1
|
Gierula M, Noakes VM, Salles-Crawley II, Crawley JTB, Ahnström J. The TFPIα C-terminal tail is essential for TFPIα-FV-short-protein S complex formation and synergistic enhancement of TFPIα. J Thromb Haemost 2023; 21:3568-3580. [PMID: 37739040 DOI: 10.1016/j.jtha.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND For maximal TFPIα functionality, 2 synergistic cofactors, protein S and FV-short, are required. Both interact with TFPIα, protein S through Kunitz 3 residues Arg199/Glu226 and FV-short with the C-terminus. How these interactions impact the synergistic enhancement remains unclear. OBJECTIVES To determine the importance of the TFPIα-protein S and TFPIα-FV-short interactions for TFPIα enhancement. METHODS TFPIα variants unable to bind protein S (K3m [R199Q/E226Q]) or FV-short (ΔCT [aa 1-249]) were generated. TFPIα-FV-short binding was studied by plate-binding and co-immunoprecipitation assays; functional TFPIα enhancement by FXa inhibition and prothrombin activation. RESULTS While WT TFPIα and TFPIα K3m bound FV-short with high affinity (Kd∼2nM), TFPIα ΔCT did not. K3m, in contrast to WT, did not incorporate protein S in a TFPIα-FV-short-protein S complex while TFPIα ΔCT bound neither FV-short nor protein S. Protein S enhanced WT TFPIα-mediated FXa inhibition, but not K3m, in the absence of FV-short. However, once FV-short was present, protein S efficiently enhanced TFPIα K3m (EC50: 4.7nM vs 2.0nM for WT). FXa inhibition by ΔCT was not enhanced by protein S alone or combined with FV-short. In FXa-catalyzed prothrombin activation assays, FV-short enhanced TFPIα K3m function in the presence of protein S (5.5 vs 10.4-fold enhancement of WT) whereas ΔCT showed reduced or lack of enhancement by FV-short and protein S, respectively. CONCLUSION Full TFPIα function requires the presence of both cofactors. While synergistic enhancement can be achieved in the absence of TFPIα-protein S interaction, only TFPIα with an intact C-terminus can be synergistically enhanced by protein S and FV-short.
Collapse
|
2
|
Brinkman HJM, Ahnström J, Castoldi E, Dahlbäck B, Marlar RA. Pleiotropic anticoagulant functions of protein S, consequences for the clinical laboratory. Communication from the SSC of the ISTH. J Thromb Haemost 2021; 19:281-286. [PMID: 33405384 DOI: 10.1111/jth.15108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023]
Abstract
Hereditary deficiencies of protein S (PS) increase the risk of thrombosis. However, assessing the plasma levels of PS is complicated by its manifold physiological interactions, while the large inter-individual variability makes it problematic to establish reliable cut-off values. PS has multiple physiological functions, with only two appearing to have significant anticoagulant properties: the activated protein C (APC) and tissue factor pathway inhibitor alpha (TFPIα) cofactor activities. Current clinical laboratory investigations for deficiency in PS function rely only on the APC-dependent activity. This communication presents an argument for reclassifying the qualitative PS deficiencies to differentiate the two major anticoagulant functions of PS. Reliable assays are necessary for accurate evaluation of PS function when making a specific diagnosis of PS deficiency based on the anticoagulant phenotype alone. This report emphasizes the pleiotropic anticoagulant functions of PS and presents evidence-based recommendations for their implementation in the clinical laboratory.
Collapse
Affiliation(s)
- Herm Jan M Brinkman
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | | | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Björn Dahlbäck
- Department of Translational Medicine, Lund University, Malmō, Sweden
| | - Richard A Marlar
- Department of Pathology, University of New Mexico, TriCore Reference Laboratories, Albuquerque, NM, USA
| |
Collapse
|
3
|
Heinzmann A, Hackeng TM, Hartmann R, Scheiflinger F, Dockal M, Rosing J, Peraramelli S, Thomassen S. Role of exosite binding modulators in the inhibition of Fxa by TFPI. Thromb Haemost 2018; 115:580-90. [DOI: 10.1160/th15-04-0354] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/21/2015] [Indexed: 11/05/2022]
Abstract
SummaryTissue factor pathway inhibitor (TFPI) down-regulates the extrinsic coagulation pathway by inhibiting FXa and FVIIa. Both TFPI and FXa interact with several plasma proteins (e. g. prothrombin, FV/FVa, protein S) and non-proteinaceous compounds (e. g. phospholipids, heparin). It was our aim to investigate effects of ligands that bind to FXa and TFPI on FXa inhibition by full-length TFPI (designated TFPI) and truncated TFPI (TFPI1-150). Inhibition of FXa by TFPI and TFPI1-150 and effects of phospholipids, heparin, prothrombin, FV, FVa, and protein S thereon was quantified from progress curves of conversion of the FXa-specific chromogenic substrate CS11-(65). Low concentrations negatively charged phospholipids (~10 μM) already maximally stimulated (up to 5- to 6-fold) FXa inhibition by TFPI. Unfractionated heparin at concentrations (0.2–1 U/ml) enhanced FXa inhibition by TFPI ~8-fold, but impaired inhibition at concentrations > 1 U/ml. Physiological protein S and FV concentrations both enhanced FXa inhibition by TFPI 2- to 3-fold. In contrast, thrombin-activated FV (FVa) impaired the ability of TFPI to inhibit FXa. FXa inhibition by TFPI1–150 was not affected by FV, FVa, protein S, phospholipids and heparin. TFPI potently inhibited FXa-catalysed prothrombin activation in the absence of FVa, but hardly inhibited prothrombin activation in the presence of thrombin-activated FVa. In conclusion, physiological concentrations TFPI (0.25–0.5 nM TFPI) inhibit FXa with a t1/2 between 3–15 minutes. Direct FXa inhibition by TFPI is modulated by physiological concentrations prothrombin, FV, FVa, protein S, phospholipids and heparin indicating the importance of these modulators for the in vivo anticoagulant activity of TFPI.
Collapse
|
4
|
Deguchi H, Elias DJ, Griffin JH. Minor Plasma Lipids Modulate Clotting Factor Activities and May Affect Thrombosis Risk. Res Pract Thromb Haemost 2017; 1:93-102. [PMID: 29082360 PMCID: PMC5658053 DOI: 10.1002/rth2.12017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Essentials Circulating blood contains hundreds of lipids, many of which might influence blood coagulation. Recent discoveries about circulating lipids that can affect blood coagulation are reviewed. Minor abundance plasma lipids can modulate thrombin generation via direct effects on factor Xa. Variations in minor abundance plasma lipids can influence thrombin generation and thrombosis risk.
Abstract Different minor abundance plasma lipids significantly influence thrombin generation in vitro and significant differences in such lipids are linked to risk for venous thrombosis. Some plasma sphingolipids including glucosylceramide, lyso‐sulfatide and sphingosine have anticoagulant properties whereas, conversely, some plasma phospholipid derivatives, including certain lyso‐phospholipids and ethanolamides, have procoagulant properties. Plasma metabolite profiling of venous thrombosis patients showed association of venous thrombosis with decreased plasma long‐chain acylcarntines, leading to discovery of their anticoagulant activity as inhibitors of factor Xa. Inhibition of factor Xa by acylcarnitines does not require the protein's Gla‐domain, emphasizing an expanded framework for the paradigm for lipid‐clotting factor interactions. Overall, whether by genetics or environment, alterations in the dynamics of lipid metabolism linked to an altered lipidome may contribute to regulation of blood coagulation because imbalances between physiologic procoagulant and anticoagulant lipids may contribute to excessive thrombin generation that augments risk for thrombosis.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Darlene J Elias
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.,Scripps Clinic and Scripps Green Hospital, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Ostrowski M, Žnidaršič PP, Raynal B, Saul F, Faure G. Human coagulation factor Xa prevents oligomerization of anti-coagulant phospholipases A2. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.860170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Heeb MJ, Mesters RM, Fernández JA, Hackeng TM, Nakasone RK, Griffin JH. Plasma protein S residues 37-50 mediate its binding to factor Va and inhibition of blood coagulation. Thromb Haemost 2013; 110:275-82. [PMID: 23892573 DOI: 10.1160/th12-12-0953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/04/2013] [Indexed: 11/05/2022]
Abstract
Protein S (PS) is an anticoagulant plasma protein whose deficiency is associated with increased risk of venous thrombosis. PS directly inhibits thrombin generation by the blood coagulation pathways by several mechanisms, including by binding coagulation factors (F) Va and Xa. To identify PS sequences that mediate inhibition of FVa activity, antibodies and synthetic peptides based on PS sequence were prepared and employed in plasma coagulation assays, purified component prothrombinase assays, binding assays, and immunoblots. In the absence of activated protein C, monoclonal antibody (Mab) S4 shortened FXa-induced clotting in normal plasma but not in PS-depleted plasma. Mab S4 also blocked PS inhibition of FVa-dependent prothrombinase activity in purified component assays in the absence or presence of phospholipids and inhibited binding of PS to immobilised FVa. Epitope mapping identified N-terminal region residues 37-67 of PS as this antibody's epitope. A peptide representing PS residues 37-50 inhibited FVa-dependent prothrombinase activity in a non-competitive manner, with 50% inhibition observed at 11 µM peptide, whereas a peptide with a D-amino acid sequence of 37-50 was ineffective. FVa, but not FXa, bound specifically to the immobilised peptide representing residues 37-50, and the peptide inhibited binding of FVa to immobilised PS. These data implicate PS residues 37-50 as a binding site for FVa that mediates, at least in part, the direct inhibition of FVa-dependent procoagulant activity by PS.
Collapse
Affiliation(s)
- Mary J Heeb
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Broze GJ, Girard TJ. Tissue factor pathway inhibitor: structure-function. Front Biosci (Landmark Ed) 2012; 17:262-80. [PMID: 22201743 DOI: 10.2741/3926] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TFPI is a multivalent, Kunitz-type proteinase inhibitor, which, due to alternative mRNA splicing, is transcribed in three isoforms: TFPIalpha, TFPIdelta, and glycosyl phosphatidyl inositol (GPI)-anchored TFPIbeta. The microvascular endothelium is thought to be the principal source of TFPI and TFPIalpha is the predominant isoform expressed in humans. TFPIalpha, apparently attached to the surface of the endothelium in an indirect GPI-anchor-dependent fashion, represents the greatest in vivo reservoir of TFPI. The Kunitz-2 domain of TFPI is responsible for factor Xa inhibition and the Kunitz-1 domain is responsible for factor Xa-dependent inhibition of the factor VIIa/tissue factor catalytic complex. The anticoagulant activity of TFPI in one-stage coagulation assays is due mainly to its inhibition of factor Xa through a process that is enhanced by protein S and dependent upon the Kunitz-3 and carboxyterminal domains of full-length TFPIalpha. Carboxyterminal truncated forms of TFPI as well as TFPIalpha in plasma, however, inhibit factor VIIa/tissue factor in two-stage assay systems. Studies in gene-disrupted mice demonstrate the physiological importance of TFPI.
Collapse
Affiliation(s)
- George J Broze
- Division of Hematology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
8
|
The Kunitz-3 domain of TFPI-alpha is required for protein S-dependent enhancement of factor Xa inhibition. Blood 2010; 116:1344-51. [PMID: 20479289 DOI: 10.1182/blood-2009-10-246686] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein S (PS) enhances the inhibition of factor Xa (FXa) by tissue factor pathway inhibitor-alpha (TFPI-alpha) in the presence of Ca(2+) and phospholipids. Altered forms of recombinant TFPI-alpha were used to determine the structures within TFPI-alpha that may be involved in this PS-dependent effect. Wild-type TFPI-alpha (TFPI(WT)), TFPI-alpha lacking the K3 domain (TFPI-(DeltaK3)), and TFPI-alpha containing a single amino acid change at the putative P1 residue of K3 (R199L, TFPI(K3P1)) produced equivalent FXa inhibition in the absence of PS, whereas the response in FXa inhibition produced by PS was reduced with TFPI(K3P1) (EC(50) 61.8 +/- 13.4nM vs 8.0 +/- 0.4nM for TFPI(WT)) and not detectable with TFPI-(DeltaK3). Ligand blotting and surface plasmon resonance experiments demonstrated that FXa bound TFPI(WT) and TFPI-(DeltaK3) but not the isolated K3 domain, whereas PS bound TFPI(WT) and the K3 domain but not TFPI-(DeltaK3). Addition of TFPI(WT), TFPI(K3P1), or TFPI-(DeltaK3) produced comparable prolongation of FXa-induced coagulation in PS-deficient plasma, but the anticoagulant effect of TFPI(WT) was substantially greater than that of TFPI(K3P1) > TFPI-(DeltaK3) in normal plasma and PS-deficient plasma reconstituted with PS. We conclude that the PS-mediated enhancement of FXa inhibition by TFPI-alpha involves an interaction between PS and TFPI-alpha, which requires the K3 domain of TFPI-alpha.
Collapse
|
9
|
Dirksen A, Yegneswaran S, Dawson PE. Bisaryl hydrazones as exchangeable biocompatible linkers. Angew Chem Int Ed Engl 2010; 49:2023-7. [PMID: 20183838 PMCID: PMC4383167 DOI: 10.1002/anie.200906756] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anouk Dirksen
- Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037 (USA), Fax: (+)1-858-784-7319
| | - Subramanian Yegneswaran
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037 (USA), Fax: (+)1-858-784-7319
| | - Philip E. Dawson
- Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037 (USA), Fax: (+)1-858-784-7319
| |
Collapse
|
10
|
Dirksen A, Yegneswaran S, Dawson P. Bisaryl Hydrazones as Exchangeable Biocompatible Linkers. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
In the last decades evidence was obtained that protein S not only acts as cofactor of activated protein C (APC) in the downregulation of coagulation, but also expresses anticoagulant activity in the absence of APC. The search for the mechanism(s) underlying the APC-independent anticoagulant activity of protein S was hampered by the fact that protein S exhibited 2 seemingly identical anticoagulant activities in model systems and in plasma. Later it was shown that the anticoagulant activity of purified protein S in model systems was dependent on the concentration of phospholipid vesicles and was explained by low amounts of protein S multimers generated during purification that effectively inhibited phospholipid-dependent coagulation reactions via competition for phospholipid binding sites. Plasma does not contain multimers, and the anticoagulant activity of protein S in plasma was not affected by the phospholipid concentration but was dependent on the amount of tissue factor (TF) used for initiation of thrombin generation. This led to the discovery that protein S acts as cofactor of tissue factor pathway inhibitor (TFPI) which stimulates the inhibition of factor Xa by TFPI approximately 10-fold. The current review describes the background of the TFPI-cofactor activity of protein S as well as the rationale for the observation that the TFPI/protein S system particularly inhibits the TF pathway at low procoagulant stimuli.
Collapse
Affiliation(s)
- Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
12
|
Abstract
Protein S is an anticoagulant cofactor of full-length tissue factor pathway inhibitor (TFPI) that facilitates optimal factor Xa-inhibition and efficient down-regulation of thrombin generation in plasma. Protein S and TFPI are constitutively active in plasma and therefore provide an effective anticoagulant barrier against unwanted procoagulant activity in the circulation. In this review, we describe the current status on how TFPI-activity depends on protein S, and show that TFPI and protein S are major regulators of thrombin generation both in the absence and presence of activated protein C (APC). As there is covariation of plasma TFPI and protein S levels both in health and in disease, these findings suggest that the risk of venous thrombosis associated with protein S deficiency states might be in part explained by the accompanying low plasma TFPI levels.
Collapse
Affiliation(s)
- T M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Heeb MJ, Prashun D, Griffin JH, Bouma BN. Plasma protein S contains zinc essential for efficient activated protein C-independent anticoagulant activity and binding to factor Xa, but not for efficient binding to tissue factor pathway inhibitor. FASEB J 2009; 23:2244-53. [PMID: 19244162 PMCID: PMC2704590 DOI: 10.1096/fj.08-123174] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/29/2009] [Indexed: 11/11/2022]
Abstract
Protein S (PS) is a cofactor for activated protein C (APC), which inactivates coagulation factors (F) Va and VIIIa. Deficiency of protein C or PS is associated with risk of thrombosis. We found that PS also has APC-independent anticoagulant activity (PS-direct) and directly inhibits thrombin generated by FXa/FVa (prothrombinase complex). Here we report that PS contains Zn(2+) that is required for PS-direct and that is lost during certain purification procedures. Immunoaffinity-purified PS contained 1.4 +/- 0.6 Zn(2+)/mol, whereas MonoQ-purified and commercial PS contained 0.15 +/- 0.15 Zn(2+)/mol. This may explain the controversy regarding the validity of PS-direct. Zn(2+) content correlated positively with PS-direct in prothrombinase assays and clotting assays, but APC-cofactor activity of PS was independent of Zn(2+) content. PS-direct and Zn(2+) were restored to inactive PS under mildly denaturing conditions. Conversely, o-phenanthroline reversibly impaired the PS-direct of active PS. Zn(2+)-containing PS bound FXa more efficiently (K(d)(app)=9.3 nM) than Zn(2+)-deficient PS (K(d)(app)=110 nM). PS bound TFPI efficiently, independently of Zn(2+) content (K(d)(app)=21 nM). Antibodies that block PS-direct preferentially recognized Zn(2+)-containing PS, suggesting conformation differences at or near the interface of 2 laminin G-like domains near the PS C terminus. Thus, Zn(2+) is required for PS-direct and efficient FXa binding and may play a role in stabilizing PS conformation.
Collapse
Affiliation(s)
- Mary J Heeb
- Department of Molecular and Experimental Medicine, MEM276, Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
14
|
|