1
|
Dabsan S, Twito G, Biadsy S, Igbaria A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J 2025; 292:976-989. [PMID: 38865586 PMCID: PMC11880973 DOI: 10.1111/febs.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle that controls the intracellular and extracellular environments. The ER is responsible for folding almost one-third of the total protein population in the eukaryotic cell. Disruption of ER-protein folding is associated with numerous human diseases, including metabolic disorders, neurodegenerative diseases, and cancer. During ER perturbations, the cells deploy various mechanisms to increase the ER-folding capacity and reduce ER-protein load by minimizing the number of substrates entering the ER to regain homeostasis. These mechanisms include signaling pathways, degradation mechanisms, and other processes that mediate the reflux of ER content to the cytosol. In this review, we will discuss the recent discoveries of five different ER quality control mechanisms, including the unfolded protein response (UPR), ER-associated-degradation (ERAD), pre-emptive quality control, ER-phagy and ER to cytosol signaling (ERCYS). We will discuss the roles of these processes in decreasing ER-protein load and inter-mechanism crosstalk.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Gal Twito
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Suma Biadsy
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
2
|
Lok J, Harris JM, Carey I, Agarwal K, McKeating JA. Assessing the virological response to direct-acting antiviral therapies in the HBV cure programme. Virology 2025; 605:110458. [PMID: 40022943 DOI: 10.1016/j.virol.2025.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hepatitis B virus (HBV) is a global health problem with over 250 million people affected worldwide. Nucleos(t)ide analogues remain the standard of care and suppress production of progeny virions; however, they have limited effect on the viral transcriptome and long-term treatment is associated with off-target toxicities. Promising results are emerging from clinical trials and several drug classes have been evaluated, including capsid assembly modulators and RNA interfering agents. Whilst peripheral biomarkers are used to monitor responses and define treatment endpoints, they fail to reflect the full reservoir of infected hepatocytes. Given these limitations, consideration should be given to the merits of sampling liver tissue, especially in the context of clinical trials. In this review article, we will discuss methods for profiling HBV in liver tissue and their value to the HBV cure programme.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparison of the Proteome of Huh7 Cells Transfected with Hepatitis B Virus Subgenotype A1, with or without G1862T. Curr Issues Mol Biol 2024; 46:7032-7047. [PMID: 39057060 PMCID: PMC11275860 DOI: 10.3390/cimb46070419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
HBeAg is a non-structural, secreted protein of hepatitis B virus (HBV). Its p25 precursor is post-translationally modified in the endoplasmic reticulum. The G1862T precore mutation leads to the accumulation of P25 in the endoplasmic reticulum and activation of unfolded protein response. Using mass spectrometry, comparative proteome profiling of Huh-7 cells transfected with wildtype (WT) or G1862T revealed significantly differentially expressed proteins resulting in 12 dysregulated pathways unique to WT-transfected cells and 7 shared between cells transfected with either WT or G1862T. Except for the p38 MAPK signalling pathway, WT showed a higher number of DEPs than G1862T-transfected cells in all remaining six shared pathways. Two signalling pathways: oxidative stress and cell cycle signalling were differentially expressed only in cells transfected with G1862T. Fifteen pathways were dysregulated in G1862T-transfected cells compared to WT. The 15 dysregulated pathways were involved in the following processes: MAPK signalling, DNA synthesis and methylation, and extracellular matrix organization. Moreover, proteins involved in DNA synthesis signalling (replication protein A (RPA) and DNA primase (PRIM2)) were significantly upregulated in G1862T compared to WT. This upregulation was confirmed by mRNA quantification of both genes and immunofluorescent confocal microscopy for RPA only. The dysregulation of the pathways involved in these processes may lead to immune evasion, persistence, and uncontrolled proliferation, which are hallmarks of cancer.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2194, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
4
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative Proteomic Analysis of Huh7 Cells Transfected with Sub-Saharan African Hepatitis B Virus (Sub)genotypes Reveals Potential Oncogenic Factors. Viruses 2024; 16:1052. [PMID: 39066215 PMCID: PMC11281506 DOI: 10.3390/v16071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In sub-Saharan Africa (SSA), the (sub)genotypes A1, D3, and E of the hepatitis B virus (HBV) prevail. Individuals infected with subgenotype A1 have a 4.5-fold increased risk of HCC compared to those infected with other (sub)genotypes. The effect of (sub)genotypes on protein expression and host signalling has not been studied. Mass spectrometry was used to analyse the proteome of Huh7 cells transfected with replication-competent clones. Proteomic analysis revealed significantly differentially expressed proteins between SSA (sub)genotypes. Different (sub)genotypes have the propensity to dysregulate specific host signalling pathways. Subgenotype A1 resulted in dysregulation within the Ras pathway. Ras-associated protein, RhoC, was significantly upregulated in cells transfected with subgenotype A1 compared to those transfected with other (sub)genotypes, on both a proteomic (>1.5-fold) and mRNA level (p < 0.05). Two of the main cellular signalling pathways involving RHOC, MAPK and PI3K/Akt/mTOR, regulate cell growth, motility, and survival. Downstream signalling products of these pathways have been shown to increase MMP2 and MMP9 expression. An extracellular MMP2 and MMP9 ELISA revealed a non-significant increase in MMP2 and MMP9 in the cells transfected with A1 compared to the other (sub)genotypes (p < 0.05). The upregulated Ras-associated proteins have been implicated as oncoproteins in various cancers and could contribute to the increased hepatocarcinogenic potential of A1.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2000, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| |
Collapse
|
5
|
Chergintsev DA, Solovieva AD, Atabekova AK, Lezzhov AA, Golyshev SA, Morozov SY, Solovyev AG. Properties of Plant Virus Protein Encoded by the 5'-Proximal Gene of Tetra-Cistron Movement Block. Int J Mol Sci 2023; 24:14144. [PMID: 37762447 PMCID: PMC10532019 DOI: 10.3390/ijms241814144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To move from cell to cell through plasmodesmata, many plant viruses require the concerted action of two or more movement proteins (MPs) encoded by transport gene modules of virus genomes. A tetra-cistron movement block (TCMB) is a newly discovered transport module comprising four genes. TCMB encodes three proteins, which are similar to MPs of the transport module known as the "triple gene block", and a protein unrelated to known viral MPs and containing a double-stranded RNA (dsRNA)-binding domain similar to that found in a family of cell proteins, including AtDRB4 and AtHYL1. Here, the latter TCMB protein, named vDRB for virus dsRNA-binding protein, is shown to bind both dsRNA and single-stranded RNA in vitro. In a turnip crinkle virus-based assay, vDRB exhibits the properties of a viral suppressor of RNA silencing (VSR). In the context of potato virus X infection, vDRB significantly decreases the number and size of "dark green islands", regions of local antiviral silencing, supporting the VSR function of vDRB. Nevertheless, vDRB does not exhibit the VSR properties in non-viral transient expression assays. Taken together, the data presented here indicate that vDRB is an RNA-binding protein exhibiting VSR functions in the context of viral infection.
Collapse
Affiliation(s)
- Denis A. Chergintsev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
6
|
Characterization of Intracellular Precore-Derived Proteins and Their Functions in Hepatitis B Virus-Infected Human Hepatocytes. mBio 2023; 14:e0350122. [PMID: 36715515 PMCID: PMC9973328 DOI: 10.1128/mbio.03501-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hepatitis B virus (HBV) precore protein is not essential for viral replication but is thought to facilitate chronic infection. In addition to the secreted precore products, including the hepatitis B e antigen (HBeAg) and PreC protein, intracellular precore-derived proteins in HBV-infected human hepatocytes remain poorly characterized, and their roles, if any, remain largely unknown. Here, we detected multiple precore derivatives, including the nonprocessed precursor p25 and the processing intermediate p22, in HBV-infected human hepatocytes as well as human hepatoma cells overexpressing the HBV precore protein. Both p25 and p22 showed phosphorylated and unphosphorylated forms, which were located in different intracellular compartments. Interestingly, precore expression was associated with decreases in intracellular HBV core protein (HBc) and secreted DNA-containing virions but was also associated with an increase in secreted empty virions. The decrease in HBc by precore could be attributed to cytosolic p22, which caused HBc degradation, at least in part by the proteasome, and consequently decreased HBV pregenomic RNA packaging and DNA synthesis. In addition, cytosolic p22 formed chimeric capsids with HBc in the cell, which were further secreted in virions. In contrast, the PreC antigen, like HBeAg, was secreted via the endoplasmic reticulum (ER)-Golgi secretory pathway and was thus unable to form capsids in the cell or be secreted in virions. Furthermore, p25, as well as p22, were secreted in virions from HBV-infected human hepatocytes and were detected in the sera of HBV-infected chimpanzees. In summary, we have detected multiple intracellular precore-derived proteins in HBV-infected human hepatocytes and revealed novel precore functions in the viral life cycle. IMPORTANCE Chronic hepatitis B remains a worldwide public health issue. The hepatitis B virus (HBV) precore protein is not essential for HBV replication but may facilitate viral persistence. In this study, we have detected multiple precore protein species in HBV-infected human hepatocytes and studied their functions in the HBV life cycle. We found that the HBV precore proteins decreased intracellular HBV core protein and reduced secretion of complete virions but enhanced secretion of empty virions. Interestingly, the cytosolic precore protein species formed chimeric capsids with the core protein and were secreted in virions. Our results shed new light on the functions of intracellular precore protein species in the HBV life cycle and have implications for the roles of precore proteins in HBV persistence and pathogenesis.
Collapse
|
7
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
8
|
Prange R. Hepatitis B virus movement through the hepatocyte: An update. Biol Cell 2022; 114:325-348. [PMID: 35984727 DOI: 10.1111/boc.202200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Viruses are obligate intracellular pathogens that utilize cellular machinery for many aspects of their propagation and effective egress of virus particles from host cells is one important determinant of virus infectivity. Hijacking host cell processes applies in particular to the hepatitis B virus (HBV), as its DNA genome with about 3 kb in size is one of the smallest viral genomes known. HBV is a leading cause of liver disease and still displays one of the most successful pathogens in human populations worldwide. The extremely successful spread of this virus is explained by its efficient transmission strategies and its versatile particle types, including virions, empty envelopes, naked capsids and others. HBV exploits distinct host trafficking machineries to assemble and release its particle types including nucleocytoplasmic shuttling transport, secretory and exocytic pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Understanding how HBV uses and subverts host membrane trafficking systems offers the chance of obtaining new mechanistic insights into the regulation and function of this essential cellular processes. It can also help to identify potential targets for antiviral interventions. Here, I will provide an overview of HBV maturation, assembly, and budding, with a focus on recent advances, and will point out areas where questions remain that can benefit from future studies. Unless otherwise indicated, almost all presented knowledge was gained from cell culture-based, HBV in vitro -replication and in vitro -infection systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Reinhild Prange
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz, Mainz, D-55131, Germany
| |
Collapse
|
9
|
Albakova Z, Mangasarova Y, Albakov A, Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol 2022; 12:829520. [PMID: 35127545 PMCID: PMC8814359 DOI: 10.3389/fonc.2022.829520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
HSP70 and HSP90 are two powerful chaperone machineries involved in survival and proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90 perform specific functions. Concurrently, HSP70 and HSP90 homologs may also translocate from their primary site under various stress conditions. Herein, we address the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high expression of HSP70 and HSP90 enhances tumor development and associates with tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks may provide clues for the discoveries of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Zarema Albakova,
| | | | | | | |
Collapse
|
10
|
Zábranská H, Zábranský A, Lubyová B, Hodek J, Křenková A, Hubálek M, Weber J, Pichová I. Biogenesis of hepatitis B virus e antigen is driven by translocon-associated protein complex and regulated by conserved cysteine residues within its signal peptide sequence. FEBS J 2021; 289:2895-2914. [PMID: 34839586 PMCID: PMC9300162 DOI: 10.1111/febs.16304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022]
Abstract
Hepatitis B virus uses e antigen (HBe), which is dispensable for virus infectivity, to modulate host immune responses and achieve viral persistence in human hepatocytes. The HBe precursor (p25) is directed to the endoplasmic reticulum (ER), where cleavage of the signal peptide (sp) gives rise to the first processing product, p22. P22 can be retro-translocated back to the cytosol or enter the secretory pathway and undergo a second cleavage event, resulting in secreted p17 (HBe). Here, we report that translocation of p25 to the ER is promoted by translocon-associated protein complex. We have found that p25 is not completely translocated into the ER; a fraction of p25 is phosphorylated and remains in the cytoplasm and nucleus. Within the p25 sp sequence, we have identified three cysteine residues that control the efficiency of sp cleavage and contribute to proper subcellular distribution of the precore pool.
Collapse
Affiliation(s)
- Helena Zábranská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Zábranský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Lubyová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
In vitro expression of precore proteins of hepatitis B virus subgenotype A1 is affected by HBcAg, and can affect HBsAg secretion. Sci Rep 2021; 11:8167. [PMID: 33854155 PMCID: PMC8046783 DOI: 10.1038/s41598-021-87529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
HBeAg, a non-particulate protein of hepatitis B virus (HBV), is translated from the precore/core region as a precursor, which is post-translationally modified. Subgenotype A1 of HBV, which is a risk factor for hepatocellular carcinoma (HCC), has unique molecular characteristics in the basic core promoter/precore regions. Carriers of A1 exhibit early HBeAg loss. We sought to further characterize the precore proteins of A1 in vitro. HuH-7 cells were transfected with subgenomic constructs expressing individual precore proteins. Western blot analysis using DAKO anti-core antibody showed the expected sizes and a 1 kDa larger band for P22, P20 and P17. Using confocal microscopy, a cytoplasmic accumulation of HBeAg and precursors was observed with P25-expressing plasmid, whereas P22 localized both in the cytoplasm and nucleus. P20 and P17, which lack the carboxy end of P22 showed strong nuclear accumulation, implicating a nuclear localization signal in the N-terminal 10 amino acids. G1862T, unique to subgenotype A1, is frequently found in HBV from HCC patients. P25 with G1862T showed delayed and reduced HBeAg expression/secretion. Knock-out of core in the replication competent clones led to precore protein accumulation in the cytoplasm/perinuclear region, and decreased HBeAg secretion. Knock-out of precore proteins increased HBsAg secretion but intracellular HBsAg expression was unaffected. Over-expression of precore proteins in trans led to decreased HBsAg expression and secretion. Intracellular trafficking of HBV A1 precore proteins was followed. This was unaffected by the CMV promoter and different cell types. In the viral context, precore protein expression was affected by absence of core, and affected HBsAg expression, suggesting an interrelationship between precore proteins, HBcAg and HBsAg. This modulatory role of HBeAg and its precursors may be important in viral persistence and ultimate development of HCC.
Collapse
|
12
|
Hannigan MM, Hoffman AM, Thompson JW, Zheng T, Nicchitta CV. Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane. Mol Cell Proteomics 2020; 19:1826-1849. [PMID: 32788342 DOI: 10.1074/mcp.ra120.002228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis on the endoplasmic reticulum (ER) requires the dynamic coordination of numerous cellular components. Together, resident ER membrane proteins, cytoplasmic translation factors, and both integral membrane and cytosolic RNA-binding proteins operate in concert with membrane-associated ribosomes to facilitate ER-localized translation. Little is known, however, regarding the spatial organization of ER-localized translation. This question is of growing significance as it is now known that ER-bound ribosomes contribute to secretory, integral membrane, and cytosolic protein synthesis alike. To explore this question, we utilized quantitative proximity proteomics to identify neighboring protein networks for the candidate ribosome interactors SEC61β (subunit of the protein translocase), RPN1 (oligosaccharyltransferase subunit), SEC62 (translocation integral membrane protein), and LRRC59 (ribosome binding integral membrane protein). Biotin labeling time course studies of the four BioID reporters revealed distinct labeling patterns that intensified but only modestly diversified as a function of labeling time, suggesting that the ER membrane is organized into discrete protein interaction domains. Whereas SEC61β and RPN1 reporters identified translocon-associated networks, SEC62 and LRRC59 reporters revealed divergent protein interactomes. Notably, the SEC62 interactome is enriched in redox-linked proteins and ER luminal chaperones, with the latter likely representing proximity to an ER luminal chaperone reflux pathway. In contrast, the LRRC59 interactome is highly enriched in SRP pathway components, translation factors, and ER-localized RNA-binding proteins, uncovering a functional link between LRRC59 and mRNA translation regulation. Importantly, analysis of the LRRC59 interactome by native immunoprecipitation identified similar protein and functional enrichments. Moreover, [35S]-methionine incorporation assays revealed that siRNA silencing of LRRC59 expression reduced steady state translation levels on the ER by ca. 50%, and also impacted steady state translation levels in the cytosol compartment. Collectively, these data reveal a functional domain organization for the ER and identify a key role for LRRC59 in the organization and regulation of local translation.
Collapse
Affiliation(s)
- Molly M Hannigan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alyson M Hoffman
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tianli Zheng
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher V Nicchitta
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
13
|
Seitz S, Habjanič J, Schütz AK, Bartenschlager R. The Hepatitis B Virus Envelope Proteins: Molecular Gymnastics Throughout the Viral Life Cycle. Annu Rev Virol 2020; 7:263-288. [PMID: 32600157 DOI: 10.1146/annurev-virology-092818-015508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New hepatitis B virions released from infected hepatocytes are the result of an intricate maturation process that starts with the formation of the nucleocapsid providing a confined space where the viral DNA genome is synthesized via reverse transcription. Virion assembly is finalized by the enclosure of the icosahedral nucleocapsid within a heterogeneous envelope. The latter contains integral membrane proteins of three sizes, collectively known as hepatitis B surface antigen, and adopts multiple conformations in the course of the viral life cycle. The nucleocapsid conformation depends on the reverse transcription status of the genome, which in turn controls nucleocapsid interaction with the envelope proteins for virus exit. In addition, after secretion the virions undergo a distinct maturation step during which a topological switch of the large envelope protein confers infectivity. Here we review molecular determinants for envelopment and models that postulate molecular signals encoded in the capsid scaffold conducive or adverse to the recruitment of envelope proteins.
Collapse
Affiliation(s)
- Stefan Seitz
- Department of Infectious Diseases, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Jelena Habjanič
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, University of Heidelberg, 69120 Heidelberg, Germany; .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Watts NR, Palmer IW, Eren E, Steven AC, Wingfield PT. Capsids of hepatitis B virus e antigen with authentic C termini are stabilized by electrostatic interactions. FEBS Lett 2019; 594:1052-1061. [PMID: 31792961 DOI: 10.1002/1873-3468.13706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus e antigen, an alternative transcript of the core gene, is a secreted protein that maintains viral persistence. The physiological form has extended C termini relative to Cp(-10)149, the construct used in many studies. To examine the role of the C termini, we expressed the constructs Cp(-10)151 and Cp(-10)154, which have additional arginine residues. Both constructs when treated with reductant formed capsids more efficiently than Cp(-10)149. These capsids were also substantially more stable, as measured by thermal denaturation and resistance to urea dissociation. Mutagenesis suggests that electrostatic interactions between the additional arginine residues and glutamate residues on adjacent subunits play a role in the extra stabilization. These findings have implications for the physiological role and biotechnological potential of this protein.
Collapse
Affiliation(s)
- Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Ira W Palmer
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Limso C, Ngo JM, Nguyen P, Leal S, Husain A, Sahoo D, Ghosh P, Bhandari D. The Gα-interacting vesicle-associated protein interacts with and promotes cell surface localization of GRP78 during endoplasmic reticulum stress. FEBS Lett 2019; 594:1088-1100. [PMID: 31736058 DOI: 10.1002/1873-3468.13685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Cell surface translocation of the chaperone glucose-regulated protein 78 kDa (GRP78) is a key event that promotes cancer cell survival during endoplasmic reticulum (ER) stress. Here, we identify Gα-interacting vesicle-associated protein (GIV) - an enhancer of prosurvival signaling during ER stress - as a binding partner of GRP78. We show that GIV and GRP78 interact in an ER stress-dependent manner through their respective carboxyl terminal domains and that GIV aids in the localization of GRP78 to the plasma membrane. Kaplan-Meier analysis of disease-free survival in cancer patients shows poor prognosis for patients with high expression of both GIV and GRP78, further suggesting a vital role for these two proteins in enhancing cancer cell viability.
Collapse
Affiliation(s)
- Clariss Limso
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Jordan Matthew Ngo
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Stephanie Leal
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Aida Husain
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
16
|
Mitra B, Wang J, Kim ES, Mao R, Dong M, Liu Y, Zhang J, Guo H. Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation. J Virol 2019; 93:e00196-19. [PMID: 31019054 PMCID: PMC6580977 DOI: 10.1128/jvi.00196-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg-) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg- patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy.IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Elena S Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Eren E, Watts NR, Dearborn AD, Palmer IW, Kaufman JD, Steven AC, Wingfield PT. Structures of Hepatitis B Virus Core- and e-Antigen Immune Complexes Suggest Multi-point Inhibition. Structure 2018; 26:1314-1326.e4. [PMID: 30100358 DOI: 10.1016/j.str.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease worldwide. While an adequate vaccine is available, current treatment options are limited, not highly effective, and associated with adverse effects, encouraging the development of alternative therapeutics. The HBV core gene encodes two different proteins: core, which forms the viral nucleocapsid, and pre-core, which serves as an immune modulator with multiple points of action. The two proteins mostly have the same sequence, although they differ at their N and C termini and in their dimeric arrangements. Previously, we engineered two human-framework antibody fragments (Fab/scFv) with nano- to picomolar affinities for both proteins. Here, by means of X-ray crystallography, analytical ultracentrifugation, and electron microscopy, we demonstrate that the antibodies have non-overlapping epitopes and effectively block biologically important assemblies of both proteins. These properties, together with the anticipated high tolerability and long half-lives of the antibodies, make them promising therapeutics.
Collapse
Affiliation(s)
- Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Altaira D Dearborn
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira W Palmer
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Kaufman
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Zhuang X, Watts NR, Palmer IW, Kaufman JD, Dearborn AD, Trenbeath JL, Eren E, Steven AC, Rader C, Wingfield PT. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy. J Biol Chem 2017; 292:16760-16772. [PMID: 28842495 DOI: 10.1074/jbc.m117.802272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli, had unprecedentedly high binding affinities (Kd ∼10-12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.
Collapse
Affiliation(s)
| | | | | | | | | | - Joni L Trenbeath
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Christoph Rader
- the Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
19
|
Bhoola NH, Kramvis A. Expression of wild-type or G1862T mutant HBe antigen of subgenotype A1 of hepatitis B virus and the unfolded protein response in Huh7 cells. J Gen Virol 2017; 98:1422-1433. [PMID: 28678685 DOI: 10.1099/jgv.0.000793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The G1862T mutation, which occurs most frequently in subgenotype A1 of the hepatitis B virus (HBV), results in a valine to phenylalanine substitution at the -3 position of the signal peptide cleavage site at the amino end of the precore/core (preC/C) precursor protein. The objective of this study was to functionally characterize the G1862T mutation relative to its wild-type counterpart in subgenotype A1. Huh7 cells were transfected with subgenotype A1 replication-competent plasmids, with and without G1862T. Secretion of HBsAg and HBeAg, preC/C/HBeAg expression in the secretory pathway, activation of the unfolded protein response (UPR) and subsequent activation of apoptosis were monitored. The introduction of G1862T did not affect HBsAg expression. Cells transfected with the G1862T subgenotype A1 plasmid showed decreased expression of intracellular HBcAg and of nuclear preC/C/HBeAg and extracellular HBeAg, when compared to cells transfected with its wild-type counterpart as a result of the accumulation of the mutant protein in the endoplasmic reticulum (ER) and ER-Golgi intermediate compartment (ERGIC) . This accumulation of preC/C/HBeAg protein in the ER led to the earlier activation of the three UPR pathways, but not to an increase in apoptosis. Therefore, it is evident that the presence of G1862T in subgenotype A1 does not completely abolish HBeAg expression, but affects the rate of HBeAg maturation, its passage through the secretory pathway and activation of the UPR. Increase in ER stress can result in liver damage, which has been shown to be a contributing factor to hepatocarcinogenesis and may explain why G1862T is frequently found in subgenotype A1 from liver disease patients.
Collapse
Affiliation(s)
- Nimisha Harshadrai Bhoola
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| |
Collapse
|
20
|
Zheng NQ, Zheng ZH, Xu HX, Huang MX, Peng XM. Glucose-regulated protein 78 demonstrates antiviral effects but is more suitable for hepatocellular carcinoma prevention in hepatitis B. Virol J 2017; 14:77. [PMID: 28407787 PMCID: PMC5390389 DOI: 10.1186/s12985-017-0747-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma in Asia and Africa. Existing antivirals cannot cure HBV or eliminate risk of hepatocellular carcinoma. Glucose-regulated protein 78 (GRP78) can inhibit HBV replication, but promote virion secretion and hepatocellular cancer cell invasion. For these reasons, the overall effect of GRP78 on HBV production and whether to utilize the HBV replication-inhibitory effect of GRP78 up-regulation or the hepatocellular cancer cell invasion-inhibitory effect of its down-regulation were further investigated in order to improve the efficacy of current antiviral therapy. Methods GRP78 regulations in HepG2.2.15 cells were conducted by transfections of expressing vector and small interfering RNA, respectively. The changes in HBV replication, hepatitis B e antigen (HBeAg) synthesis and hepatoma cell motility were monitored. Results GRP78 overall decreased HBV production due to its HBV replication-inhibitory effect time-dependently overwhelming virion secretion-promoting effect in HepG2.2.15 cells. Unlike the parental cells (HepG2), HepG2.2.15 cells demonstrated decreased expressions of the major genes in the interferon-β1-dependent pathway. Moreover, the expressions of these genes were not affected by GRP78 regulations. However, GRP78 was found to inhibit HBeAg secretion and to increase the retro-transportation of capsid assembly-interfering HBeAg precursor from the endoplasmic reticulum into the cytosol where new viral nucleocapsids formed. Furthermore, GRP78 overexpression promoted wound healing process (the motility) of HepG2.2.15 cells. In contrast, GRP78 knockdown enhanced HBV replication and HBeAg secretion, but they were abolished by entecavir and furin inhibitor, respectively. Conclusions GRP78 mainly demonstrates anti-HBV effects, reducing HBV production and HBeAg secretion. With due regard to the hepatocellular cancer invasion risk of the overexpression and the rectifiability of the unpleasant effects of the knockdown, GRP78 down-regulation may be more suitable to serve as an additive strategy to cover the hepatocellular cancer prevention shortage of current antiviral therapy in the future.
Collapse
Affiliation(s)
- Nai Q Zheng
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi H Zheng
- Jinan University Clinic, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hai X Xu
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming X Huang
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000, Guangdong, China
| | - Xiao M Peng
- Center of Infectious Diseases, the Fifth Affiliated Hospital, Sun Yat-Sen University, 52 Meihua East Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
21
|
Casas C. GRP78 at the Centre of the Stage in Cancer and Neuroprotection. Front Neurosci 2017; 11:177. [PMID: 28424579 PMCID: PMC5380735 DOI: 10.3389/fnins.2017.00177] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
The 78-kDa glucose-regulated protein GRP78, also known as BiP and HSP5a, is a multifunctional protein with activities far beyond its well-known role in the unfolded protein response (UPR) which is activated after endoplasmic reticulum (ER) stress in the cells. Most of these newly discovered activities depend on its position within the cell. GRP78 is located mainly in the ER, but it has also been observed in the cytoplasm, the mitochondria, the nucleus, the plasma membrane, and secreted, although it is dedicated mostly to engage endogenous cytoprotective processes. Hence, GRP78 may control either UPR and macroautophagy or may activated phosphatidylinositol 3-kinase (PI3K)/AKT pro-survival pathways. GRP78 influences how tumor cells survive, proliferate, and develop chemoresistance. In neurodegeneration, endogenous mechanisms of neuroprotection are frequently insufficient or dysregulated. Lessons from tumor biology may give us clues about how boosting endogenous neuroprotective mechanisms in age-related neurodegeneration. Herein, the functions of GRP78 are revealed at the center of the stage of apparently opposite sites of the same coin regarding cytoprotection: neurodegeneration and cancer. The goal is to give a comprehensive and critical review that may serve to guide future experiments to identify interventions that will enhance neuroprotection.
Collapse
Affiliation(s)
- Caty Casas
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| |
Collapse
|
22
|
Zhang X, Zhang R, Yang H, Xiang Q, Jiang Q, He Q, Zhang T, Chen C, Zhu H, Wang Q, Ning Q, Li Y, Lei P, Shen G. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda. Chem Biol Interact 2016; 254:45-53. [PMID: 27234046 DOI: 10.1016/j.cbi.2016.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/30/2016] [Accepted: 05/23/2016] [Indexed: 01/13/2023]
Abstract
Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China; Department of Laboratory Medicine, Affiliated Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Rui Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - HuiOu Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Qian Xiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Qing Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Qi He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Ting Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Chen Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Qiang Wang
- Department of Immunology, Medical College of Wuhan University of Science and Technology, PR China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Yiwu Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China.
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, PR China.
| |
Collapse
|
23
|
Proteasomes regulate hepatitis B virus replication by degradation of viral core-related proteins in a two-step manner. Virus Genes 2016; 52:597-605. [PMID: 27105855 DOI: 10.1007/s11262-016-1341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 01/13/2023]
Abstract
The cellular proteasomes presumably inhibit the replication of hepatitis B virus (HBV) due to degradation of the viral core protein (HBcAg). Common proteasome inhibitors, however, either enhance or inhibit HBV replication. In this study, the exact degradation process of HBcAg and its influences on HBV replication were further studied using bioinformatic analysis, protease digestion assays of recombinant HBcAg, and proteasome inhibitor treatments of HBV-producing cell line HepG2.2.15. Besides HBcAg and hepatitis B e antigen precursor, common hepatitis B core-related antigens (HBcrAgs), the small and the large degradation intermediates of these HBcrAgs (HBcrDIs), were regularly found in cytosol of HepG2.2.15 cells. Further, the results of investigation reveal that the degradation process of cytosolic HBcrAgs in proteasomes consists of two steps: the limited proteolysis into HBcrDIs by the trypsin-like (TL) activity and the complete degradation of HBcrDIs by the chymotrypsin-like (chTL) activity. Concordantly, HBcrAgs and the large HBcrDI or HBcrDIs (including the small HBcrDI) were accumulated when the TL or chTL activity was inhibited, which generally correlated with enhancement and inhibition of HBV replication, respectively. The small HBcrDI inhibited HBV replication by assembling into the nucleocapsids and preventing the victim particles from being mature enough for envelopment. The two-step degradation manner may highlight some new anti-HBV strategies.
Collapse
|
24
|
Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Emerg Microbes Infect 2016; 5:e23. [PMID: 27004760 PMCID: PMC4820672 DOI: 10.1038/emi.2016.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/16/2022]
Abstract
GRP78/BiP is an endoplasmic reticulum (ER) chaperone protein with the important function of maintaining ER homeostasis, and the overexpression of GRP78/BiP alleviates ER stress. Our previous studies showed that infection with enterovirus 71 (EV71), a (+)RNA picornavirus, induced GRP78/BiP upregulation; however, ectopic GRP78/BiP overexpression in ER downregulates virus replication and viral particle formation. The fact that a virus infection increases GRP78/BiP expression, which is unfavorable for virus replication, is counterintuitive. In this study, we found that the GRP78/BiP protein level was elevated in the cytoplasm instead of in the ER in EV71-infected cells. Cells transfected with polyinosinic-polycytidylic acid, a synthetic analog of replicative double-stranded RNA (dsRNA), but not with viral proteins, also exhibited upregulation and elevation of GRP78/BiP in the cytosol. Our results further demonstrate that EV71 infections induce the dsRNA/protein kinase R-dependent cytosolic accumulation of GRP78/BiP. The overexpression of a GRP78/BiP mutant lacking a KDEL retention signal failed to inhibit both dithiothreitol-induced eIF2α phosphorylation and viral replication in the context of viral protein synthesis and viral titers. These data revealed that EV71 infection might cause upregulation and aberrant redistribution of GRP78/BiP to the cytosol, thereby facilitating virus replication.
Collapse
|
25
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
26
|
Deroubaix A, Osseman Q, Cassany A, Bégu D, Ragues J, Kassab S, Lainé S, Kann M. Expression of viral polymerase and phosphorylation of core protein determine core and capsid localization of the human hepatitis B virus. J Gen Virol 2014; 96:183-195. [PMID: 25274856 DOI: 10.1099/vir.0.064816-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biopsies from patients show that hepadnaviral core proteins and capsids - collectively called core - are found in the nucleus and cytoplasm of infected hepatocytes. In the majority of studies, cytoplasmic core localization is related to low viraemia while nuclear core localization is associated with high viral loads. In order to better understand the molecular interactions leading to core localization, we analysed transfected hepatoma cells using immune fluorescence microscopy. We observed that expression of core protein in the absence of other viral proteins led to nuclear localization of core protein and capsids, while expression of core in the context of the other viral proteins resulted in a predominantly cytoplasmic localization. Analysis of which viral partner was responsible for cytoplasmic retention indicated that the HBx, surface proteins and HBeAg had no impact but that the viral polymerase was the major determinant. Further analysis revealed that ϵ, an RNA structure to which the viral polymerase binds, was essential for cytoplasmic retention. Furthermore, we showed that core protein phosphorylation at Ser 164 was essential for the cytoplasmic core localization phenotype, which is likely to explain differences observed between individual cells.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Programme, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.,CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Quentin Osseman
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aurélia Cassany
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Dominique Bégu
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Jessica Ragues
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Somar Kassab
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sébastien Lainé
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,Université Montpellier 1, CPBS, UMR 5236 CNRS, Montpellier, France
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France.,CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
27
|
Yang HY, Zheng NQ, Li DM, Gu L, Peng XM. Entecavir combined with furin inhibitor simultaneously reduces hepatitis B virus replication and e antigen secretion. Virol J 2014; 11:165. [PMID: 25224377 PMCID: PMC4177756 DOI: 10.1186/1743-422x-11-165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The antiviral therapy of chronic hepatitis B virus (HBV) infection pursues the dual goals, virological response (undetectable serum HBV DNA) and hepatitis B e antigen (HBeAg) serological response (serum HBeAg loss/seroconversion). It is relatively difficult, however, to realize the serological response, especially for nucleotide/nucleoside analogs. Furin, a proprotein convertase, is involved in HBeAg maturation. The suppression of furin using inhibitors accordingly reduces HBeAg secretion, but possibly enhances HBV replication. For these reasons, the strategy based on the combination of nucleoside analog entecavir (ETV) and furin inhibitors to inhibit HBV replication and HBeAg secretion simultaneously were studied here. METHODS The suppression of furin was performed using inhibitors decanoyl-RVKR-chloromethylketone (CMK) and hexa-D-arginine (D6R) or the expression of furin inhibitory prosegment. The influence of furin suppression on HBV replication and the effect of CMK combined with nucleoside analog entecavir (ETV) on HBV replication and HBeAg secretion was investigated in HepG2.2.15 cells. HBeAg level in media was detected using enzyme-linked immunosorbent assay. Intracellular viral antigens and HBV DNA were detected using Western and Southern blotting analyses, respectively. RESULTS CMK, D6R and the expression of inhibitory prosegment all significantly reduced HBeAg secretion, but only CMK enhance HBV replication. Concordantly, only CMK post-transcriptionally accumulated cytosolic HBV replication-essential hepatitis B core antigen (HBcAg). The HBcAg-accumulating effect of CMK was further found to be resulted from its redundant inhibitory effect on the trypsin-like activity of cellular proteasomes that are responsible for HBcAg degradation. Moreover, the viral replication-enhancing effect of CMK was abrogated by ETV and ETV combined with CMK reduced HBV replication and HBeAg secretion simultaneously. CONCLUSION The suppression of furin itself does not enhance HBV replication. Nucleotide/nucleoside analogs combined with furin inhibitors may be a potential easy way to realize the dual goals of the antiviral therapy for chronic hepatitis B in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiao M Peng
- Hepatology Laboratory, the Hospital for Liver Disease, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, China.
| |
Collapse
|
28
|
Duriez M, Thouard A, Bressanelli S, Rossignol JM, Sitterlin D. Conserved aromatic residues of the hepatitis B virus Precore propeptide are involved in a switch between distinct dimeric conformations and essential in the formation of heterocapsids. Virology 2014; 462-463:273-82. [PMID: 24999840 DOI: 10.1016/j.virol.2014.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/21/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
The Hepatitis B virus Precore protein, present in the secretory pathway as the HBeAg precursor, can associate in the cytoplasm with the Core protein to form heterocapsids, likely to favor viral persistence. Core and Precore proteins share their primary sequence except for ten additional aminoacids at the N-terminus of Precore. To address the role of this propeptide sequence in the formation of Precore heterocapsids, we designed a Precore mutant in which the two propeptide tryptophans are replaced by glycines. This mutant retains the properties of the wild-type Precore, notably cell trafficking and ability to interact with Core. However, it is not incorporated into heterocapsids and forms stable dimers distinct from the labile HBe dimers and the presumably Core-like dimers assembled into heterocapsids. Our data highlights the essential role of Precore׳s propeptide in switching between different conformations for different functions and pinpoint the propeptide Tryptophan residues as central in these properties.
Collapse
Affiliation(s)
- Marion Duriez
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Anne Thouard
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Stéphane Bressanelli
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Jean-Michel Rossignol
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| | - Delphine Sitterlin
- Université Versailles St-Quentin, EA 4589 / EPHE, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France.
| |
Collapse
|
29
|
Xu Z, Wu G, Li F, Bai J, Xing W, Zhang D, Zeng C. Positive selection signals of hepatitis B virus and their association with disease stages and viral genotypes. INFECTION GENETICS AND EVOLUTION 2013; 19:176-87. [PMID: 23871771 DOI: 10.1016/j.meegid.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/27/2013] [Accepted: 07/06/2013] [Indexed: 12/18/2022]
|
30
|
Pang YJ, Tan XJ, Li DM, Zheng ZH, Lei RX, Peng XM. Therapeutic potential of furin inhibitors for the chronic infection of hepatitis B virus. Liver Int 2013; 33:1230-8. [PMID: 23617302 DOI: 10.1111/liv.12185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hepatitis B e antigen (HBeAg) is essential for the development of chronic hepatitis B virus (HBV) infection. Furin, a proprotein convertase, plays a key role in processing of HBeAg precursor into maturated HBeAg. For these reasons, the therapeutic potential of furin inhibition for chronic HBV infection was studied. METHODS The effects of furin inhibitor I (decanoyl-RVKR-chloromethylketone, CMK) and furin inhibitor II (hexa-D-arginine, D6R) on HBeAg secretion, the destination of unprocessed precursor and cellular secretory functions were comparatively investigated. RESULTS CMK and D6R significantly decreased the supernatant level of HBeAg and increased the intracellular level of HBeAg precursor in HepG2.2.15 cells in vitro. The accumulated HBeAg precursor was not found to be retro-transported into the cytosol to inhibit HBV replication as expected, but was found to be expressed on the cell surface, where it may be more convenient to mediate host immune responses. Furthermore, these inhibitors at effective concentrations were not found to interfere with the maturations of albumin and prothrombin. Compared with CMK, D6R was suboptimal in effectiveness; however, D6R neither enhanced HBV replication through the accumulation of cytosolic HBcAg nor did it cause severe cell damage in an elongated safety analyses. CONCLUSION Furin inhibitors CMK and D6R reduce HBeAg secretion and increase cell surface expression of the HBeAg precursor in HepG2.2.15 cells. Novel furin inhibitors or modified forms of D6R may promote the reduction of immune tolerance and the elimination of infected hepatocytes in patients with chronic HBV infection.
Collapse
Affiliation(s)
- Yan J Pang
- Hepatology Laboratory, The Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
31
|
Cloutier P, Coulombe B. Regulation of molecular chaperones through post-translational modifications: decrypting the chaperone code. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:443-54. [PMID: 23459247 DOI: 10.1016/j.bbagrm.2013.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/30/2022]
Abstract
Molecular chaperones and their associated cofactors form a group of highly specialized proteins that orchestrate the folding and unfolding of other proteins and the assembly and disassembly of protein complexes. Chaperones are found in all cell types and organisms, and their activity must be tightly regulated to maintain normal cell function. Indeed, deregulation of protein folding and protein complex assembly is the cause of various human diseases. Here, we present the results of an extensive review of the literature revealing that the post-translational modification (PTM) of chaperones has been selected during evolution as an efficient mean to regulate the activity and specificity of these key proteins. Because the addition and reciprocal removal of chemical groups can be triggered very rapidly, this mechanism provides an efficient switch to precisely regulate the activity of chaperones on specific substrates. The large number of PTMs detected in chaperones suggests that a combinatory code is at play to regulate function, activity, localization, and substrate specificity for this group of biologically important proteins. This review surveys the core information currently available as a starting point toward the more ambitious endeavor of deciphering the "chaperone code".
Collapse
|
32
|
Durantel D, Zoulim F. Interplay between hepatitis B virus and TLR2-mediated innate immune responses: can restoration of TLR2 functions be a new therapeutic option? J Hepatol 2012; 57:486-9. [PMID: 22728561 DOI: 10.1016/j.jhep.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 01/05/2023]
|
33
|
Li S, Spooner RA, Hampton RY, Lord JM, Roberts LM. Cytosolic entry of Shiga-like toxin a chain from the yeast endoplasmic reticulum requires catalytically active Hrd1p. PLoS One 2012; 7:e41119. [PMID: 22829918 PMCID: PMC3400632 DOI: 10.1371/journal.pone.0041119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/19/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Escherichia coli Shiga-like toxin 1 normally traffics to the endoplasmic reticulum (ER) in sensitive mammalian cells from where the catalytic A chain (SLTxA1) dislocates to the cytosol to inactivate ribosomes. Currently, no molecular details of the dislocation process are available. To investigate the mechanism of the dislocation step we expressed SLTxA1 in the ER of Saccharomyces cerevisiae. METHODOLOGY AND PRINCIPAL FINDINGS Using a combination of growth studies and biochemical tracking in yeast knock-out strains we show that SLTxA1 follows an ER-associated degradation (ERAD) pathway to enter the cytosol in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex. ER-to-cytosol dislocation of the bulk population of SLTxA1 requires Cdc48p and its ubiquitin-handling co-factor Npl4p, and this population of toxin is terminally dispatched by proteasomal degradation. A small sub-population of SLTxA1 uncouples from this classical ERAD pathway and recovers catalytic activity in the cytosol. The pathway that leads to toxicity is also Hrd1p-dependent but, unlike that for the related ricin A chain toxin, SLTxA1 dislocation does require the catalytic cysteine of Hrd1p. However it does not depend on canonical ubiquitylation since toxin variants lacking endogenous lysyl residues also utilize this pathway, and furthermore there is no requirement for a number of Cdc48p co-factors. CONCLUSIONS AND SIGNIFICANCE The fraction of SLTxA1 that disengages from the ERAD pathway thus does so upstream of Cdc48p interactions and downstream of Hrd1p interactions, in a step that possibly involves de-ubiquitylation. Mechanistically therefore, the dislocation of this toxin is quite distinct from that of conventional ERAD substrates that are normally degraded, and the toxins partially characterised to date that do not require the catalytic cysteine of the major Hrd1p component of the dislocation apparatus.
Collapse
Affiliation(s)
- Shuyu Li
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Robert A. Spooner
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Randolph Y. Hampton
- Section of Cell and Developmental Biology, Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - J. Michael Lord
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Lynne M. Roberts
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Ni M, Zhou H, Wey S, Baumeister P, Lee AS. Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS One 2009; 4:e6868. [PMID: 19718440 PMCID: PMC2729930 DOI: 10.1371/journal.pone.0006868] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/21/2009] [Indexed: 11/19/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved mechanism to allow cells to adapt to stress targeting the endoplasmic reticulum (ER). Induction of ER chaperone GRP78/BiP increases protein folding capacity; as such it represents a major survival arm of UPR. Considering the central importance of the UPR in regulating cell survival and death, evidence is emerging that cells evolve feedback regulatory pathways to modulate the key UPR executors, however, the precise mechanisms remain to be elucidated. Here, we report the fortuitous discovery of GRP78va, a novel isoform of GRP78 generated by alternative splicing (retention of intron 1) and alternative translation initiation. Bioinformatic and biochemical analyses revealed that expression of GRP78va is enhanced by ER stress and is notably elevated in human leukemic cells and leukemia patients. In contrast to the canonical GRP78 which is primarily an ER lumenal protein, GRP78va is devoid of the ER signaling peptide and is cytosolic. Through specific knockdown of endogenous GRP78va by siRNA without affecting canonical GRP78, we showed that GRP78va promotes cell survival under ER stress. We further demonstrated that GRP78va has the ability to regulate PERK signaling and that GRP78va is able to interact with and antagonize PERK inhibitor P58(IPK). Our study describes the discovery of GRP78va, a novel cytosolic isoform of GRP78/BiP, and the first characterization of the modulation of UPR signaling via alternative splicing of nuclear pre-mRNA. Our study further reveals a novel survival mechanism in leukemic cells and other cell types where GRP78va is expressed.
Collapse
Affiliation(s)
- Min Ni
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Shiuan Wey
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Peter Baumeister
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Amy S. Lee
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|