1
|
Guo S, Zhao T, Yun Y, Xie X. Recent Progress in Assays for GPCR Drug Discovery. Am J Physiol Cell Physiol 2022; 323:C583-C594. [PMID: 35816640 DOI: 10.1152/ajpcell.00464.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein coupled receptors (GPCRs), also known as 7 transmembrane receptors, are the largest family of cell surface receptors in eukaryotes. There are ~800 GPCRs in human, regulating diverse physiological processes. GPCRs are the most intensively studied drug targets. Drugs that target GPCRs account for about a quarter of the global market share of therapeutic drugs. Therefore, to develop physiologically relevant and robust assays to search new GPCR ligands or modulators remain the major focus of drug discovery research worldwide. Early functional GPCR assays are mainly depend on the measurement of G protein-mediated second messenger generation. Recent development in GPCR biology indicate the signaling of these receptors is much more complex than the oversimplified classical view. GPCRs have been found to activate multiple G proteins simultaneously and induce b-arrestin-mediated signaling. GPCRs have also been found to interacte with other cytosolic scaffolding proteins and form dimer or heteromer with GPCRs or other transmembrane proteins. Here we mainly discuss technologies focused on detecting protein-protein interactions, such as FRET/BRET, NanoBiT, Tango, etc, and their applications in measuring GPCRs interacting with various signaling partners. In the final part, we also discuss the species differences in GPCRs when using animal models to study the in vivofunctions of GPCR ligands, and possible ways to solve this problem with modern genetic tools.
Collapse
Affiliation(s)
- Shimeng Guo
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Tingting Zhao
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Ying Yun
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Xin Xie
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| |
Collapse
|
2
|
Woo JA, Yan Y, Kee TR, Cazzaro S, McGill Percy KC, Wang X, Liu T, Liggett SB, Kang DE. β-arrestin1 promotes tauopathy by transducing GPCR signaling, disrupting microtubules and autophagy. Life Sci Alliance 2021; 5:5/3/e202101183. [PMID: 34862271 PMCID: PMC8675912 DOI: 10.26508/lsa.202101183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
GPCRs regulator, β-arrestin1, is increased in FTLD-tau patients, is required for β2-adrenergic receptor and metabotropic glutamate receptor 2-induced tau phosphorylation, promotes tau aggregation by impairing autophagy, and destabilizes microtubule dynamics, whereas genetic reduction in β-arrestin1 mitigates tauopathy and cognitive impairments. G protein–coupled receptors (GPCRs) have been shown to play integral roles in Alzheimer’s disease pathogenesis. However, it is unclear how diverse GPCRs similarly affect Aβ and tau pathogenesis. GPCRs share a common mechanism of action via the β-arrestin scaffolding signaling complexes, which not only serve to desensitize GPCRs by internalization, but also mediate multiple downstream signaling events. As signaling via the GPCRs, β2-adrenergic receptor (β2AR), and metabotropic glutamate receptor 2 (mGluR2) promotes hyperphosphorylation of tau, we hypothesized that β-arrestin1 represents a point of convergence for such pathogenic activities. Here, we report that β-arrestins are not only essential for β2AR and mGluR2-mediated increase in pathogenic tau but also show that β-arrestin1 levels are increased in brains of Frontotemporal lobar degeneration (FTLD-tau) patients. Increased β-arrestin1 in turn drives the accumulation of pathogenic tau, whereas reduced ARRB1 alleviates tauopathy and rescues impaired synaptic plasticity and cognitive impairments in PS19 mice. Biochemical and cellular studies show that β-arrestin1 drives tauopathy by destabilizing microtubules and impeding p62/SQSTM1 autophagy flux by interfering with p62 body formation, which promotes pathogenic tau accumulation.
Collapse
Affiliation(s)
- Jung-Aa Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Kyle C McGill Percy
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Stephen B Liggett
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, FL, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Li T, Oasa S, Ciruela F, Terenius L, Vukojević V, Svenningsson P. Cytosolic GPR37, but not GPR37L1, multimerization and its reversal by Parkin: A live cell imaging study. FASEB J 2021; 35:e22055. [PMID: 34822195 DOI: 10.1096/fj.202101213r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Biochemical data have shown aggregated G protein-coupled receptor 37 (GPR37) in the cytoplasm and Lewy bodies in Parkinson's disease (PD). Properly folded GPR37 at the plasma membrane appears to be neuroprotective. GPR37, and its homologue GPR37L1, are orphan G protein-coupled receptors and their homo- and hetero-dimers have not been established. We therefore examined GPR37 and GPR37L1 dimerization and extended studies of multimerization of GPR37 to live cells. In this study, we investigated GPR37 and GPR37L1 dimerization and multimerization in live cells using three quantitative imaging methods: Fluorescence Cross-Correlation Spectroscopy, Förster Resonance Energy Transfer, and Fluorescence Lifetime Imaging Microscopy. Our data show that GPR37 and GPR37L1 form homo- and heterodimers in live N2a cells. Importantly, aggregation of GPR37, but not GPR37L1, was identified in the cytoplasm, which could be counteracted by Parkin overexpression. These data provide further evidence that GPR37 participate in cytosolic aggregation processes implicated in PD pathology.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sho Oasa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
5
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
6
|
Woo JAA, Liu T, Fang CC, Castaño MA, Kee T, Yrigoin K, Yan Y, Cazzaro S, Matlack J, Wang X, Zhao X, Kang DE, Liggett SB. β-Arrestin2 oligomers impair the clearance of pathological tau and increase tau aggregates. Proc Natl Acad Sci U S A 2020; 117:5006-5015. [PMID: 32071246 PMCID: PMC7060747 DOI: 10.1073/pnas.1917194117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple G protein-coupled receptors (GPCRs) are targets in the treatment of dementia, and the arrestins are common to their signaling. β-Arrestin2 was significantly increased in brains of patients with frontotemporal lobar degeneration (FTLD-tau), a disease second to Alzheimer's as a cause of dementia. Genetic loss and overexpression experiments using genetically encoded reporters and defined mutant constructs in vitro, and in cell lines, primary neurons, and tau P301S mice crossed with β-arrestin2-/- mice, show that β-arrestin2 stabilizes pathogenic tau and promotes tau aggregation. Cell and mouse models of FTLD showed this to be maladaptive, fueling a positive feedback cycle of enhanced neuronal tau via non-GPCR mechanisms. Genetic ablation of β-arrestin2 markedly ablates tau pathology and rescues synaptic plasticity defects in tau P301S transgenic mice. Atomic force microscopy and cellular studies revealed that oligomerized, but not monomeric, β-arrestin2 increases tau by inhibiting self-interaction of the autophagy cargo receptor p62/SQSTM1, impeding p62 autophagy flux. Hence, reduction of oligomerized β-arrestin2 with virus encoding β-arrestin2 mutants acting as dominant-negatives markedly reduces tau-laden neurofibrillary tangles in FTLD mice in vivo. Reducing β-arrestin2 oligomeric status represents a new strategy to alleviate tau pathology in FTLD and related tauopathies.
Collapse
Affiliation(s)
- Jung-A A Woo
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Tian Liu
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Cenxiao C Fang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Maria A Castaño
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Teresa Kee
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Ksenia Yrigoin
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Yan Yan
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Sara Cazzaro
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Jenet Matlack
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xinming Wang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xingyu Zhao
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - David E Kang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Research Division, James A. Haley Veteran's Administration Hospital, Tampa, FL 33612
| | - Stephen B Liggett
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Medical Engineering, University of South Florida, Tampa, FL 33613
| |
Collapse
|
7
|
Sinphitukkul K, Manotham K, Eiam-Ong S, Eiam-Ong S. Aldosterone nongenomically induces angiotensin II receptor dimerization in rat kidney: role of mineralocorticoid receptor and NADPH oxidase. Arch Med Sci 2019; 15:1589-1598. [PMID: 31749889 PMCID: PMC6855162 DOI: 10.5114/aoms.2019.87135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Previous in vitro studies demonstrated that aldosterone nongenomically induces transglutaminase (TG) and reactive oxygen species (ROS), which enhanced angiotensin II receptor (ATR) dimerization. There are no in vivo data in the kidney. MATERIAL AND METHODS Male Wistar rats were intraperitoneally injected with normal saline solution, or aldosterone (Aldo: 150 μg/kg BW); or received pretreatment with eplerenone (mineralocorticoid receptor (MR) blocker, Ep. + Aldo), or with apocynin (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, Apo. + Aldo) 30 min before aldosterone. Thirty minutes after aldosterone injection, protein abundances of dimeric and monomeric forms of AT1R and AT2R, and protein abundances and localizations of TG2 and p47phox, a cytosolic subunit of NADPH oxidase, were determined by Western blot analysis and immunohistochemistry, respectively. RESULTS Protein abundances of dimeric forms of AT1R and AT2R were enhanced by 170% and 70%, respectively. Apocynin could block dimeric forms of both receptors while eplerenone inhibited only AT2R. Monomeric protein levels of both receptors were maintained. Aldosterone significantly enhanced TG2 and p47phox protein abundances, which were blunted by eplerenone or apocynin. Aldosterone stimulated p47phox protein expression in both the cortex and the medulla while TG2 was induced mostly in the medulla. Eplerenone or apocynin normalized the immunoreactivity of both TG2 and p47phox. CONCLUSIONS This is the first in vivo study demonstrating that aldosterone nongenomically increases renal TG2 and p47phox protein expression and then activates AT1R and AT2R dimerizations. Aldosterone-stimulated AT1R and AT2R dimerizations are mediated through activation of NADPH oxidase. Aldosterone-induced AT1R dimer formation is an MR-independent pathway, whereas the formation of AT2R dimer is modulated in an MR-dependent manner.
Collapse
Affiliation(s)
| | - Krissanapong Manotham
- Molecular and Cell Biology Unit, Department of Medicine, Lerdsin General Hospital, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Department of Medicine, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer`s disease by inhibition of the angiotensin system. Pharmacol Res 2019; 154:104230. [PMID: 30991105 DOI: 10.1016/j.phrs.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/30/2023]
Abstract
With ageing of the global society, the frequency of ageing-related neurodegenerative diseases such as Alzheimer`s disease (AD) is on the rise worldwide. Currently, there is no cure for AD, and the four drugs approved for AD only have very small effects on AD symptoms. Consequently, there are enormous efforts worldwide to identify new targets for treatment of AD. Approaches that interfere with classical neuropathologic features of AD, such as extracellular senile plaques formed of aggregated amyloid-beta (Abeta), and intracellular neurofibrillary tangles of hyperphosphorylated tau have not been successful so far. In search for a treatment approach of AD, we found that inhibition of the angiotensin-converting enzyme (ACE) by a centrally acting ACE inhibitor retards symptoms of neurodegeneration, Abeta plaque formation and tau hyperphosphorylation in experimental models of AD. Our approach is currently being investigated in a clinical setting. Initial evidence with AD patients shows that a brain-penetrating ACE inhibitor counteracts the process of neurodegeneration and dementia. Moreover, centrally acting ACE inhibitors given in addition to the standard therapy, cholinesterase inhibition, can improve cognitive function of AD patients for several months. This is one of the most promising results for AD treatment since more than a decade.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Institute of Pharmacology and Toxicology, Department of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
9
|
Quitterer U, AbdAlla S. Discovery of Pathologic GPCR Aggregation. Front Med (Lausanne) 2019; 6:9. [PMID: 30761305 PMCID: PMC6363654 DOI: 10.3389/fmed.2019.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023] Open
Abstract
The family of G-protein-coupled receptors (GPCRs) is one of the most important drug targets. Mechanisms underlying GPCR activation and signaling are therefore of great pharmacologic interest. It was long thought that GPCRs exist and function as monomers. This feature was considered to distinguish GPCRs from other membrane receptors such as receptor tyrosine kinases or cytokine receptors, which signal from dimeric receptor complexes. But during the last two decades it was increasingly recognized that GPCRs can undergo aggregation to form dimers and higher order oligomers, resulting in homomeric and/or heteromeric protein complexes with different stoichiometries. Moreover, this protein complex formation could modify GPCR signaling and function. We contributed to this paradigm shift in GPCR pharmacology by the discovery of the first pathologic GPCR aggregation, which is the protein complex formation between the angiotensin II AT1 receptor and the bradykinin B2 receptor. Increased AT1-B2 heteromerization accounts for the angiotensin II hypersensitivity of pregnant women with preeclampsia hypertension. Since the discovery of AT1-B2, other pathologic GPCR aggregates were found, which contribute to atherosclerosis, neurodegeneration and Alzheimer's disease. As a result of our findings, pathologic GPCR aggregation appears as an independent and disease-specific process, which is increasingly considered as a novel target for pharmacologic intervention.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.,Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
A tricyclic antidepressant, amoxapine, reduces amyloid-β generation through multiple serotonin receptor 6-mediated targets. Sci Rep 2017; 7:4983. [PMID: 28694424 PMCID: PMC5504036 DOI: 10.1038/s41598-017-04144-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/09/2017] [Indexed: 11/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a major and devastating neurodegenerative disease, and the amyloid-β (Aβ) hypothesis is still the central theory for AD pathogenesis. Meanwhile, another major mental illness, depression, is one of the risk factors for AD. From a high-throughput screening (HTS), amoxapine, a typical secondary amine tricyclic antidepressant (TCA), was identified to reduce Aβ production. A follow-up investigation on antidepressants showed that most of the TCAs harbour similar activity. Previous studies have indicated that TCAs improve cognitive function in AD mouse models as well as in preliminary clinical data; however, the underlying mechanism is controversial, and the effect on Aβ is elusive. Thus, we developed a secondary screening to determine the molecular target of amoxapine, and serotonin receptor 6 (HTR6) was identified. Knockdown of HTR6 reduced the amoxapine’s effect, while the HTR6 antagonist SB258585 mimicked the activity of amoxapine. Further mechanistic study showed that amoxapine and SB258585 reduced Aβ generation through multiple HTR6-mediated targets, including β-arrestin2 and CDK5. Taken together, our study suggests that amoxapine, though no longer a first-line drug for the treatment of depression, may be beneficial for AD and further structural modification of TCAs may lead to desirable therapeutic agents to treat both AD and depression.
Collapse
|
11
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
12
|
Zhao J, Deng Y, Jiang Z, Qing H. G Protein-Coupled Receptors (GPCRs) in Alzheimer's Disease: A Focus on BACE1 Related GPCRs. Front Aging Neurosci 2016; 8:58. [PMID: 27047374 PMCID: PMC4805599 DOI: 10.3389/fnagi.2016.00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The G protein coupled receptors (GPCRs) have been considered as one of the largest families of validated drug targets, which involve in almost overall physiological functions and pathological processes. Meanwhile, Alzheimer’s disease (AD), the most common type of dementia, affects thinking, learning, memory and behavior of elderly people, that has become the hotspot nowadays for its increasing risks and incurability. The above fields have been intensively studied, and the link between the two has been demonstrated, whereas the way how GPCRs perturb AD progress are yet to be further explored given their complexities. In this review, we summarized recent progress regarding the GPCRs interacted with β-site APP cleaving enzyme 1 (BACE1), a key secretase in AD pathogenesis. Then we discussed the current findings on the regulatory roles of GPCRs on BACE1, and the possibility for pharmaceutical treatment of AD patients by the allosteric modulators and biased ligands of GPCRs. We hope this review can provide new insights into the understanding of mechanistic link between GPCRs and BACE1, and highlight the potential of GPCRs as therapeutic target for AD.
Collapse
Affiliation(s)
- Juan Zhao
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology Beijing, China
| | - Zhaotan Jiang
- School of Physics, Beijing Institute of Technology Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology Beijing, China
| |
Collapse
|
13
|
Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103. Sci Rep 2015; 5:12584. [PMID: 26223541 PMCID: PMC4519789 DOI: 10.1038/srep12584] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
Orexins are neuropeptides that regulate the sleep-wake cycle and feeding behaviour. QRFP is a newly discovered neuropeptide which exerts similar orexigenic activity, thus playing an important role in energy homeostasis and regulation of appetite. The exact expression and signalling characteristics and physiological actions of QRFP and its receptor GPR103 are poorly understood. Alzheimer's disease (AD) patients experience increased nocturnal activity, excessive daytime sleepiness, and weight loss. We hypothesised therefore that orexins and QRFP might be implicated in the pathophysiology of AD. We report that the down-regulation of hippocampal orexin receptors (OXRs) and GPR103 particularly in the cornu ammonis (CA) subfield from AD patients suffering from early onset familial AD (EOFAD) and late onset familial AD (LOAD). Using an in vitro model we demonstrate that this downregulation is due to to Aβ-plaque formation and tau hyper-phosphorylation. Transcriptomics revealed a neuroprotective role for both orexins and QRFP. Finally we provide conclusive evidence using BRET and FRET that OXRs and GPR103 form functional hetero-dimers to exert their effects involving activation of ERK1/2. Pharmacological intervention directed at the orexigenic system may prove to be an attractive avenue towards the discovery of novel therapeutics for diseases such as AD and improving neuroprotective signalling pathways.
Collapse
Affiliation(s)
- Julie Davies
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| | - Jing Chen
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Ryan Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, UK
| | - David Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, UK
| | - Nigel Saunders
- Centre for Systems and Synthetic Biology, Brunel University, Uxbridge UB83PH, UK
| | - Georgios Sotiriadis
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - David Howlett
- Wolfson Centre for Age Related Diseases, King’s College London, London, SE11UL, UK
| | - Annette Payne
- Department of Computer Science, College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, UK
| | - Harpal Randeva
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| |
Collapse
|
14
|
Cecon E, Chen M, Marçola M, Fernandes PAC, Jockers R, Markus RP. Amyloid
β
peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway. FASEB J 2015; 29:2566-82. [DOI: 10.1096/fj.14-265678] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Erika Cecon
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
- Institut National de la Santé et de la Recherche Médicale U1016, Institut CochinParisFrance
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104ParisFrance
- University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Min Chen
- Institut National de la Santé et de la Recherche Médicale U1016, Institut CochinParisFrance
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104ParisFrance
- University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Marina Marçola
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Pedro A. C. Fernandes
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Ralf Jockers
- Institut National de la Santé et de la Recherche Médicale U1016, Institut CochinParisFrance
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104ParisFrance
- University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Regina P. Markus
- Chronopharmacology Laboratory, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
15
|
AbdAlla S, Langer A, Fu X, Quitterer U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease. Int J Mol Sci 2013; 14:16917-42. [PMID: 23959119 PMCID: PMC3759943 DOI: 10.3390/ijms140816917] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer's disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.
Collapse
Affiliation(s)
- Said AbdAlla
- Molecular Pharmacology Unit, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8057, Switzerland; E-Mails: (S.A.); (A.L.); (X.F.)
| | - Andreas Langer
- Molecular Pharmacology Unit, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8057, Switzerland; E-Mails: (S.A.); (A.L.); (X.F.)
| | - Xuebin Fu
- Molecular Pharmacology Unit, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8057, Switzerland; E-Mails: (S.A.); (A.L.); (X.F.)
| | - Ursula Quitterer
- Molecular Pharmacology Unit, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8057, Switzerland; E-Mails: (S.A.); (A.L.); (X.F.)
- Institute of Pharmacology and Toxicology, Department of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +41-44-635-6001; Fax: +41-44-635-6881
| |
Collapse
|
16
|
Frey AJ, Ibrahim S, Gleim S, Hwa J, Smyth EM. Biased suppression of TP homodimerization and signaling through disruption of a TM GxxxGxxxL helical interaction motif. J Lipid Res 2013; 54:1678-1690. [PMID: 23493750 DOI: 10.1194/jlr.m036673] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thromboxane A2 (TXA2) contributes to cardiovascular disease (CVD) by activating platelets and vascular constriction and proliferation. Despite their preclinical efficacy, pharmacological antagonists of the TXA2 receptor (TP), a G protein-coupled receptor, have not been clinically successful, raising interest in novel approaches to modifying TP function. We determined that disruption of a GxxxGxxxL helical interaction motif in the human TP's (α isoform) fifth transmembrane (TM) domain suppressed TP agonist-induced Gq signaling and TPα homodimerization, but not its cell surface expression, ligand affinity, or Gq association. Heterodimerization of TPα with the functionally opposing prostacyclin receptor (IP) shifts TPα to signal via the IP-Gs cascade contributing to prostacyclin's restraint of TXA2 function. Interestingly, disruption of the TPα-TM5 GxxxGxxxL motif did not modify either IP-TPα heterodimerization or its Gs-cAMP signaling. Our study indicates that distinct regions of the TPα receptor direct its homo- and heterodimerization and that homodimerization is necessary for normal TPα-Gq activation. Targeting the TPα-TM5 GxxxGxxxL domain may allow development of biased TPα homodimer antagonists that avoid suppression of IP-TPα heterodimer function. Such novel therapeutics may prove superior in CVD compared with nonselective suppression of all TP functions with TXA2 biosynthesis inhibitors or TP antagonists.
Collapse
Affiliation(s)
- Alexander J Frey
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Smilow Center for Translational Research, Philadelphia, PA; and
| | - Salam Ibrahim
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Smilow Center for Translational Research, Philadelphia, PA; and
| | - Scott Gleim
- Yale University School of Medicine, Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, New Haven, CT
| | - John Hwa
- Yale University School of Medicine, Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, New Haven, CT
| | - Emer M Smyth
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Smilow Center for Translational Research, Philadelphia, PA; and.
| |
Collapse
|
17
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
18
|
Abstract
The overproduction of β-amyloid (Aβ) fragments in transgenic APPswe/PS1dE9 mice results in formation of amyloid deposits in the cerebral cortex and hippocampus starting around four months of age and leading to cognitive impairment much later. We have previously found an age and transgene-dependent weakening of muscarinic receptor-mediated transmission that was not present in young (6-10-week-old) animals but preceded both amyloid deposits and cognitive deficits. Now we investigated immediate and prolonged in vitro effects of non-aggregated Aβ(1-42) on coupling of individual muscarinic receptor subtypes expressed in CHO (Chinese hamster ovary) cells and their underlying mechanisms. Immediate application of 1 μM Aβ(1-42) had no effect on the binding of the muscarinic antagonist N-methylscopolamine or the agonist carbachol. In contrast, 4-day treatment of CHO cells expressing the M1 muscarinic receptor with 100 nM Aβ(1-42) significantly changed the binding characteristics of the muscarinic agonist carbachol and reduced the extent of the M1 receptor-stimulated breakdown of phosphatidylinositol while it did not demonstrate overt toxic effects. The treatment had no influence on the expression of either G-proteins or muscarinic receptors. In concert, we found no change in the gene expression of muscarinic receptor subtypes and gene or protein expression of the G(s), G(q/11), and G(i/o) G-proteins in the cerebral cortex of young adult APPswe/PS1dE9 mice that demonstrate high concentrations of soluble Aβ(1-42) and impaired muscarinic receptor-mediated G-protein activation. Our results provide strong evidence that the initial injurious effects of Aβ(1-42) on M1 muscarinic receptor-mediated transmissionis is due to compromised coupling of the receptor with G(q/11) G-protein.
Collapse
|
19
|
Verdonk K, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor agonists: where should they be applied? Expert Opin Investig Drugs 2012; 21:501-13. [PMID: 22348403 DOI: 10.1517/13543784.2012.664131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Angiotensin II, the active endproduct of the renin-angiotensin system (RAS), exerts its effects via angiotensin II type 1 and type 2 (AT(1), AT(2)) receptors. AT(1) receptors mediate all well-known effects of angiotensin II, ranging from vasoconstriction to tissue remodeling. Thus, to treat cardiovascular disease, RAS blockade aims at preventing angiotensin II-AT(1) receptor interaction. Yet RAS blockade is often accompanied by rises in angiotensin II, which may exert beneficial effects via AT(2) receptors. AREAS COVERED This review summarizes our current knowledge on AT(2) receptors, describing their location, function(s), endogenous agonist(s) and intracellular signaling cascades. It discusses the beneficial effects obtained with C21, a recently developed AT(2) receptor agonist. Important questions that are addressed are do these receptors truly antagonize AT(1) receptor-mediated effects? What about their role in the diseased state and their heterodimerization with other receptors? EXPERT OPINION The general view that AT(2) receptors exclusively exert beneficial effects has been challenged, and in pathological models, their function sometimes mimics that of AT(1) receptors, for example, inducing vasoconstriction and cardiac hypertrophy. Yet given its upregulation in various pathological conditions, the AT(2) receptor remains a promising target for treatment, allowing effects beyond blood pressure-lowering, for example, in stroke, aneurysm formation, inflammation and myocardial fibrosis.
Collapse
Affiliation(s)
- Koen Verdonk
- Erasmus Medical Center, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Gentile V. Physiopathological roles of human transglutaminase 2. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:47-95. [PMID: 22220472 DOI: 10.1002/9781118105771.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vittorio Gentile
- Department of Biochemistry and Biophysics, Medical School, Second University of Naples, Naples, Italy
| |
Collapse
|
21
|
Bergamini CM, Collighan RJ, Wang Z, Griffin M. Structure and regulation of type 2 transglutaminase in relation to its physiological functions and pathological roles. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:1-46. [PMID: 22220471 DOI: 10.1002/9781118105771.ch1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carlo M Bergamini
- Deparment of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | | | | | | |
Collapse
|
22
|
Quitterer U, Pohl A, Langer A, Koller S, Abdalla S. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor. Biochem Biophys Res Commun 2011; 409:544-9. [PMID: 21600887 DOI: 10.1016/j.bbrc.2011.05.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of co-enriched receptor proteins immobilized on agarose beads also detected a high FRET efficiency of 24.0%. Taken together confocal FRET imaging revealed efficient heterodimerization of co-enriched and cellular AT1/B2R, and GRK-dependent co-internalization of the AT1/B2R heterodimer.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Wu X, Kihara T, Hongo H, Akaike A, Niidome T, Sugimoto H. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion. Br J Pharmacol 2010; 161:33-50. [PMID: 20718738 DOI: 10.1111/j.1476-5381.2010.00840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Several clinical trials and in vivo animal experiments have suggested that blockade of angiotensin receptor type 1 (AT(1)) improves ischaemic outcomes. However, the mechanism(s) underlying these effects has not been elucidated. Here, we have investigated the protective effects of pretreatment with AT(1) receptor antagonists, losartan or telmisartan, against ischaemic insult to neurons in vitro. EXPERIMENTAL APPROACH Primary rat neuron-astrocyte co-cultures and astrocyte-defined medium (ADM)-cultured pure astrocyte cultures were prepared. Ischaemic injury was modelled by oxygen-glucose depletion (OGD) and lactate dehydrogenase release after OGD was measured with or without AT(1) receptor antagonists or agonists (L162313), AT(2) receptor antagonist (PD123319) or agonist (CGP-42112A) pretreatment, for 48 h. Activity of glutamate transporter 1 (GLT-1) was evaluated by [(3)H]-glutamate uptake assays, after AT(1) receptor agonists or antagonists. Immunoblot and real-time PCR were used for analysis of protein and mRNA levels of GLT-1. KEY RESULTS AT(1) receptor agonists augmented OGD-induced cellular damage, which was attenuated by AT(1) receptor antagonists. AT(1) receptor antagonists also suppressed OGD-induced extracellular glutamate release, reactive oxygen species production and nitric oxide generation. GLT-1 expression and glutamate uptake activity were significantly enhanced by AT(1) receptor antagonists and impaired by AT(1) receptor agonists. AT(1) receptor stimulation suppressed both ADM-induced GLT-1 protein expression and mRNA levels. AT(1)b receptor knock-down with siRNA enhanced GLT-1 expression. In postnatal (P1-P21) rat brains, protein levels of GLT-1 and AT(1) receptors were inversely correlated. CONCLUSIONS AND IMPLICATIONS Suppression of AT(1) receptor stimulation induced GLT-1 up-regulation, which ameliorated effects of ischaemic injury.
Collapse
Affiliation(s)
- X Wu
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Shchepin R, Möller MN, Kim HYH, Hatch DM, Bartesaghi S, Kalyanaraman B, Radi R, Porter NA. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization. J Am Chem Soc 2010; 132:17490-500. [PMID: 21090613 PMCID: PMC3677824 DOI: 10.1021/ja106503a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.
Collapse
Affiliation(s)
- Roman Shchepin
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodrigues-Ferreira S, Nahmias C. An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends Endocrinol Metab 2010; 21:684-90. [PMID: 20889352 DOI: 10.1016/j.tem.2010.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 01/11/2023]
Abstract
AT2, the second subtype of angiotensin II receptors, is a major component of the renin-angiotensin system involved in cardiovascular and neuronal functions. AT2 belongs to the superfamily of G protein-coupled receptors, but its intracellular signaling pathways have long remained elusive. Over the past few years, efforts to characterize this atypical receptor have led to the identification of novel molecular scaffolds that directly bind to its intracellular tail. The present review focuses on a family of AT2 receptor-interacting proteins (ATIPs) involved in neuronal differentiation, vascular remodeling and tumor suppression. Recent findings that ATIPs and ATIP-related proteins associate with microtubules suggest that they might constitute a novel family of multifunctional proteins regulating a wide range of physiopathological functions.
Collapse
|
27
|
Abd Alla J, Pohl A, Reeck K, Streichert T, Quitterer U. Establishment of an in vivo model facilitates B2 receptor protein maturation and heterodimerization. Integr Biol (Camb) 2010; 2:209-17. [PMID: 20473401 DOI: 10.1039/b922592g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In individuals with diverse cardiovascular risk factors, signalling stimulated by the AT(1) receptor for the vasopressor angiotensin II is sensitized by heterodimerization with the receptor for the vasodepressor bradykinin, B(2). Signal sensitization and receptor heterodimerization rely on efficient maturation of the B(2) receptor protein. To assess functional features of that important cardiovascular receptor system, we established an in vivo model by using immunodeficient NOD.Scid mice for the expansion of transfected cells under physiological conditions. Compared to cultivated cells, the in vivo model strongly facilitated B(2) receptor maturation and heterodimerization. To elucidate the mechanisms underlying the enhancement of B(2) receptor protein maturation under in vivo conditions, we performed microarray gene expression profiling. Microarray analysis revealed a more than 1.7-fold up-regulation of the chaperone calreticulin upon in vivo cell expansion whereas other important members of the general chaperone system were only marginally altered. Down regulation of calreticulin expression by RNA interference confirmed the importance of calreticulin for efficient B(2) receptor maturation under in vivo conditions. Receptor proteins synthesized in the Nod.Scid cell expansion model were functionally active and sensitive to drug treatment as exemplified by treatment with the AT(1)-specific antagonist losartan. Thus, we established a model system that can be used to analyze functional features of proteins in vivo by expanding transfected cells in immunodeficient NOD.Scid mice.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Albrecht D. Physiological and pathophysiological functions of different angiotensins in the brain. Br J Pharmacol 2010. [DOI: 10.1111/j.1476-5381.2010.00648.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
29
|
Thathiah A, De Strooper B. G protein-coupled receptors, cholinergic dysfunction, and Abeta toxicity in Alzheimer's disease. Sci Signal 2009; 2:re8. [PMID: 19843960 DOI: 10.1126/scisignal.293re8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The beta-amyloid (Abeta) peptide is associated with the pathogenesis of Alzheimer's disease (AD). Evidence gathered over the last two decades suggests that the gradual accumulation of soluble and insoluble Abeta peptide species triggers a cascade of events that leads to the clinical manifestation of AD. Abeta accumulation has also been associated with the cholinergic dysfunction observed in AD, which is characterized by diminished acetylcholine release and impaired coupling of the muscarinic acetylcholine receptors (mAChRs) to heterotrimeric GTP-binding proteins (G proteins). Although the mechanism of Abeta-mediated toxicity is not clearly understood, evidence shows that Abeta accumulation has an effect on the oligomerization of the angiotensin II (AngII) AT(2) (angiotensin type 2) receptor and sequestration of the Galpha(q/11) family of G proteins. Sequestration of Galpha(q/11) results in dysfunctional coupling and signaling between M(1) mAChR and Galpha(q/11) and accompanies neurodegeneration, tau phosphorylation, and neuronal loss in an AD transgenic mouse model. Collectively, these results provide a putative link among Abeta toxicity, AT(2) receptor oligomerization, and disruption of the signaling pathway through M(1) mAChR and Galpha(q/11) and potentially contribute to our understanding of the cholinergic deficit observed in AD.
Collapse
|
30
|
Kehoe PG, Miners S, Love S. Angiotensins in Alzheimer's disease - friend or foe? Trends Neurosci 2009; 32:619-28. [PMID: 19796831 DOI: 10.1016/j.tins.2009.07.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/22/2009] [Accepted: 07/28/2009] [Indexed: 11/28/2022]
Abstract
The renin-angiotensin system (RAS) is an important regulator of blood pressure. Observational and experimental studies suggest that alterations in blood pressure and components of the brain RAS contribute to the development and progression of Alzheimer's disease (AD), resulting in changes that can lead or contribute to cognitive decline. The complexity of the RAS and diversity of its interactions with neurological processes have recently become apparent but large gaps in our understanding still remain. Modulation of activity of components of the brain RAS offers substantial opportunities for the treatment and prevention of dementia, including AD. This paper reviews molecular, genetic, experimental and clinical data as well as the therapeutic opportunities that relate to the involvement of the RAS in AD.
Collapse
Affiliation(s)
- Patrick G Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, Department of Clinical Science at North Bristol, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, UK.
| | | | | |
Collapse
|
31
|
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89:991-1023. [PMID: 19584319 DOI: 10.1152/physrev.00044.2008] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human transglutaminase (TG) family consists of a structural protein, protein 4.2, that lacks catalytic activity, and eight zymogens/enzymes, designated factor XIII-A (FXIII-A) and TG1-7, that catalyze three types of posttranslational modification reactions: transamidation, esterification, and hydrolysis. These reactions are essential for biological processes such as blood coagulation, skin barrier formation, and extracellular matrix assembly but can also contribute to the pathophysiology of various inflammatory, autoimmune, and degenerative conditions. Some members of the TG family, for example, TG2, can participate in biological processes through actions unrelated to transamidase catalytic activity. We present here a comprehensive review of recent insights into the physiology and pathophysiology of TG family members that have come from studies of genetically engineered mouse models and/or inherited disorders. The review focuses on FXIII-A, TG1, TG2, TG5, and protein 4.2, as mice deficient in TG3, TG4, TG6, or TG7 have not yet been reported, nor have mutations in these proteins been linked to human disease.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute and Universityof New South Wales, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
32
|
Calreticulin enhances B2 bradykinin receptor maturation and heterodimerization. Biochem Biophys Res Commun 2009; 387:186-90. [PMID: 19580784 DOI: 10.1016/j.bbrc.2009.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/01/2009] [Indexed: 11/22/2022]
Abstract
In different native tissues and cells the receptor for the vasodepressor bradykinin, B(2), forms dimers with the receptor for the vasopressor angiotensin II, AT(1). Because AT(1)/B(2) heterodimers may contribute to enhanced angiotensin II-stimulated signaling under pathophysiological conditions, we analyzed mechanisms of AT(1)/B(2) heterodimerization. We found that efficient B(2) receptor maturation was a prerequisite for heterodimerization because only the fully mature B(2) receptor was capable to interact with AT(1). To identify chaperones involved in B(2) receptor maturation and heterodimerization we performed microarray gene expression profiling of human embryonic kidney (HEK293) cells. The expression of the chaperone calreticulin was up-regulated in cells with efficient B(2) receptor maturation. Vice versa, upon down regulation of calreticulin expression by RNA interference, B(2) receptor maturation and AT(1)/B(2) receptor heterodimerization were significantly impaired. Concomitantly, the B(2) receptor-mediated enhancement of AT(1)-stimulated signaling was reduced. Thus, calreticulin enhances B(2) receptor maturation and heterodimerization with AT(1).
Collapse
|
33
|
Jeitner TM, Muma NA, Battaile KP, Cooper AJ. Transglutaminase activation in neurodegenerative diseases. FUTURE NEUROLOGY 2009; 4:449-467. [PMID: 20161049 DOI: 10.2217/fnl.09.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Applied Bench Core, Winthrop University Hospital, 222 Station Plaza North, Suite 502, Mineola, NY 11501, USA Tel.: +1 516 663 3455
| | | | | | | |
Collapse
|
34
|
Salazar G, Falcon-Perez JM, Harrison R, Faundez V. SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS One 2009; 4:e5896. [PMID: 19521526 PMCID: PMC2690824 DOI: 10.1371/journal.pone.0005896] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/18/2009] [Indexed: 11/24/2022] Open
Abstract
Non-covalent and covalent homo-oligomerization of membrane proteins regulates their subcellular localization and function. Here, we described a novel oligomerization mechanism affecting solute carrier family 30 member 3/zinc transporter 3 (SLC30A3/ZnT3). Oligomerization was mediated by intermolecular covalent dityrosine bonds. Using mutagenized ZnT3 expressed in PC12 cells, we identified two critical tyrosine residues necessary for dityrosine-mediated ZnT3 oligomerization. ZnT3 carrying the Y372F mutation prevented ZnT3 oligomerization, decreased ZnT3 targeting to synaptic-like microvesicles (SLMVs), and decreased resistance to zinc toxicity. Strikingly, ZnT3 harboring the Y357F mutation behaved as a “gain-of-function” mutant as it displayed increased ZnT3 oligomerization, targeting to SLMVs, and increased resistance to zinc toxicity. Single and double tyrosine ZnT3 mutants indicate that the predominant dimeric species is formed between tyrosine 357 and 372. ZnT3 tyrosine dimerization was detected under normal conditions and it was enhanced by oxidative stress. Covalent species were also detected in other SLC30A zinc transporters localized in different subcellular compartments. These results indicate that covalent tyrosine dimerization of a SLC30A family member modulates its subcellular localization and zinc transport capacity. We propose that dityrosine-dependent membrane protein oligomerization may regulate the function of diverse membrane protein in normal and disease states.
Collapse
Affiliation(s)
- Gloria Salazar
- Divison of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
35
|
AbdAlla S, Lother H, el Missiry A, Langer A, Sergeev P, el Faramawy Y, Quitterer U. Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease. J Biol Chem 2008; 284:6554-65. [PMID: 19074441 DOI: 10.1074/jbc.m807746200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progressive neurodegeneration and decline of cognitive functions are major hallmarks of Alzheimer disease (AD). Neurodegeneration in AD correlates with dysfunction of diverse signal transduction mechanisms, such as the G-protein-stimulated phosphoinositide hydrolysis mediated by Galphaq/11. We report here that impaired Galphaq/11-stimulated signaling in brains of AD patients and mice correlated with the appearance of cross-linked oligomeric angiotensin II AT2 receptors sequestering Galphaq/11. Amyloid beta (Abeta) was causal to AT2 oligomerization, because cerebral microinjection of Abeta triggered AT2 oligomerization in the hippocampus of mice in a dose-dependent manner. Abeta induced AT2 oligomerization by a two-step process of oxidative and transglutaminase-dependent cross-linking. The induction of AT2 oligomers in a transgenic mouse model with AD-like symptoms was associated with Galphaq/11 dysfunction and enhanced neurodegeneration. Vice versa, stereotactic inhibition of AT2 oligomers by RNA interference prevented the impairment of Galphaq/11 and delayed Tau phosphorylation. Thus, Abeta induces the formation of cross-linked AT2 oligomers that contribute to the dysfunction of Galphaq/11 in an animal model of Alzheimer disease.
Collapse
Affiliation(s)
- Said AbdAlla
- Heinrich-Pette-Institute, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|