1
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
2
|
Zhang B, Liu M, Mai F, Li X, Wang W, Huang Q, Du X, Ding W, Li Y, Barwick BG, Ni JJ, Osunkoya AO, Chen Y, Zhou W, Xia S, Dong JT. Interruption of KLF5 acetylation promotes PTEN-deficient prostate cancer progression by reprogramming cancer-associated fibroblasts. J Clin Invest 2024; 134:e175949. [PMID: 38781024 PMCID: PMC11245161 DOI: 10.1172/jci175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Fengyi Mai
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiawei Li
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Wenzhou Wang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Qingqing Huang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Xiancai Du
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Weijian Ding
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jianping Jenny Ni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Adeboye O. Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, Guangdong, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Yang Y, Bhargava D, Chen X, Zhou T, Dursuk G, Jiang W, Wang J, Zong Z, Katz SI, Lomberk GA, Urrutia RA, Katz JP. KLF5 and p53 comprise an incoherent feed-forward loop directing cell-fate decisions following stress. Cell Death Dis 2023; 14:299. [PMID: 37130837 PMCID: PMC10154356 DOI: 10.1038/s41419-023-05731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
In response to stress, cells make a critical decision to arrest or undergo apoptosis, mediated in large part by the tumor suppressor p53. Yet the mechanisms of these cell fate decisions remain largely unknown, particularly in normal cells. Here, we define an incoherent feed-forward loop in non-transformed human squamous epithelial cells involving p53 and the zinc-finger transcription factor KLF5 that dictates responses to differing levels of cellular stress from UV irradiation or oxidative stress. In normal unstressed human squamous epithelial cells, KLF5 complexes with SIN3A and HDAC2 repress TP53, allowing cells to proliferate. With moderate stress, this complex is disrupted, and TP53 is induced; KLF5 then acts as a molecular switch for p53 function by transactivating AKT1 and AKT3, which direct cells toward survival. By contrast, severe stress results in KLF5 loss, such that AKT1 and AKT3 are not induced, and cells preferentially undergo apoptosis. Thus, in human squamous epithelial cells, KLF5 gates the response to UV or oxidative stress to determine the p53 output of growth arrest or apoptosis.
Collapse
Affiliation(s)
- Yizeng Yang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Dharmendra Bhargava
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Xiao Chen
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Taicheng Zhou
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Gizem Dursuk
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Wenpeng Jiang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jinshen Wang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Zhen Zong
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sharyn I Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Gwen A Lomberk
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Raul A Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jonathan P Katz
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
5
|
Lee E, Cheung J, Bialkowska AB. Krüppel-like Factors 4 and 5 in Colorectal Tumorigenesis. Cancers (Basel) 2023; 15:cancers15092430. [PMID: 37173904 PMCID: PMC10177156 DOI: 10.3390/cancers15092430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Krüppel-like factors (KLFs) are transcription factors regulating various biological processes such as proliferation, differentiation, migration, invasion, and homeostasis. Importantly, they participate in disease development and progression. KLFs are expressed in multiple tissues, and their role is tissue- and context-dependent. KLF4 and KLF5 are two fascinating members of this family that regulate crucial stages of cellular identity from embryogenesis through differentiation and, finally, during tumorigenesis. They maintain homeostasis of various tissues and regulate inflammation, response to injury, regeneration, and development and progression of multiple cancers such as colorectal, breast, ovarian, pancreatic, lung, and prostate, to name a few. Recent studies broaden our understanding of their function and demonstrate their opposing roles in regulating gene expression, cellular function, and tumorigenesis. This review will focus on the roles KLF4 and KLF5 play in colorectal cancer. Understanding the context-dependent functions of KLF4 and KLF5 and the mechanisms through which they exert their effects will be extremely helpful in developing targeted cancer therapy.
Collapse
Affiliation(s)
- Esther Lee
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jacky Cheung
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Huang Q, Liu M, Zhang D, Lin BB, Fu X, Zhang Z, Zhang B, Dong JT. Nitazoxanide inhibits acetylated KLF5-induced bone metastasis by modulating KLF5 function in prostate cancer. BMC Med 2023; 21:68. [PMID: 36810084 PMCID: PMC9945734 DOI: 10.1186/s12916-023-02763-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer often metastasizes to the bone, and such bone metastases eventually become resistant to available therapies, leading to the death of patients. Enriched in the bone, TGF-β plays a pivotal role in bone metastasis development. However, directly targeting TGF-β or its receptors has been challenging for the treatment of bone metastasis. We previously found that TGF-β induces and then depends on the acetylation of transcription factor KLF5 at K369 to regulate multiple biological processes, including the induction of EMT, cellular invasiveness, and bone metastasis. Acetylated KLF5 (Ac-KLF5) and its downstream effectors are thus potential therapeutic targets for treating TGF-β-induced bone metastasis in prostate cancer. METHODS A spheroid invasion assay was applied to prostate cancer cells expressing KLF5K369Q, which mimics Ac-KLF5, to screen 1987 FDA-approved drugs for invasion suppression. Luciferase- and KLF5K369Q-expressing cells were injected into nude mice via the tail artery to model bone metastasis. Bioluminescence imaging, micro-CT), and histological analyses were applied to monitor and evaluate bone metastases. RNA-sequencing, bioinformatic, and biochemical analyses were used to understand nitazoxanide (NTZ)-regulated genes, signaling pathways, and the underlying mechanisms. The binding of NTZ to KLF5 proteins was evaluated using fluorescence titration, high-performance liquid chromatography (HPLC), and circular dichroism (CD) analysis. RESULTS NTZ, an anthelmintic agent, was identified as a potent invasion inhibitor in the screening and validation assays. In KLF5K369Q-induced bone metastasis, NTZ exerted a potent inhibitory effect in preventive and therapeutic modes. NTZ also inhibited osteoclast differentiation, a cellular process responsible for bone metastasis induced by KLF5K369Q. NTZ attenuated the function of KLF5K369Q in 127 genes' upregulation and 114 genes' downregulation. Some genes' expression changes were significantly associated with worse overall survival in patients with prostate cancer. One such change was the upregulation of MYBL2, which functionally promotes bone metastasis in prostate cancer. Additional analyses demonstrated that NTZ bound to the KLF5 protein, KLF5K369Q bound to the promoter of MYBL2 to activate its transcription, and NTZ attenuated the binding of KLF5K369Q to the MYBL2 promoter. CONCLUSIONS NTZ is a potential therapeutic agent for bone metastasis induced by the TGF-β/Ac-KLF5 signaling axis in prostate cancer and likely other cancers.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Duo Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Bing-Biao Lin
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China.,Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Xing Fu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
8
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal 2022; 93:110308. [PMID: 35301064 DOI: 10.1016/j.cellsig.2022.110308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle. To understand the importance of the KLF family, we also review genotype-phenotype correlations in different animal models. We also discuss how KLF proteins function through different signaling pathways and display their paramount importance in skeletal development. To highlight their roles in cartilage- or bone-related cells, we also use single-cell RNA sequencing publicly available data on mouse hindlimb. We also challenge our knowledge of how the KLF family is epigenetically regulated-e.g., using DNA methylation, histone modifications, and noncoding RNAs-during chondrocyte and osteocyte development.
Collapse
Affiliation(s)
- Sina Zakeri
- Department of Veterinary Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hesam Aminian
- Department of Biology, Faculty of Sciences, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soheila Sadeghi
- Department of Biology, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Kurdistan, Iran
| | | | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Palioura D, Lazou A, Drosatos K. Krüppel-like factor (KLF)5: An emerging foe of cardiovascular health. J Mol Cell Cardiol 2022; 163:56-66. [PMID: 34653523 PMCID: PMC8816822 DOI: 10.1016/j.yjmcc.2021.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.
Collapse
Affiliation(s)
- Dimitra Palioura
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA;,School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Sun L, Zhou X, Li Y, Chen W, Wu S, Zhang B, Yao J, Xu A. KLF5 regulates epithelial-mesenchymal transition of liver cancer cells in the context of p53 loss through miR-192 targeting of ZEB2. Cell Adh Migr 2021; 14:182-194. [PMID: 32965165 PMCID: PMC7553557 DOI: 10.1080/19336918.2020.1826216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) can both promote and suppress cell migration, but the underlying mechanisms have not been elucidated. In this study, we show that the function of KLF5 in epithelial-mesenchymal transition (EMT) and migration of liver cancer cells depends on the status of the cellular tumor antigen p53 (p53). Furthermore, zinc finger E-box-binding homeobox 2 (ZEB2) is the main regulator of KLF5 in EMT in liver cancer cells in the context of p53 loss. Most importantly, the regulation of ZEB2 by p53 and KLF5 is indirect and that miR-192 mediates this regulation. Finally, we find that in invasive liver cancer, KLF5 is absent in the context of p53 loss or mutation.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Xiaona Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
12
|
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, Qian WP, Yang L, Osunkoya AO, Boise L, Vertino PM, Zhao Y, Li M, Chen HR, Kowalski J, Kucuk O, Zhou W, Dong JT. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun 2021; 12:1714. [PMID: 33731701 PMCID: PMC7969754 DOI: 10.1038/s41467-021-21976-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Advanced prostate cancer (PCa) often develops bone metastasis, for which therapies are very limited and the underlying mechanisms are poorly understood. We report that bone-borne TGF-β induces the acetylation of transcription factor KLF5 in PCa bone metastases, and acetylated KLF5 (Ac-KLF5) causes osteoclastogenesis and bone metastatic lesions by activating CXCR4, which leads to IL-11 secretion, and stimulating SHH/IL-6 paracrine signaling. While essential for maintaining the mesenchymal phenotype and tumorigenicity, Ac-KLF5 also causes resistance to docetaxel in tumors and bone metastases, which is overcome by targeting CXCR4 with FDA-approved plerixafor. Establishing a mechanism for bone metastasis and chemoresistance in PCa, these findings provide a rationale for treating chemoresistant bone metastasis of PCa with inhibitors of Ac-KLF5/CXCR4 signaling.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Qiao Wu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, Tianjin, China
| | - Lin Xie
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming, China
| | - Benjamin Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Changying Fu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, Tianjin, China
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wei Ping Qian
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Lily Yang
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Pathology and Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yichao Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Menglin Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hsiao-Rong Chen
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeanne Kowalski
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
13
|
Li J, Liu L, Zhou W, Cai L, Xu Z, Rane MJ. Roles of Krüppel-like factor 5 in kidney disease. J Cell Mol Med 2021; 25:2342-2355. [PMID: 33523554 PMCID: PMC7933973 DOI: 10.1111/jcmm.16332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Transcription factor Krüppel-like factor 5 (KLF5) is a member of the Krüppel-like factors' (KLFs) family. KLF5 regulates a number of cellular functions, such as apoptosis, proliferation and differentiation. Therefore, KLF5 can play a role in many diseases, including, cancer, cardiovascular disease and gastrointestinal disorders. An important role for KLF5 in the kidney was recently reported, such that KLF5 regulated podocyte apoptosis, renal cell proliferation, tubulointerstitial inflammation and renal fibrosis. In this review, we have summarized the available information in the literature with a brief description on how transcriptional, post-transcriptional and post-translational modifications of KLF5 modulate its function in a variety of organs including the kidney with a focus of its importance on the pathogenesis of various kidney diseases. Furthermore, we also have outlined the current and possible mechanisms of KLF5 activation in kidney diseases. These studies suggest a need for more systemic investigations, particularly for generation of animal models with renal cell-specific deletion or overexpression of KLF5 gene to examine direct contributions of KLF5 to various kidney diseases. This will promote further experimentation in the development of therapies to prevent or treat various kidney diseases.
Collapse
Affiliation(s)
- Jia Li
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Liang Liu
- Department of RadiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Wen‐Qian Zhou
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- The Center of Cardiovascular DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Department of PediatricsPediatric Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Zhong‐Gao Xu
- Department of NephrologyThe First Hospital of Jilin UniversityChangchunChina
| | - Madhavi J. Rane
- Department of MedicineDivision of NephrologyDepartment of Biochemistry and Molecular GeneticsUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
14
|
Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT. TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Am J Cancer Res 2020; 10:7656-7670. [PMID: 32685011 PMCID: PMC7359077 DOI: 10.7150/thno.44567] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in the United States. As a first line treatment for hormone-refractory prostate cancer, docetaxel (DTX) treatment leads to suboptimal effect since almost all patients eventually develop DTX resistance. In this study, we investigated whether and how TGF-β affects DTX resistance of prostate cancer. Methods: Cytotoxicity of DTX in DU 145 and PC-3 cells was measured by CCK-8 and Matrigel colony formation assays. Resistance to DTX in DU 145 cells was examined in a xenograft tumorigenesis model. A luciferase reporter system was used to determine transcriptional activities. Gene expression was analyzed by RT-qPCR and Western blotting. Results: We found that KLF5 is indispensable in TGF-β-induced DTX resistance. Moreover, KLF5 acetylation at lysine 369 mediates DTX resistance in vitro and in vivo. We showed that the TGF-β/acetylated KLF5 signaling axis activates Bcl-2 expression transcriptionally. Furthermore, DTX-induced Bcl-2 degradation depends on a proteasome pathway, and TGF-β inhibits DTX-induced Bcl-2 ubiquitination. Conclusion: Our study demonstrated that the TGF-β-acetylated KLF5-Bcl-2 signaling axis mediates DTX resistance in prostate cancer and blockade of this pathway could provide clinical insights into chemoresistance of prostate cancer.
Collapse
|
15
|
Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat Commun 2020; 11:997. [PMID: 32081850 PMCID: PMC7035357 DOI: 10.1038/s41467-020-14737-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate development depends on balanced cell proliferation and differentiation, and acetylated KLF5 is known to alter epithelial proliferation. It remains elusive whether post-translational modifications of transcription factors can differentially determine adult stem/progenitor cell fate. Here we report that, in human and mouse prostates, Klf5 is expressed in both basal and luminal cells, with basal cells preferentially expressing acetylated Klf5. Functionally, Klf5 is indispensable for maintaining basal progenitors, their luminal differentiation, and the proliferation of their basal and luminal progenies. Acetylated Klf5 is also essential for basal progenitors' maintenance and proper luminal differentiation, as deacetylation of Klf5 causes excess basal-to-luminal differentiation; attenuates androgen-mediated organoid organization; and retards postnatal prostate development. In basal progenitor-derived luminal cells, Klf5 deacetylation increases their proliferation and attenuates their survival and regeneration following castration and subsequent androgen restoration. Mechanistically, Klf5 deacetylation activates Notch signaling. Klf5 and its acetylation thus contribute to postnatal prostate development and regeneration by controlling basal progenitor cell fate.
Collapse
|
16
|
Guo P, Xing C, Fu X, He D, Dong J. Ras inhibits TGF‐β‐induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells. J Cell Biochem 2019; 121:2197-2208. [DOI: 10.1002/jcb.29443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Peng Guo
- Department of Urology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| | - Dalin He
- Department of Urology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jin‐Tang Dong
- Department of Hematology and Medical Oncology, Winship Cancer Institute Emory University School of Medicine Atlanta Georgia
| |
Collapse
|
17
|
Wu Q, Fu C, Li M, Li J, Li Z, Qi L, Ci X, Ma G, Gao A, Fu X, A J, An N, Liu M, Li Y, King JL, Fu L, Zhang B, Dong JT. CINP is a novel cofactor of KLF5 required for its role in the promotion of cell proliferation, survival and tumor growth. Int J Cancer 2018; 144:582-594. [PMID: 30289973 DOI: 10.1002/ijc.31908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/21/2018] [Indexed: 02/01/2023]
Abstract
Krüppel-like factor 5 (KLF5) both suppresses and promotes tumor growth depending on cellular context. The mechanisms underlying tumor promotion could be targetable for therapy. Although a number of transcriptional targets of KLF5 have been identified and implicated in KLF5-mediated tumor growth, how KLF5 regulates these genes remains to be addressed. Here we performed coimmunoprecipitation (co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the TSU-Pr1 bladder cancer cell line, in which KLF5 is shown to promote tumor growth, to identify KLF5-interacting nuclear proteins that are necessary for KLF5's tumor promoting function. LC-MS/MS revealed 122 potential KLF5 binding proteins in the nuclear proteins precipitated by the KLF5 antibody, and the top nine candidates included AHNAK, TFAM, HSDL2, HNRNPC, CINP, IST1, FBL, PABPC1 and SNRNP40. SRB assays of these nine proteins indicated that silencing CINP had the most potent inhibitory effect on cell growth in KLF5-expressing cells but did not affect parental TSU-Pr1 cells. Further analyses not only confirmed the physical interaction between KLF5 and CINP, also demonstrated that knockdown of CINP attenuated the effects of KLF5 on cell cycle progression, apoptosis and tumorigenesis. Silencing CINP also attenuated the effect of KLF5 on the expression of a number of genes and signaling pathways, including cell cycle regulator Cyclin D1 and apoptosis-related Caspase 7. These results suggest that CINP is a cofactor of KLF5 that is crucial for the promotion of tumor growth, and that the KLF5-CINP interaction could be a novel therapeutic target for inhibiting KLF5-promoted tumor growth.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Changying Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Menglin Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhigui Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
| | - Leilei Qi
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Gui Ma
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xing Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun A
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Na An
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingcheng Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Jamie L King
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
18
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
19
|
Tao R, Zhang B, Li Y, King JL, Tian R, Xia S, Schiavon CR, Dong JT. HDAC-mediated deacetylation of KLF5 associates with its proteasomal degradation. Biochem Biophys Res Commun 2018; 500:777-782. [PMID: 29679567 DOI: 10.1016/j.bbrc.2018.04.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Krüppel-like factor 5 (KLF5) is a basic transcription factor that regulates diverse cellular processes during tumor development. Acetylation of KLF5 at lysine 369 (K369) reverses its function from promoting to suppressing cell proliferation and tumor growth. In this study, we examined the regulation of KLF5 by histone deacetylases in the prostate cancer cell line DU 145. While confirming the functions of HDAC1/2 in KLF5 deacetylation and the promotion of cell proliferation, we found that the knockdown of HDAC1/2 upregulated KLF5 protein but not KLF5 mRNA, and the increase in KLF5 protein level by silencing HDAC1/2 was at least in part due to decreased proteasomal degradation. Deacetylase activity was required for HDAC1/2-mediated KLF5 degradation, and mutation of KLF5 to an acetylation-mimicking form prevented its degradation, even though the mutation did not affect the binding of KLF5 with HDAC1/2. Mutation of K369 to arginine, which prevents acetylation, did not affect the binding of KLF5 to HDAC1 or the response of KLF5 to HDAC1/2-promoted degradation. These findings provide a novel mechanistic association between the acetylation status of KLF5 and its protein stability. They also suggest that maintaining KLF5 in a deacetylated form may be an important mechanism by which KLF5 and HDACs promote cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Ran Tao
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA; Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Jamie L King
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Ruoyu Tian
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Cara Rae Schiavon
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365C Clifton Road, Atlanta, GA 30322, USA; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
20
|
Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q, Guo W, Wang X, He D, Guo P. Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget 2018; 7:37868-37881. [PMID: 27191265 PMCID: PMC5122356 DOI: 10.18632/oncotarget.9350] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 05/01/2016] [Indexed: 01/22/2023] Open
Abstract
LncRNA DANCR suppresses differentiation of epithelial cells, however, its function in prostate cancer development is still unknown. In the present study, we found the expression of DANCR increases in prostate cancer tissues and cells compared to normal prostate tissues and cells, moreover, DANCR promotes invasion and migration of prostate cancer cells in vitro and metastasis of tumor xenografts in nude mice. Mechanistically, we found that TIMP2/3, which are critical metastasis inhibitor of prostate cancer, were down-regulated by DANCR synergistically with EZH2 through epigenetically silencing their promoter by chromatin immunoprecipitation assay. In addition, we further investigated whether DANCR is regulated by the differentiation-promoting androgen-androgen receptor (AR) pathway and found that DANCR expression is repressed by androgen-AR; furthermore, DANCR impedes the upregulation of TIMP2/3 and the suppression of invasion and migration by androgen-AR. On the other hand, interestingly, we found that in prostate cancer cells DANCR knockdown decreased the promotion of invasion and migration by the treatment of enzalutamide, which is an AR inhibitor. In summary, our results indicate that DANCR promotes prostate cancer invasion and metastasis through repressing the expression of TIMP2/3, and suggest that DANCR could be a potential target for preventing prostate cancer metastasis, and knockdown DANCR may lessen the potential side effect of AR inhibitor.
Collapse
Affiliation(s)
- Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Shuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhuan Guo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Shi Q, Jia J, Hui K, Gao Y, Xu S, Guan B, Tang X, Wang X, He D, Guo P. KLF5 promotes apoptosis induced by phorbol ester as an effector of the autocrine factor TNFα in LNCaP prostate cancer cells. Oncol Lett 2017; 14:1847-1854. [PMID: 28789420 DOI: 10.3892/ol.2017.6293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/04/2017] [Indexed: 01/04/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) is frequently deleted and inactivated in prostate cancer, and exerts tumor-suppressing function in prostate cancer cells. However, the function of KLF5 in the apoptosis of prostate cancer cells remains unclear. In the present study, the effect of KLF5 on phorbol 12-myristate 13-acetate (PMA)-induced apoptosis was investigated in prostate cancer LNCaP cells. It was demonstrated that PMA induced the expression of KLF5 at the mRNA and protein level. To identify whether KLF5 regulates the activity of the downstream pathway, stable KLF5 knockdown or overexpression cell lines were constructed with lentivirus harboring shRNA targeting KLF5 or full-length KLF5 in LNCaP cells. Knockdown of KLF5 significantly decreased PMA-induced apoptosis, while cell apoptosis was significantly increased following KLF5 overexpression compared with the corresponding control groups. Consistently, expression of cleaved poly(ADP-ribose) polymerase and caspase-3 induced by PMA was decreased following KLF5 knockdown and increased following KLF5 overexpression. Using the control medium from cells treated with PMA, it was demonstrated that KLF5 is required for the control medium to induce apoptosis. c-Jun N-terminal kinase (JNK) activity is essential for the apoptosis induced by PMA. It was revealed that knockdown of KLF5 decreased, while overexpression of KLF5 increased the phosphorylation of JNK induced by PMA and control medium treatment. Furthermore, inhibition of tumor necrosis factor α (TNFα) decreased KLF5 expression and significantly decreased cell apoptosis induced by PMA, and control medium. This data indicates that KLF5 is essential for the apoptosis induced by PMA in LNCaP prostate cancer cells. Furthermore, KLF5 is essential for activity of the autocrine factor TNFα, which is secreted by cells treated with PMA and mediates the function of PMA-induced apoptosis through regulating the activity of JNK signaling pathway. These results provide novel insights into the complexity of the signaling pathways regulating apoptosis in prostate cancer cells, which could aid in the development of novel treatments for patients with prostate cancer.
Collapse
Affiliation(s)
- Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Hui
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bing Guan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoshuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Chen Z, Zhang Q, Wang H, Li W, Wang F, Wan C, Deng S, Chen H, Yin Y, Li X, Xie Z, Chen S. Klf5 Mediates Odontoblastic Differentiation through Regulating Dentin-Specific Extracellular Matrix Gene Expression during Mouse Tooth Development. Sci Rep 2017; 7:46746. [PMID: 28440310 PMCID: PMC5404268 DOI: 10.1038/srep46746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Klf5, a member of the Krüppel-like transcription factor family, has essential roles during embryonic development, cell proliferation, differentiation, migration and apoptosis. This study was to define molecular mechanism of Klf5 during the odontoblastic differentiation. The expression of Klf5, odontoblast-differentiation markers, Dspp and Dmp1 was co-localized in odontoblastic cells at different stages of mouse tooth development and mouse dental papilla mesenchymal cells. Klf5 was able to promote odontoblastic differentiation and enhance mineral formation of mouse dental papilla mesenchymal cells. Furthermore, overexpression of Klf5 could up-regulate Dspp and Dmp1 gene expressions in mouse dental papilla mesenchymal cells. In silico analysis identified that several putative Klf5 binding sites in the promoter and first intron of Dmp1 and Dspp genes that are homologous across species lines. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Klf5 bound to these motifs in vitro and in intact cells. The responsible regions of Dmp1 gene were located in the promoter region while effect of Klf5 on Dspp activity was in the first intron of Dspp gene. Our results identify Klf5 as an activator of Dmp1 and Dspp gene transcriptions by different mechanisms and demonstrate that Klf5 plays a pivotal role in odontoblast differentiation.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China.,Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Qi Zhang
- Department of Endodontics, School &Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Wang
- Shangyang Dental Clinic, Hangzhou, China
| | - Wentong Li
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Feng Wang
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Chunyan Wan
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America.,Department of Stomatology, Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, College of Somatology, Qingdao University, Qingdao, China
| | - Shuli Deng
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Yixin Yin
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Xiaoyan Li
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Zhijian Xie
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Shuo Chen
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| |
Collapse
|
24
|
Thiagarajan D, Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Mechanisms of transcription factor acetylation and consequences in hearts. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2221-2231. [PMID: 27543804 PMCID: PMC5159280 DOI: 10.1016/j.bbadis.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Acetylation of proteins as a post-translational modification is gaining rapid acceptance as a cellular control mechanism on par with other protein modification mechanisms such as phosphorylation and ubiquitination. Through genetic manipulations and evolving proteomic technologies, identification and consequences of transcription factor acetylation is beginning to emerge. In this review, we summarize the field and discuss newly unfolding mechanisms and consequences of transcription factor acetylation in normal and stressed hearts. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | | | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States.
| |
Collapse
|
25
|
Gao Y, Wu K, Chen Y, Zhou J, Du C, Shi Q, Xu S, Jia J, Tang X, Li F, Hui K, He D, Guo P. Beyond proliferation: KLF5 promotes angiogenesis of bladder cancer through directly regulating VEGFA transcription. Oncotarget 2016; 6:43791-805. [PMID: 26544730 PMCID: PMC4791267 DOI: 10.18632/oncotarget.6101] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023] Open
Abstract
Abundant evidence has demonstrated critical roles of KLF5 in regulating cell proliferation in various cancers, however, its additional roles in other aspects of cancer development remain to be further clarified. In this study, we found that KLF5 was essential for cancer cell-endothelial cell interaction in vitro and tumor angiogenesis in nude mice based on lentivirus-mediated KLF5 knockdown bladder cancer cell models. Moreover, KLF5 insufficiency abolished the ability of bladder cancer cells to induce neovascularization in rabbit cornea. Mechanistically, the pro-angiogenic factor VEGFA was identified as a direct downstream target of KLF5, which bound to GC-boxes and CACCC elements of VEGFA promoter and regulated its transcriptional activity. In addition, there was a positive correlation between KLF5 and VEGFA expression in human bladder cancer tissues by immunohistochemistry assay and statistical analysis from TCGA and GEO data. Furthermore, we found that two pivotal pathways in bladder cancer, RTKs/RAS/MAPK and PI3K/Akt, might convey their oncogenic signaling through KLF5-VEGFA axis. Taken together, our results indicate that KLF5 promotes angiogenesis of bladder cancer through directly regulating VEGFA transcription and suggest that KLF5 could be a novel therapeutic target for angiogenesis inhibition in bladder cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Jiancheng Zhou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chong Du
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Shi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoshuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Hui
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Wang X, Shen QW, Wang J, Zhang Z, Feng F, Chen T, Zhang Y, Wei H, Li Z, Wang X, Wang Y. KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling. Stem Cells 2016; 34:1310-20. [PMID: 26930448 DOI: 10.1002/stem.2346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 11/11/2022]
Abstract
Retaining muscle stem satellite cell (SC) quiescence is important for the maintenance of stem cell population and tissue regeneration. Accumulating evidence supports the model where key extracellular signals play crucial roles in maintaining SC quiescence or activation, however, the intracellular mechanisms that mediate niche signals to control SC behavior are not fully understood. Here, we reported that KLF7 functioned as a key mediator involved in low-level TGF-β signaling and canonical Notch signaling-induced SC quiescence and myoblast arrest. The data obtained showed that KLF7 was upregulated in quiescent SCs and nonproliferating myoblasts. Silence of KLF7 promoted SCs activation and myoblasts proliferation, but overexpression of KLF7 induced myogenic cell arrest. Notably, the expression of KLF7 was regulated by TGF-β and Notch3 signaling. Knockdown of KLF7 diminished low-level TGF-β and canonical Notch signaling-induced SC quiescence. Investigation into the mechanism revealed that KLF7 regulation of SC function was dependent on p21 and acetylation of Lys227 and/or 231 in the DNA binding domain of KLF7. Our study provides new insights into the regulatory network of muscle stem cell quiescence. Stem Cells 2016;34:1310-1320.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qingwu W Shen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Jie Wang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhiguo Zhang
- College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, People's Republic of China
| | - Fu Feng
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ting Chen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanyan Zhang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Huan Wei
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhongwen Li
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
27
|
Krüppel-like factor 5 promotes apoptosis triggered by tumor necrosis factor α in LNCaP prostate cancer cells via up-regulation of mitogen-activated protein kinase kinase 7. Urol Oncol 2016; 34:58.e11-8. [DOI: 10.1016/j.urolonc.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
|
28
|
Du C, Gao Y, Xu S, Jia J, Huang Z, Fan J, Wang X, He D, Guo P. KLF5 promotes cell migration by up-regulating FYN in bladder cancer cells. FEBS Lett 2016; 590:408-18. [PMID: 26786295 DOI: 10.1002/1873-3468.12069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Chong Du
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
| | - Yang Gao
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
| | - Shan Xu
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
- Oncology Research Lab; Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education; Xi'an Shaanxi China
| | - Jing Jia
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
| | - Zhixin Huang
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
| | - Jinhai Fan
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
- Oncology Research Lab; Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education; Xi'an Shaanxi China
| | - Xinyang Wang
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
- Oncology Research Lab; Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education; Xi'an Shaanxi China
| | - Dalin He
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
- Oncology Research Lab; Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education; Xi'an Shaanxi China
| | - Peng Guo
- Department of Urology; The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi China
- Oncology Research Lab; Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education; Xi'an Shaanxi China
| |
Collapse
|
29
|
Zhao T, Liu C, Chen L. Roles of Klf5 Acetylation in the Self-Renewal and the Differentiation of Mouse Embryonic Stem Cells. PLoS One 2015; 10:e0138168. [PMID: 26372456 PMCID: PMC4570665 DOI: 10.1371/journal.pone.0138168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Transcription factor Krüppel-like factor 5 (Klf5) plays important roles in the formation of the inner cell mass (ICM) and the trophectoderm during embryogenesis, as well as the self-renewal and the differentiation of mouse embryonic stem cells (ESCs). Acetylation of KLF5 has been shown to reverse the transcriptional activity of KLF5 in human epidermal cells and prostate cancer cells. Whether Klf5 acetylation contributes to the lineage specification in the blastocyst and pluripotency maintenance in ESCs remains unexplored. Here, we showed the ubiquitous expression of acetylated Klf5 in the ICM and the trophectoderm, ruling out the possibility that differential acetylation status of Klf5 leads to the lineage specification in the blastocyst. We found that K358Q mutation, mimicking acetylation, enhances the transcriptional activity of Klf5 for pluripotency genes in ESCs, and that K358Q Klf5 is more potent in pluripotency maintenance and in somatic cell reprogramming, compared to K358R Klf5. In ESCs, Klf5 acetylation, stimulated by TGF-β signaling, is involved in enhancing Sox2 expression. Moreover, upon ESC differentiation, acetylation of Klf5 facilitates the suppression of many differentiation genes, except for that K358Q Klf5 activates Cdx2, promoting trophectodermal differentiation. In summary, our results revealed the regulatory functions of Klf5 acetylation in ESC self-renewal and differentiation.
Collapse
Affiliation(s)
- Tong Zhao
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, CAMS, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Ci X, Xing C, Zhang B, Zhang Z, Ni JJ, Zhou W, Dong JT. KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1α accumulation. Mol Cancer 2015; 14:91. [PMID: 25896712 PMCID: PMC4417294 DOI: 10.1186/s12943-015-0365-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background KLF5 is a basic transcriptional factor that regulates multiple physiopathological processes. Our recent study showed that deletion of Klf5 in mouse prostate promotes tumorigenesis initiated by the deletion of Pten. While molecular characterization of Klf5-null tumors suggested that angiogenesis was partially responsible for tumor promotion, the precise function and mechanism of KLF5 deletion in prostate tumor angiogenesis remain unclear. Results Applying histological staining to Pten-null mouse prostates, we observed that deletion of Klf5 significantly increased the number of microvessels, accompanied by the upregulation of multiple angiogenesis-related genes based on microarray analysis with MetaCore software. In human umbilical vein endothelial cells (HuVECs), tube formation and migration, both of which are indicators of angiogenic activities, were decreased by conditioned media from PC-3 and DU 145 human prostate cancer cells with KLF5 overexpression, but increased by media from cells with KLF5 knockdown. HIF1α, a key angiogenesis inducer, was upregulated by KLF5 loss at the protein but not the mRNA level in both mouse tissues and human cell lines, as determined by immunohistochemical staining, real-time RT-PCR and Western blotting. Consistently, KLF5 loss also upregulated VEGF and PDGF, two pro-angiogenic mediators of HIF1α function, as analyzed by immunohistochemical staining in mouse tissues and ELISA in conditioned media. Mechanistically, AKT activity, which caused the accumulation of HIF1α, was increased by KLF5 knockout or knockdown but decreased by KLF5 overexpression. PI3K/AKT inhibitors consistently abolished the effects of KLF5 knockdown on angiogenic activity, HIF1α accumulation, and VEGF and PDGF expression. Conclusion KLF5 loss enhances tumor angiogenesis by attenuating PI3K/AKT signaling and subsequent accumulation of HIF1α in PTEN deficient prostate tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0365-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jenny Jianping Ni
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Shibata M, Chiba T, Matsuoka T, Mihara N, Kawashiri S, Imai K. Krüppel-like factors 4 and 5 expression and their involvement in differentiation of oral carcinomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3701-3709. [PMID: 26097551 PMCID: PMC4466938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Proliferation-differentiation balance of epithelial cells is regulated by Krüppel-like factors (KLF) 4 and 5, and the unbalanced expression relates to carcinoma progression. However, little is known about the expression and role in oral carcinomas. This study examined expression of KLF4 and KLF 5 in the carcinomas by immunohistochemistry (n = 67) and the involvement in proliferation and differentiation of carcinoma cells. KLF4 was detected in keratinizing carcinoma cells and KLF5 in non-keratinizing cells. KLF4 staining declined in the patient with lymph node metastasis (P < 0.05) and in parallel with the histological dedifferentiation (P = 0.09). Exogenous overexpression of KLF4 arranged cells in a cobble-like structure with desmosomes and KLF5 elongated cells like fibroblasts without desmosomes. KLF4 suppressed fibronectin expression, and KLF5 down-regulated and degraded E-cadherin. The proliferation was not affected by KLFs. Thus, down-regulation of KLF4 and up-regulation of KLF5 may stimulate oral carcinoma progression through the dedifferentiation of carcinoma cells.
Collapse
Affiliation(s)
- Masaki Shibata
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Tadashige Chiba
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Takanori Matsuoka
- Department of Biology, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Nozomi Mihara
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Shuichi Kawashiri
- Department of Oral Surgery, School of Medicine, Kanazawa UniversityTakara-machi 13-1, Kanazawa, Ishikawa, Japan
| | - Kazushi Imai
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental UniversityFujimi 1-9-20, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
32
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
33
|
Abstract
Krüppel-like factors (KLFs) comprise a highly conserved family of zinc finger transcription factors, that are involved in a plethora of cellular processes, ranging from proliferation and apoptosis to differentiation, migration and pluripotency. During the last few years, evidence on their role and deregulation in different human cancers has been emerging. This review will discuss current knowledge on Krüppel-like transcription in the epithelial-mesenchymal transition (EMT), invasion and metastasis, with a focus on epithelial cancer biology and the extensive interface with pluripotency. Furthermore, as KLFs are able to mediate different outcomes, important influences of the cellular and microenvironmental context will be highlighted. Finally, we attempt to integrate diverse findings on KLF functions in EMT and stem cell biology to ft in the current model of cellular plasticity as a tool for successful metastatic dissemination.
Collapse
|
34
|
Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways. Neoplasia 2014; 16:883-99. [PMID: 25425963 PMCID: PMC4240924 DOI: 10.1016/j.neo.2014.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 01/18/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA ; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric N Dong
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhao-Zhe Hao
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Li X, Zhang B, Wu Q, Ci X, Zhao R, Zhang Z, Xia S, Su D, Chen J, Ma G, Fu L, Dong JT. Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells. Int J Cancer 2014; 136:536-46. [PMID: 24931571 DOI: 10.1002/ijc.29028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/21/2014] [Accepted: 05/21/2014] [Indexed: 01/31/2023]
Abstract
KLF5 possesses both tumor suppressing and tumor promoting activities, though the mechanism controlling these opposing functions is unknown. In cultured noncancerous epithelial cells, KLF5 converts from proproliferative to antiproliferative activity upon TGFβ-induced acetylation, which sequentially alters the KLF5 transcriptional complex and the expression of genes such as p15 and MYC. In this study, we tested whether the acetylation status of KLF5 also determines its opposing functions in tumorigenesis using the PC-3 and DU 145 prostate cancer cell lines, whose proliferation is inhibited by TGFβ. KLF5 inhibited the proliferation of these cancer cells, and the inhibition was dependent on KLF5 acetylation. MYC and p15 showed the same patterns of expression change found in noncancerous cells. In nude mice, KLF5 also suppressed tumor growth in an acetylation-dependent manner. Furthermore, deacetylation switched KLF5 to tumor promoting activity, and blocking TGFβ signaling attenuated the tumor suppressor activity of KLF5. RNA sequencing and comprehensive data analysis suggest that multiple molecules, including RELA, p53, CREB1, MYC, JUN, ER, AR and SP1, mediate the opposing functions of AcKLF5 and unAcKLF5. These results provide novel insights into the mechanism by which KLF5 switches from antitumorigenic to protumorigenic function and also suggest the roles of AcKLF5 and unAcKLF5, respectively, in the tumor suppressing and tumor promoting functions of TGFβ.
Collapse
Affiliation(s)
- Xin Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bialkowska AB, Liu Y, Nandan MO, Yang VW. A colon cancer-derived mutant of Krüppel-like factor 5 (KLF5) is resistant to degradation by glycogen synthase kinase 3β (GSK3β) and the E3 ubiquitin ligase F-box and WD repeat domain-containing 7α (FBW7α). J Biol Chem 2014; 289:5997-6005. [PMID: 24398687 DOI: 10.1074/jbc.m113.508549] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is a zinc finger transcription factor that is highly expressed in the crypt epithelial cells of the intestine and plays a critical role in regulating proliferation of both normal intestinal epithelial cells and colorectal cancer cells. Stability of the KLF5 is mediated by proteasomal degradation via phosphorylation by glycogen synthase kinase 3β (GSK3β) and recognition by F-box and WD repeat domain-containing 7 (FBW7) of a phosphodegron sequence surrounding serine 303 in KLF5. A genomic analysis of colorectal cancer tissues identified a somatic mutation (P301S) in KLF5 within the phosphodegron sequence. We hypothesized that due to its close proximity to the phosphodegron sequence, the P301S mutation may affect signaling that is involved in proper KLF5 degradation. We demonstrated that the P301S KLF5 mutant has a longer half-life than wild type (WT) KLF5. Furthermore, P301S KLF5 has a higher transcriptional activity than WT KLF5 as demonstrated by luciferase assays using cyclin D1 and CDC2 promoter constructs. In contrast to WT KLF5, P301S KLF5 does not physically interact with FBW7α. Concomitantly, the P301S KLF5 mutant displays reduced levels of phosphorylation at serine 303 in comparison with WT KLF5. These results of our study indicate that amino acid residue 301 of KLF5 is critical for proper recognition of the phosphodegron sequence by FBW7α and that the P301S mutation inhibits this recognition, leading to a degradation-resistant protein with elevated levels and enhanced transcriptional activity. These findings raise a potentially oncogenic role for the P301S KLF5 mutant in colorectal cancer.
Collapse
|
37
|
Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 2013; 65:999-1011. [DOI: 10.1002/iub.1233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Sonya M. Diakiw
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre; University of New South Wales; Australia
- Department of Haematology; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Anna L. Brown
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Molecular and Biomedical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
38
|
Martin-Garrido A, Williams HC, Lee M, Seidel-Rogol B, Ci X, Dong JT, Lassègue B, Martín AS, Griendling KK. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation. PLoS One 2013; 8:e79657. [PMID: 24236150 PMCID: PMC3827379 DOI: 10.1371/journal.pone.0079657] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Holly C. Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Bonnie Seidel-Rogol
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Xinpei Ci
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells. Mol Cell Biol 2013; 33:4919-35. [PMID: 24126055 DOI: 10.1128/mcb.00787-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
KLF5 is an essential basic transcriptional factor that regulates a number of physiopathological processes. In this study, we tested whether and how KLF5 modulates the epithelial-mesenchymal transition (EMT). Using transforming growth factor β (TGF-β)- and epidermal growth factor (EGF)-treated epithelial cells as an established model of EMT, we found that KLF5 was downregulated during EMT and that knockdown of KLF5 induced EMT even in the absence of TGF-β and EGF treatment, as indicated by phenotypic and molecular EMT properties. Array-based screening suggested and biochemical analyses confirmed that the microRNA 200 (miR-200) microRNAs, a group of well-established EMT repressors, were transcriptionally activated by KLF5 via its direct binding to the GC boxes in miR-200 gene promoters. Functionally, overexpression of miR-200 prevented the EMT induced by KLF5 knockdown or by TGF-β and EGF treatment, and ectopic expression of KLF5 attenuated TGF-β- and EGF-induced EMT by rescuing the expression of miR-200. In mouse prostates, knockout of Klf5 downregulated the miR-200 family and induced molecular changes indicative of EMT. These findings indicate that KLF5 maintains epithelial characteristics and prevents EMT by transcriptionally activating the miR-200 family in epithelial cells.
Collapse
|
40
|
Abstract
Krüppel-like factors (KLFs) are a family of DNA-binding transcriptional regulators with diverse and essential functions in a multitude of cellular processes, including proliferation, differentiation, migration, inflammation and pluripotency. In this Review, we discuss the roles and regulation of the 17 known KLFs in various cancer-relevant processes. Importantly, the functions of KLFs are context dependent, with some KLFs having different roles in normal cells and cancer, during cancer development and progression and in different cancer types. We also identify key questions for the field that are likely to lead to important new translational research and discoveries in cancer biology.
Collapse
Affiliation(s)
- Marie-Pier Tetreault
- Department of Medicine, Gastroenterology Division, University of Pennsylvania Perelman School of Medicine, 913 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia PA 19104-6144, USA
| | | | | |
Collapse
|
41
|
Xing C, Fu X, Sun X, Guo P, Li M, Dong JT. Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells. PLoS One 2013; 8:e65538. [PMID: 23755247 PMCID: PMC3673967 DOI: 10.1371/journal.pone.0065538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022] Open
Abstract
KLF5 is a basic transcription factor that regulates multiple biological processes. While it was identified as a putative tumor suppressor in prostate cancer, likely due to its function as an effector of TGF-β in the inhibition of cell proliferation, KLF5 is unacetylated and promotes cell proliferation in the absence of TGF-β. In this study, we evaluated the expression and function of KLF5 in prostatic epithelial homeostasis and tumorigenesis using mouse prostates and human prostate epithelial cells in 3-D culture. Histological and molecular analyses demonstrated that unacetylated-Klf5 was expressed in basal or undifferentiated cells, whereas acetylated-Klf5 was expressed primarily in luminal and/or differentiated cells. Androgen depletion via castration increased both the level of Klf5 expression and the number of Klf5-positive cells in the remaining prostate. Functionally, knockdown of KLF5 in the human RWPE-1 prostate cell line decreased the number of spheres formed in 3-D culture. In addition, knockout of Klf5 in prostate epithelial cells, mediated by probasin promoter-driven Cre expression, did not cause neoplasia but promoted cell proliferation and induced hyperplasia when one Klf5 allele was knocked out. Knockout of both Klf5 alleles however, caused apoptosis rather than cell proliferation in the epithelium. In castrated mice, knockout of Klf5 resulted in more severe shrinkage of the prostate. These results suggest that KLF5 plays a role in the proliferation and differentiation of prostatic epithelial cells, yet loss of KLF5 alone is insufficient to induce malignant transformation in epithelial cells.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Guo
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mei Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kureha F, Satomi-Kobayashi S, Kubo Y, Kinugasa M, Ishida T, Takai Y, Hirata KI, Rikitake Y. Nectin-Like Molecule-5 Regulates Intimal Thickening After Carotid Artery Ligation in Mice. Arterioscler Thromb Vasc Biol 2013; 33:1206-11. [DOI: 10.1161/atvbaha.113.301425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Fumie Kureha
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seimi Satomi-Kobayashi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiki Kubo
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitsuo Kinugasa
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuro Ishida
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimi Takai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Rikitake
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
43
|
Liu R, Dong JT, Chen C. Role of KLF5 in hormonal signaling and breast cancer development. VITAMINS AND HORMONES 2013; 93:213-25. [PMID: 23810009 DOI: 10.1016/b978-0-12-416673-8.00002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Steroid hormones, including ovarian steroid hormones progesterone and estrogen and androgen, play vital roles in the development of normal mammary gland and breast cancer via their receptors. How these hormones regulate these physiological and pathological processes remains to be elucidated. Krüppel-like factor 5 (KLF5) is a transcription factor playing significant roles in breast carcinogenesis, whose expression has been shown to be regulated by hormones. In this review, the relationships among hormonal signaling, KLF5, and breast cancer are summarized and discussed.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | | | | |
Collapse
|
44
|
Yang Y, Tarapore RS, Jarmel MH, Tetreault MP, Katz JP. p53 mutation alters the effect of the esophageal tumor suppressor KLF5 on keratinocyte proliferation. Cell Cycle 2012; 11:4033-9. [PMID: 22990386 DOI: 10.4161/cc.22265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is a key transcriptional regulator that is typically pro-proliferative in non-transformed epithelial cells but inhibits proliferation in transformed epithelial cells. However, the underlying mechanisms for this context-dependent function are not known. KLF5 is epigenetically silenced and exhibits a tumor suppressive function in esophageal squamous cell cancer (ESCC). Since p53 mutation is the most common genetic alteration in ESCC, as in other human epithelial cancers, we hypothesized that the context-dependent functions of KLF5 in cell proliferation were dependent on p53 status. In fact, in non-transformed human primary esophageal keratinocytes, when p53 was wild-type, KLF5 was pro-proliferative; however, KLF5 became anti-proliferative when p53 was mutated. KLF5 loss in human primary keratinocytes harboring p53 mutation accelerated the cell cycle and decreased expression of p21Waf1/Cip1; similar effects were also seen in ESCC cells with established p53 mutations. Further, p21Waf1/Cip1 was directly and differentially bound and regulated by KLF5 in the presence or absence of mutant p53, and suppression of p21Waf1/Cip1 reversed the antiproliferative effects of KLF5 in the presence of p53 mutation. Thus, KLF5 is a critical brake on an aberrant cell cycle, with important tumor suppressive functions in esophageal squamous cell and potentially other epithelial cancers.
Collapse
Affiliation(s)
- Yizeng Yang
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
45
|
Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, Dong JT. Epigenetic Silencing of miR-203 Upregulates SNAI2 and Contributes to the Invasiveness of Malignant Breast Cancer Cells. Genes Cancer 2012; 2:782-91. [PMID: 22393463 DOI: 10.1177/1947601911429743] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/15/2011] [Indexed: 12/11/2022] Open
Abstract
It has become increasingly clear that microRNAs (miRNAs) play important roles in tumorigenesis and metastasis. Recently, miR-203 was reported as a suppressor microRNA often silenced in different malignancies including hepatocellular carcinoma, prostate cancer, oral cancer, and hematopoietic malignancy, but little is known about its potential role in breast carcinogenesis. In this study, we found that in breast cancer, miR-203 was upregulated in primary tumors and some nonmetastatic cell lines but was significantly downregulated in metastatic cell lines including BT549, Hs578T, and MDA-MB-231, as measured by regular and real-time PCR. Downregulation of miR-203 in metastatic breast cancer cells appeared to be caused by hypermethylation of its promoter. Functionally, ectopic expression of miR-203 in BT549 and MDA-MB-231 breast cancer cell lines caused cell cycle arrest and apoptosis and inhibited cell invasion and migration in vitro. Bioinformatic analysis predicted the snail homolog 2 (SNAI2 or SLUG), a transcription factor that promotes cell invasion and tumor metastasis, as a target of miR-203, and the prediction was validated by expression analysis and luciferase reporter assay of the 3' untranslated region of SNAI2 that contains the miR-203 target sequences. These results suggest that in malignant breast cancer cells, miR-203 is epigenetically silenced, and the silencing promotes tumor cell growth and invasion at least in part by upregulating the SNAI2 transcription factor.
Collapse
Affiliation(s)
- Zhiqian Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Shi HJ, Wen JK, Miao SB, Liu Y, Zheng B. KLF5 and hhLIM cooperatively promote proliferation of vascular smooth muscle cells. Mol Cell Biochem 2012; 367:185-94. [DOI: 10.1007/s11010-012-1332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/03/2012] [Indexed: 12/11/2022]
|
47
|
Wu X, Zhu Z, Li W, Fu X, Su D, Fu L, Zhang Z, Luo A, Sun X, Fu L, Dong JT. Chromodomain helicase DNA binding protein 5 plays a tumor suppressor role in human breast cancer. Breast Cancer Res 2012; 14:R73. [PMID: 22569290 PMCID: PMC3446335 DOI: 10.1186/bcr3182] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/18/2012] [Accepted: 05/08/2012] [Indexed: 01/22/2023] Open
Abstract
Introduction The chromodomain helicase DNA binding protein 5 (CHD5) has recently been identified as a tumor suppressor in a mouse model. The CHD5 locus at 1p36 is deleted, and its mutation has been detected in breast cancer. We, therefore, evaluated whether CHD5 plays a role in human breast cancer. Methods We screened mutations in 55 tumors, determined promoter methylation in 39 tumors, measured RNA expression in 90 tumors, analyzed protein expression in 289 tumors, and correlated expression changes with clinicopathological characteristics of breast cancer. Functional effects of CHD5 on cell proliferation, invasion and tumorigenesis were also tested. Results Although only one mutation was detected, CHD5 mRNA expression was significantly reduced, accompanied by frequent genomic deletion and promoter methylation, in breast cancer. The extent of methylation was significantly associated with reduced mRNA expression, and demethylating treatment restored CHD5 expression. Lower CHD5 mRNA levels correlated with lymph node metastasis (P = 0.026). CHD5 protein expression was also reduced in breast cancer, and lack of CHD5 expression significantly correlated with higher tumor stage, ER/PR-negativity, HER2 positivity, distant metastasis and worse patient survival (P ≤ 0.01). Functionally, ectopic expression of CHD5 in breast cancer cells inhibited cell proliferation and invasion in vitro and tumorigenesis in nude mice. Consistent with the inhibition of invasion, CHD5 down-regulated mesenchymal markers vimentin, N-cadherin and ZEB1 in breast cancer cells. Conclusion Down-regulation of CHD5, mediated at least in part by promoter methylation, contributes to the development and progression of human breast cancer.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Oestrogen causes degradation of KLF5 by inducing the E3 ubiquitin ligase EFP in ER-positive breast cancer cells. Biochem J 2011; 437:323-33. [PMID: 21542805 DOI: 10.1042/bj20101388] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KLF5 (Krüppel-like factor 5) is a multifunctional transcription factor involved in cell proliferation, differentiation and carcinogenesis. In addition to frequent inactivation in different types of human cancers, including breast cancer, KLF5 has been identified as an essential co-factor for the TGF-β (transforming growth factor β) tumour suppressor. In our previous study demonstrating a negative regulation of ER (oestrogen receptor α) function by KLF5 in breast cancer cells [Guo, Dong, Zhao, Sun, Li and Dong (2010) Int. J. Cancer 126, 81-89], we noticed that oestrogen reduced the protein level of KLF5. In the present study, we have tested whether and how oestrogen/ER signalling regulates KLF5 protein. We found that oestrogen caused the degradation of KLF5 protein, and the degradation was sensitive to proteasome inhibitors, but not other inhibitors. The oestrogen-inducible E3 ligase EFP (oestrogen-responsive finger protein) was identified as a key player in oestrogen-mediated degradation of KLF5, as knockdown and overexpression of EFP increased and decreased KLF5 protein levels respectively, and the decrease continued even when protein synthesis was blocked. EFP-mediated degradation impaired the function of KLF5 in gene transcription. Although only unubiquitinated EFP interacted with KLF5, overexpression of EFP appeared to prevent the ubiquitination of KLF5, while resulting in heavy ubiquitination of the E3 itself. Furthermore, ubiquitination of EFP interrupted its interaction with KLF5. Although the mechanism for how EFP degrades KLF5 remains to be determined, the results of the present study suggest that oestrogen causes the degradation of KLF5 protein by inducing the expression of EFP in ER-positive breast cancer cells.
Collapse
|
49
|
Bureau C, Hanoun N, Torrisani J, Vinel JP, Buscail L, Cordelier P. Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Curr Genomics 2011; 10:353-60. [PMID: 20119532 PMCID: PMC2729999 DOI: 10.2174/138920209788921010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/22/2022] Open
Abstract
Krüppel-like factor (KLF) family members share a three C2H2 zinc finger DNA binding domain, and are involved in cell proliferation and differentiation control in normal as in pathological situations. Studies over the past several years support a significant role for this family of transcription factors in carcinogenesis. KLFs can both activate and repress genes that participate in cell-cycle regulation. Among them, many up-regulated genes are inhibitors of proliferation, whereas genes that promote cell proliferation are repressed. However, several studies do present KLFs as positive regulator of cell proliferation. KLFs can be deregulated in multiple cancers either by loss of heterozygosity (LOH), somatic mutation or transcriptional silencing by promoter hypermethylation. Accordingly, KLF expression was shown to mediate growth inhibition when ectopically expressed in multiple cancer-derived cell lines through the inhibition of a number of key oncogenic signaling pathways, and to revert the tumorogenic phenotype in vivo. Taken together, these observations suggest that KLFs act as tumor suppressor. However, in some occasion, KLFs could act as tumor promoters, depending on “cellular context”. Thus, this review will discuss the roles and the functions of KLF family members in carcinogenesis, with a special focus on cancers from epithelial origin.
Collapse
Affiliation(s)
- Christophe Bureau
- Institut National de la Santé et de la Recherche Médicale Unité 858-I2MR, Institut de Médecine Moléculaire de Rangueil, Département Cancers Epithéliaux, Angiogénèse et Signalisation, 31432 Toulouse Cedex 4 France
| | | | | | | | | | | |
Collapse
|
50
|
Sur I. Krüppel-like factors 4 and 5: unity in diversity. Curr Genomics 2011; 10:594-603. [PMID: 20514221 PMCID: PMC2817890 DOI: 10.2174/138920209789503932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/26/2009] [Accepted: 08/06/2009] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factors (Klf) 4 and 5 belong to a family of zinc finger-containing transcription factors that share homology with the Drosophila gene Krüppel. They regulate proliferation and differentiation of a wide variety of cells and have been linked to tumorigenesis. Their most striking role so far has turned out to be their ability to reprogram/ maintain embryonic stem cell fate. In this review, the data available in the field regarding their role in proliferation and differentiation and their coupling to carcinogenesis are summarized. The emphasis is on their context dependence and how they might be able to regulate diverse transcriptional outputs from the genome.
Collapse
Affiliation(s)
- Inderpreet Sur
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 57 Huddinge, Sweden
| |
Collapse
|