. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase. Genes Cells 2015; 21:41-52. [PMID: 26663416 DOI: 10.1111/gtc.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Abstract
In many archaeal tRNAs, archaeosine is found at position 15. During archaeosine biosynthesis, archaeal tRNA-guanine transglycosylase (ArcTGT) first replaces the guanine base at position 15 with 7-cyano-7-deazaguanine (preQ0). In this study, we investigated whether modified nucleosides in tRNA substrates would affect ArcTGT incorporation of preQ0. We prepared a series of hypomodified tRNAs(Ser)(GGA) from Escherichia coli strains lacking each tRNA-modifying enzyme. Measurement of ArcTGT kinetic parameters with the various tRNAs(Ser)(GGA) as substrates showed that the Km decreased due to the lack of modified nucleosides. The tRNAs(Ser)(GGA) melting profiles resulted in experimental evidence showing that each modified nucleoside in tRNA(Ser)(GGA) enhanced tRNA stability. Furthermore, the ArcTGT K(m) strongly correlated with the melting temperature (T(m)), suggesting that the unstable tRNA containing fewer modified nucleosides served as a better ArcTGT substrate. These results show that preQ0 incorporation into tRNA by ArcTGT takes place early in the archaeal tRNA modification process.
Collapse
Affiliation(s)
- Yuichiro Nomura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satoshi Ohno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuya Nishikawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
31
|
Bou-Nader C, Pecqueur L, Bregeon D, Kamah A, Guérineau V, Golinelli-Pimpaneau B, Guimarães BG, Fontecave M, Hamdane D. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res 2015; 43:9446-56. [PMID: 26429968 PMCID: PMC4627097 DOI: 10.1093/nar/gkv989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022] Open
Abstract
In tRNA, dihydrouridine is a conserved modified base generated by the post-transcriptional reduction of uridine. Formation of dihydrouridine 20, located in the D-loop, is catalyzed by dihydrouridine synthase 2 (Dus2). Human Dus2 (HsDus2) expression is upregulated in lung cancers, offering a growth advantage throughout its ability to interact with components of the translation apparatus and inhibit apoptosis. Here, we report the crystal structure of the individual domains of HsDus2 and their functional characterization. HsDus2 is organized into three major modules. The N-terminal catalytic domain contains the flavin cofactor involved in the reduction of uridine. The second module is the conserved α-helical domain known as the tRNA binding domain in HsDus2 homologues. It is connected via a flexible linker to an unusual extended version of a dsRNA binding domain (dsRBD). Enzymatic assays and yeast complementation showed that the catalytic domain binds selectively NADPH but cannot reduce uridine in the absence of the dsRBD. While in Dus enzymes from bacteria, plants and fungi, tRNA binding is essentially achieved by the α-helical domain, we showed that in HsDus2 this function is carried out by the dsRBD. This is the first reported case of a tRNA-modifying enzyme carrying a dsRBD used to bind tRNAs.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Damien Bregeon
- Sorbonne Universités, UPMC Univ. Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, F-75005 Paris, France
| | - Amina Kamah
- Université de Lille-Nord de France, CNRS UMR 8576, Institut Fédératif de Recherches 147, Villeneuve d'Ascq, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190 Gif-sur-Yvette, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
32
|
Whelan F, Jenkins HT, Griffiths SC, Byrne RT, Dodson EJ, Antson AA. From bacterial to human dihydrouridine synthase: automated structure determination. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1564-71. [PMID: 26143927 PMCID: PMC4498606 DOI: 10.1107/s1399004715009220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/14/2015] [Indexed: 11/10/2022]
Abstract
The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1-340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr_rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain-domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.
Collapse
Affiliation(s)
- Fiona Whelan
- Department of Biology, The University of York, Heslington, York YO10 5DD, England
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| | - Samuel C. Griffiths
- Division of Structural Biology, University of Oxford, Headington, Oxford OX3 7BN, England
| | - Robert T. Byrne
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
33
|
Kusuba H, Yoshida T, Iwasaki E, Awai T, Kazayama A, Hirata A, Tomikawa C, Yamagami R, Hori H. In vitrodihydrouridine formation by tRNA dihydrouridine synthase fromThermus thermophilus, an extreme-thermophilic eubacterium. J Biochem 2015; 158:513-21. [DOI: 10.1093/jb/mvv066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/30/2015] [Indexed: 01/08/2023] Open
|
34
|
Byrne RT, Jenkins HT, Peters DT, Whelan F, Stowell J, Aziz N, Kasatsky P, Rodnina MV, Koonin EV, Konevega AL, Antson AA. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc Natl Acad Sci U S A 2015; 112:6033-7. [PMID: 25902496 PMCID: PMC4434734 DOI: 10.1073/pnas.1500161112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzymes is conserved, it is unclear how the same protein fold can be reprogrammed to ensure that nucleotides exposed at spatially distinct faces of tRNA can be accommodated in the same active site. We show that the Escherichia coli DusC is specific toward U16 of tRNA. Unexpectedly, crystal structures of DusC complexes with tRNA(Phe) and tRNA(Trp) show that Dus subfamilies that selectively modify U16 or U20 in tRNA adopt identical folds but bind their respective tRNA substrates in an almost reverse orientation that differs by a 160° rotation. The tRNA docking orientation appears to be guided by subfamily-specific clusters of amino acids ("binding signatures") together with differences in the shape of the positively charged tRNA-binding surfaces. tRNA orientations are further constrained by positional differences between the C-terminal "recognition" domains. The exquisite substrate specificity of Dus enzymes is therefore controlled by a relatively simple mechanism involving major reorientation of the whole tRNA molecule. Such reprogramming of the enzymatic specificity appears to be a unique evolutionary solution for altering tRNA recognition by the same protein fold.
Collapse
Affiliation(s)
- Robert T Byrne
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Daniel T Peters
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Fiona Whelan
- York Structural Biology Laboratory, Department of Chemistry, and
| | - James Stowell
- York Structural Biology Laboratory, Department of Chemistry, and Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Naveed Aziz
- Department of Biology, University of York, York, YO10 5DD, United Kingdom; Genome Canada, Ottawa, ON K2P 1P1, Canada
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia; Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, and
| |
Collapse
|
35
|
Mishanina TV, Corcoran JM, Kohen A. Substrate activation in flavin-dependent thymidylate synthase. J Am Chem Soc 2014; 136:10597-600. [PMID: 25025487 PMCID: PMC4121000 DOI: 10.1021/ja506108b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Thymidylate is a critical DNA nucleotide
that has to be synthesized
in cells de novo by all organisms. Flavin-dependent
thymidylate synthase (FDTS) catalyzes the final step in this de novo production of thymidylate in many human pathogens,
but it is absent from humans. The FDTS reaction proceeds via a chemical
route that is different from its human enzyme analogue, making FDTS
a potential antimicrobial target. The chemical mechanism of FDTS is
still not understood, and the two most recently proposed mechanisms
involve reaction intermediates that are unusual in pyrimidine biosynthesis
and biology in general. These mechanisms differ in the relative timing
of the reaction of the flavin with the substrate. The consequence
of this difference is significant: the intermediates are cationic
in one case and neutral in the other, an important consideration in
the construction of mechanism-based enzyme inhibitors. Here we test
these mechanisms via chemical trapping of reaction intermediates,
stopped-flow, and substrate hydrogen isotope exchange techniques.
Our findings suggest that an initial activation of the pyrimidine
substrate by reduced flavin is required for catalysis, and a revised
mechanism is proposed on the basis of previous and new data. These
findings and the newly proposed mechanism add an important piece to
the puzzle of the mechanism of FDTS and suggest a new class of intermediates
that, in the future, may serve as targets for mechanism-based design
of FDTS-specific inhibitors.
Collapse
Affiliation(s)
- Tatiana V Mishanina
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242-1727, United States
| | | | | |
Collapse
|
36
|
Gudipati V, Koch K, Lienhart WD, Macheroux P. The flavoproteome of the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:535-44. [PMID: 24373875 PMCID: PMC3991850 DOI: 10.1016/j.bbapap.2013.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 01/29/2023]
Abstract
Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron-sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs.
Collapse
Affiliation(s)
- Venugopal Gudipati
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Karin Koch
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Wolf-Dieter Lienhart
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Peter Macheroux
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
37
|
McDonald CA, Liu YY, Palfey BA. Actin stimulates reduction of the MICAL-2 monooxygenase domain. Biochemistry 2013; 52:6076-84. [PMID: 23927065 DOI: 10.1021/bi4008462] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MICALs are large, multidomain flavin-dependent monooxygenases that use redox chemistry to cause actin to depolymerize. Little enzymology has been reported for MICALs, and none has been reported for MICAL-2, an enzyme vital for the proliferation of prostate cancer. The monooxygenase domains of MICALs resemble aromatic hydroxylases, but their substrate is the sulfur of a methionine of actin. In order to determine how closely MICAL-2 conforms to the aromatic hydroxylase paradigm, we studied its reaction with NAD(P)H. The enzyme has a strong preference for NADPH over NADH caused by a large difference in binding NADPH. A comparison of the reduction kinetics using protio-NADPH and [4R-(2)H]-NADPH showed that MICAL-2 is specific for the proR hydride of NADPH, as evidenced by a 4.8-fold kinetic isotope effect. The reductive half-reaction of the MICAL-2 hydroxylase domain is stimulated by f-actin. In the absence of actin, NADPH reduces the flavin relatively slowly; actin speeds that reaction significantly. The separate monooxygenase domain of MICAL-2 has the classic regulatory behavior of flavin-dependent aromatic hydroxylases (Class A monooxygenases): slow reduction of the flavin when the substrate to be oxygenated is absent. This prevents the wasteful consumption of reduced pyridine nucleotide and the production of harmful H2O2. Our results show that this strategy is used by MICAL-2. Thus, our data suggest that MICAL-2 could regulate catalysis through the monooxygenase domain alone; control by interactions with other domains of MICAL in the full-length enzyme may not be needed.
Collapse
Affiliation(s)
- Claudia A McDonald
- Department of Biological Chemistry, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-0606, United States
| | | | | |
Collapse
|
38
|
Kasprzak JM, Czerwoniec A, Bujnicki JM. Molecular evolution of dihydrouridine synthases. BMC Bioinformatics 2012; 13:153. [PMID: 22741570 PMCID: PMC3674756 DOI: 10.1186/1471-2105-13-153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dihydrouridine (D) is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. Despite the abundant occurrence of D, little is known about its biochemical roles in mediating tRNA function. It is assumed that D may destabilize the structure of tRNA and thus enhance its conformational flexibility. D is generated post-transcriptionally by the reduction of the 5,6-double bond of a uridine residue in RNA transcripts. The reaction is carried out by dihydrouridine synthases (DUS). DUS constitute a conserved family of enzymes encoded by the orthologous gene family COG0042. In protein sequence databases, members of COG0042 are typically annotated as "predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family". RESULTS To elucidate sequence-structure-function relationships in the DUS family, a comprehensive bioinformatic analysis was carried out. We performed extensive database searches to identify all members of the currently known DUS family, followed by clustering analysis to subdivide it into subfamilies of closely related sequences. We analyzed phylogenetic distributions of all members of the DUS family and inferred the evolutionary tree, which suggested a scenario for the evolutionary origin of dihydrouridine-forming enzymes. For a human representative of the DUS family, the hDus2 protein suggested as a potential drug target in cancer, we generated a homology model. While this article was under review, a crystal structure of a DUS representative has been published, giving us an opportunity to validate the model. CONCLUSIONS We compared sequences and phylogenetic distributions of all members of the DUS family and inferred the phylogenetic tree, which provides a framework to study the functional differences among these proteins and suggests a scenario for the evolutionary origin of dihydrouridine formation. Our evolutionary and structural classification of the DUS family provides a background to study functional differences among these proteins that will guide experimental analyses.
Collapse
Affiliation(s)
- Joanna M Kasprzak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | | | | |
Collapse
|
39
|
Griffiths S, Byrne RT, Antson AA, Whelan F. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of human dihydrouridine synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:333-6. [PMID: 22442237 DOI: 10.1107/s1744309112003831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/29/2012] [Indexed: 11/11/2022]
Abstract
Dihydrouridine synthases catalyse the reduction of uridine to dihydrouridine in the D-loop and variable loop of tRNA. The human dihydrouridine synthase HsDus2L has been implicated in the development of pulmonary carcinogenesis. Here, the purification, crystallization and preliminary X-ray characterization of the HsDus2L catalytic domain are reported. The crystals belonged to space group P2(1) and contained a single molecule of HsDus2L in the asymmetric unit. A complete data set was collected to 1.9 Å resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Sam Griffiths
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, England
| | | | | | | |
Collapse
|
40
|
Abstract
Dihydrouridine (D) is a highly conserved modified base found in tRNAs from all domains of life. Dihydrouridine synthase (Dus) catalyzes the D formation of tRNA through reduction of uracil base with flavin mononucleotide (FMN) as a cofactor. Here, we report the crystal structures of Thermus thermophilus Dus (TthDus), which is responsible for D formation at positions 20 and 20a, in complex with tRNA and with a short fragment of tRNA (D-loop). Dus interacts extensively with the D-arm and recognizes the elbow region composed of the kissing loop interaction between T- and D-loops in tRNA, pulling U20 into the catalytic center for reduction. Although distortion of the D-loop structure was observed upon binding of Dus to tRNA, the canonical D-loop/T-loop interaction was maintained. These results were consistent with the observation that Dus preferentially recognizes modified rather than unmodified tRNAs, indicating that Dus introduces D20 by monitoring the complete L-shaped structure of tRNAs. In the active site, U20 is stacked on the isoalloxazine ring of FMN, and C5 of the U20 uracil ring is covalently cross linked to the thiol group of Cys93, implying a catalytic mechanism of D20 formation. In addition, the involvement of a cofactor molecule in uracil ring recognition was proposed. Based on a series of mutation analyses, we propose a molecular basis of tRNA recognition and D formation catalyzed by Dus.
Collapse
|
41
|
Macheroux P, Kappes B, Ealick SE. Flavogenomics--a genomic and structural view of flavin-dependent proteins. FEBS J 2011; 278:2625-34. [PMID: 21635694 DOI: 10.1111/j.1742-4658.2011.08202.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Riboflavin (vitamin B(2)) serves as the precursor for FMN and FAD in almost all organisms that utilize the redox-active isoalloxazine ring system as a coenzyme in enzymatic reactions. The role of flavin, however, is not limited to redox processes, as ∼ 10% of flavin-dependent enzymes catalyze nonredox reactions. Moreover, the flavin cofactor is also widely used as a signaling and sensing molecule in biological processes such as phototropism and nitrogen fixation. Here, we present a study of 374 flavin-dependent proteins analyzed with regard to their function, structure and distribution among 22 archaeal, eubacterial, protozoan and eukaryotic genomes. More than 90% of flavin-dependent enzymes are oxidoreductases, and the remaining enzymes are classified as transferases (4.3%), lyases (2.9%), isomerases (1.4%) and ligases (0.4%). The majority of enzymes utilize FAD (75%) rather than FMN (25%), and bind the cofactor noncovalently (90%). High-resolution structures are available for about half of the flavoproteins. FAD-containing proteins predominantly bind the cofactor in a Rossmann fold (∼ 50%), whereas FMN-containing proteins preferably adopt a (βα)(8)-(TIM)-barrel-like or flavodoxin-like fold. The number of genes encoding flavin-dependent proteins varies greatly in the genomes analyzed, and covers a range from ∼ 0.1% to 3.5% of the predicted genes. It appears that some species depend heavily on flavin-dependent oxidoreductases for degradation or biosynthesis, whereas others have minimized their flavoprotein arsenal. An understanding of 'flavin-intensive' lifestyles, such as in the human pathogen Mycobacterium tuberculosis, may result in valuable new intervention strategies that target either riboflavin biosynthesis or uptake.
Collapse
Affiliation(s)
- Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Graz, Austria.
| | | | | |
Collapse
|
42
|
Yu F, Tanaka Y, Yamamoto S, Nakamura A, Kita S, Hirano N, Tanaka I, Yao M. Crystallization and preliminary X-ray crystallographic analysis of dihydrouridine synthase from Thermus thermophilus and its complex with tRNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:685-8. [PMID: 21636912 DOI: 10.1107/s1744309111012486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/04/2011] [Indexed: 11/10/2022]
Abstract
Dihydrouridine synthase (Dus) is responsible for catalyzing dihydrouridine formation in RNA by the reduction of uridine. To elucidate its RNA-recognition mechanism, Dus from Thermus thermophilus (TthDus) and its complex with tRNA were crystallized. Diffraction data sets were collected from crystals of native and selenomethionine-substituted TthDus to resolutions of 1.70 and 2.30 Å, respectively. These crystals belonged to space group P1. Preliminary X-ray crystallographic analysis showed that two molecules of TthDus were contained in an asymmetric unit. In addition, diffraction data were collected to 3.51 Å resolution from a crystal of selenomethionine-substituted TthDus in complex with tRNA, which belonged to space group P4(1)2(1)2. Preliminary structural analysis showed that the asymmetric unit contained two TthDus-tRNA complexes.
Collapse
Affiliation(s)
- Futao Yu
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ishida K, Kunibayashi T, Tomikawa C, Ochi A, Kanai T, Hirata A, Iwashita C, Hori H. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res 2011; 39:2304-18. [PMID: 21097467 PMCID: PMC3064792 DOI: 10.1093/nar/gkq1180] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/13/2022] Open
Abstract
Pseudouridine at position 55 (Ψ55) in eubacterial tRNA is produced by TruB. To clarify the role of the Ψ55 modification, we constructed a truB gene disruptant (ΔtruB) strain of Thermus thermophilus which is an extreme-thermophilic eubacterium. Unexpectedly, the ΔtruB strain exhibited severe growth retardation at 50 °C. We assumed that these phenomena might be caused by lack of RNA chaperone activity of TruB, which was previously hypothetically proposed by others. To confirm this idea, we replaced the truB gene in the genome with mutant genes, which express TruB proteins with very weak or no enzymatic activity. However the growth retardation at 50 °C was not rescued by these mutant proteins. Nucleoside analysis revealed that Gm18, m(5)s(2)U54 and m(1)A58 in tRNA from the ΔtruB strain were abnormally increased. An in vitro assay using purified tRNA modification enzymes demonstrated that the Ψ55 modification has a negative effect on Gm18 formation by TrmH. These experimental results show that the Ψ55 modification is required for low-temperature adaptation to control other modified. (35)S-Met incorporation analysis showed that the protein synthesis activity of the ΔtruB strain was inferior to that of the wild-type strain and that the cold-shock proteins were absence in the ΔtruB cells at 50°C.
Collapse
Affiliation(s)
- Kazuo Ishida
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Takashi Kunibayashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Tamotsu Kanai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Chikako Iwashita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| |
Collapse
|
44
|
Abstract
Post-transcriptional ribonucleotide modification is a phenomenon best studied in tRNA, where it occurs most frequently and in great chemical diversity. This paper reviews the intrinsic network of modifications in the structural core of the tRNA, which governs structural flexibility and rigidity to fine-tune the molecule to peak performance and to regulate its steady-state level. Structural effects of RNA modifications range from nanometer-scale rearrangements to subtle restrictions of conformational space on the angstrom scale. Structural stabilization resulting from nucleotide modification results in increased thermal stability and translates into protection against unspecific degradation by bases and nucleases. Several mechanisms of specific degradation of hypomodified tRNA, which were only recently discovered, provide a link between structural and metabolic stability.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
45
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Sollner S, Deller S, Macheroux P, Palfey BA. Mechanism of flavin reduction and oxidation in the redox-sensing quinone reductase Lot6p from Saccharomyces cerevisiae. Biochemistry 2009; 48:8636-43. [PMID: 19618916 DOI: 10.1021/bi900734a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quinone reductases are flavin-containing enzymes that have been implicated in protecting organisms from redox stress and, more recently, as redox switches controlling the action of the proteasome. The reactions of the catalytic cycle of the dimeric quinone reductase Lot6p from Saccharomyces cerevisiae were studied in anaerobic stopped-flow experiments at 4 degrees C. Both NADH and NADPH reacted similarly, reducing the FMN prosthetic group rapidly at saturation but binding with very low affinity. The enzyme stereospecifically transferred the proS-hydride of NADPH with an isotope effect of 3.6, indicating that hydride transfer, and not an enzyme conformational change, is rate-determining in the reductive half-reaction. No intermediates such as charge-transfer complexes were detected. In the oxidative half-reaction, reduced enzyme reacted in a single phase with the six quinone substrates tested. The observed rate constants increased linearly with quinone concentration up to the limits allowed by solubility, indicating either a bimolecular reaction or very weak binding. The logarithm of the bimolecular rate constant increases linearly with the reduction potential of the quinone, consistent with the notion that quinone reductases strongly disfavor radical intermediates. Interestingly, both half-reactions of the catalytic cycle strongly resemble bioorganic model reactions; the reduction of Lot6p by NAD(P)H is moderately faster than nonenzymatic models, while the oxidation of Lot6p by quinones is actually slower than nonenzymatic reactions. This curious situation is consistent with the structure of Lot6p, which has a crease we propose to be the binding site for pyridine nucleotides and a space, but no obvious catalytic residues, near the flavin allowing the quinone to react. The decidedly suboptimized catalytic cycle suggests that selective pressures other than maximizing quinone consumption shaped the evolution of Lot6p. This may reflect the importance of suppressing other potentially deleterious side reactions, such as oxygen reduction, or it may indicate that the role Lot6p plays as a redox sensor in controlling the proteasome is more important than its role as a detoxifying enzyme.
Collapse
Affiliation(s)
- Sonja Sollner
- Institute of Biochemistry, Graz University of Technology, Petergasse 12/II, A-8010 Graz, Austria
| | | | | | | |
Collapse
|