1
|
Denessiouk K, Denesyuk AI, Johnson MS, Uversky VN. Two groups and three classes of the conserved structural organization of nucleophile and non-canonical ElbowFlankOxy networks in different superfamily proteins. J Biomol Struct Dyn 2024:1-16. [PMID: 39546335 DOI: 10.1080/07391102.2024.2429798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/15/2024] [Indexed: 11/17/2024]
Abstract
The nucleophile elbow is a well-known structural motif, which exists in proteins with catalytic triads and contains a catalytic nucleophile and the first node of an oxyanion hole. Here, we show that structural similarities of proteins with the nucleophile elbow extend beyond simple nucleophile elbow motifs. The motifs are incorporated into larger conserved structural organizations, the ElbowFlankOxy networks, incorporating motifs and flanking residues and networks of conserved interactions. A detailed structural analysis shows two major types of ElbowFlankOxy networks, depending on the formation of the oxyanion hole. Additionally, the ElbowFlankOxy networks show three classes: Class 1-2-3, 3-1-2, and 2-3-1, defined by the order in which the catalytic nucleophile and key interacting residues are located in the amino acid sequence, giving rise to six ElbowFlankOxy network variations. This makes it possible to properly position homologous non-catalytic, non-standard, and unusual catalytic triad active sites of proteins with the nucleophile elbow within the fold classification.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Hermes GDA, Rasmussen C, Wellejus A. Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria. Nutrients 2024; 16:1893. [PMID: 38931248 PMCID: PMC11206791 DOI: 10.3390/nu16121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Human milk provides essential nutrients for infants but also consists of human milk oligosaccharides (HMOs), which are resistant to digestion by the infant. Bifidobacteria are among the first colonizers, providing various health benefits for the host. This is largely facilitated by their ability to efficiently metabolize HMOs in a species-specific way. Nevertheless, these abilities can vary significantly by strain, and our understanding of the mechanisms applied by different strains from the same species remains incomplete. Therefore, we assessed the effects of strain-level genomic variation in HMO utilization genes on growth on HMOs in 130 strains from 10 species of human associated bifidobacteria. Our findings highlight the extent of genetic diversity between strains of the same species and demonstrate the effects on species-specific HMO utilization, which in most species is largely retained through the conservation of a core set of genes or the presence of redundant pathways. These data will help to refine our understanding of the genetic factors that contribute to the persistence of individual strains and will provide a better mechanistic rationale for the development and optimization of new early-life microbiota-modulating products to improve infant health.
Collapse
Affiliation(s)
- Gerben D. A. Hermes
- Human Health Research, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark (A.W.)
| | | | | |
Collapse
|
3
|
Yamada C, Katayama T, Fushinobu S. Crystal structures of glycoside hydrolase family 136 lacto-N-biosidases from monkey gut- and human adult gut bacteria. Biosci Biotechnol Biochem 2022; 86:464-475. [PMID: 35092420 DOI: 10.1093/bbb/zbac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022]
Abstract
Glycoside hydrolase family 136 (GH136) was established after the discovery and structural analysis of lacto-N-biosidase (LNBase) from the infant gut bacterium Bifidobacterium longum subsp. longum JCM1217 (BlLnbX). Homologous genes of BlLnbX are widely distributed in the genomes of human gut bacteria and monkey Bifidobacterium spp., although only 2 crystal structures were reported in the GH136 family. Cell suspensions of Bifidobacterium saguini, Tyzzerella nexilis, and Ruminococcus lactaris exhibited the LNBase activity. Recombinant LNBases of these 3 species were functionally expressed with their specific chaperones in Escherichia coli, and their kinetic parameters against p-nitrophenol substrates were determined. The crystal structures of the LNBases from B. saguini and T. nexilis in complex with lacto-N-biose I were determined at 2.51 and 1.92 Å resolutions, respectively. These structures conserve a β-helix fold characteristic of GH136 and the catalytic residues, but they lack the metal ions that were present in BlLnbX.
Collapse
Affiliation(s)
- Chihaya Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
5
|
Singh RP, Niharika J, Kondepudi KK, Bishnoi M, Tingirikari JMR. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Res Int 2022; 151:110884. [PMID: 34980411 DOI: 10.1016/j.foodres.2021.110884] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Human milk oligosaccharides (HMOs) are complex sugars with distinctive structural diversity present in breast milk. HMOs have various functional roles to play in infant development starting from establishing the gut microbiome and immune system to take it up to the mature phase. It has been a major energy source for human gut microbes that confer positive benefits on infant health by directly interacting through intestinal cells and generating short-chain fatty acids. It has recently become evident that each species of Bifidobacterium and other genera which are resident of the infant gut employ distinct molecular mechanisms to capture and digest diverse structural HMOs to avoid competition among themselves and successfully maintain gut homeostasis. HMOs also directly modulate gut immune responses and can decoy receptors of pathogenic bacteria and viruses, inhibiting their binding on intestinal cells, thus preventing the emergence of a disease. This review provides a critical understanding of how different gut bacteria capture and utilize selective sugars from the HMO pool and how different structural HMOs protect infants from infectious diseases.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| | - Jayashree Niharika
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Jagan Mohan Rao Tingirikari
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101, India
| |
Collapse
|
6
|
Nakamura S, Nihira T, Kurata R, Nakai H, Funane K, Park EY, Miyazaki T. Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. J Biol Chem 2021; 297:101366. [PMID: 34728215 PMCID: PMC8626586 DOI: 10.1016/j.jbc.2021.101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Glycoside hydrolase family 65 (GH65) comprises glycoside hydrolases (GHs) and glycoside phosphorylases (GPs) that act on α-glucosidic linkages in oligosaccharides. All previously reported bacterial GH65 enzymes are GPs, whereas all eukaryotic GH65 enzymes known are GHs. In addition, to date, no crystal structure of a GH65 GH has yet been reported. In this study, we use biochemical experiments and X-ray crystallography to examine the function and structure of a GH65 enzyme from Flavobacterium johnsoniae (FjGH65A) that shows low amino acid sequence homology to reported GH65 enzymes. We found that FjGH65A does not exhibit phosphorolytic activity, but it does hydrolyze kojibiose (α-1,2-glucobiose) and oligosaccharides containing a kojibiosyl moiety without requiring inorganic phosphate. In addition, stereochemical analysis demonstrated that FjGH65A catalyzes this hydrolytic reaction via an anomer-inverting mechanism. The three-dimensional structures of FjGH65A in native form and in complex with glucose were determined at resolutions of 1.54 and 1.40 Å resolutions, respectively. The overall structure of FjGH65A resembled those of other GH65 GPs, and the general acid catalyst Glu472 was conserved. However, the amino acid sequence forming the phosphate-binding site typical of GH65 GPs was not conserved in FjGH65A. Moreover, FjGH65A had the general base catalyst Glu616 instead, which is required to activate a nucleophilic water molecule. These results indicate that FjGH65A is an α-1,2-glucosidase and is the first bacterial GH found in the GH65 family.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kazumi Funane
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
7
|
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem Soc Trans 2021; 49:563-578. [PMID: 33666221 PMCID: PMC8106489 DOI: 10.1042/bst20200163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023]
Abstract
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
Collapse
|
8
|
Sun S, You C. Disaccharide phosphorylases: Structure, catalytic mechanisms and directed evolution. Synth Syst Biotechnol 2021; 6:23-31. [PMID: 33665389 PMCID: PMC7896129 DOI: 10.1016/j.synbio.2021.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Disaccharide phosphorylases (DSPs) are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They are modular enzymes that form active homo-oligomers. From a mechanistic as well as a structural point of view, they are similar to glycoside hydrolases or glycosyltransferases. As the majority of DSPs show strict stereo- and regiospecificities, these enzymes were used to synthesize specific disaccharides. Currently, protein engineering of DSPs is pursued in different laboratories to broaden the donor and acceptor substrate specificities or improve the industrial particularity of naturally existing enzymes, to eventually generate a toolbox of new catalysts for glycoside synthesis. Herein we review the characteristics and classifications of reported DSPs and the glycoside products that they have been used to synthesize.
Collapse
Affiliation(s)
- Shangshang Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People’s Republic of China
| |
Collapse
|
9
|
Nishimoto M. Large scale production of lacto- N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases. Biosci Biotechnol Biochem 2019; 84:17-24. [PMID: 31566084 DOI: 10.1080/09168451.2019.1670047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method. This proved that, among the enterobacteria, only bifidobacteria can assimilate LNB, and provided the data that supported the explosive growth of bifidobacteria in neonates. Furthermore, we were also able to reveal the structure of LNB crystal and the low stability for heating at neutral pH, which has not been clarified so far. In this paper, using bifidobacteria and LNB as examples, I describe the research on oligosaccharide synthesis that was conducted by utilizing a sugar metabolism.Abbreviations: LNB: lacto-N-biose I; GNB: galacto-N-biose; HMOs: human milk oligosaccharides; GLNBP: GNB/LNB phosphorylase; NahK: N-acetylhexosamine 1-kinase; GalT: UDP-glucose-hexose-1-phosphate uridylyltransferase; GalE: UDP-glucose 4-epimerase; SP: sucrose phosphorylase.
Collapse
Affiliation(s)
- Mamoru Nishimoto
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
10
|
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 2019; 37:667-697. [DOI: 10.1016/j.biotechadv.2019.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
|
11
|
Structural basis for broad substrate specificity of UDP-glucose 4-epimerase in the human milk oligosaccharide catabolic pathway of Bifidobacterium longum. Sci Rep 2019; 9:11081. [PMID: 31366978 PMCID: PMC6668579 DOI: 10.1038/s41598-019-47591-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Infant gut-associated bifidobacteria has a metabolic pathway that specifically utilizes lacto-N-biose I (Gal-β1,3-GlcNAc) and galacto-N-biose (Gal-β1,3-GalNAc) from human milk and mucin glycans. UDP-glucose 4-epimerase (GalE) from Bifidobacterium longum (bGalE) catalyzes epimerization reactions of UDP-Gal into UDP-Glc and UDP-GalNAc into UDP-GlcNAc with the same level of activity that is required to send galacto-hexoses into glycolysis. Here, we determined the crystal structures of bGalE in three ternary complex forms: NAD+/UDP, NAD+/UDP-GlcNAc, and NAD+/UDP-Glc. The broad specificity of bGalE was explained by structural features of the binding pocket for the N-acetyl or C2 hydroxy group of the substrate. Asn200 is located in a pocket of the C2 group, and its side chain adopts different conformations in the complex structures with UDP-Glc and UDP-GlcNAc. On the other side, Cys299 forms a large pocket for the C5 sugar ring atom. The flexible C2 pocket and the large C5 pocket of bGalE are suitable for accommodating both the hydroxy and N-acetyl groups of the substrate during sugar ring rotation in the catalytic cycle. The substrate specificity and active site structure of bGalE were distinct from those of Esherichia coli GalE but similar to those of human GalE.
Collapse
|
12
|
Singh RP. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl Microbiol Biotechnol 2019; 103:7287-7315. [PMID: 31332487 DOI: 10.1007/s00253-019-10012-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Gut residential hundred trillion microbial cells are indispensable for maintaining gut homeostasis and impact on host physiology, development and immune systems. Many of them have displayed excellence in utilising dietary- and host-derived complex glycans and are producing useful postbiotics including short-chain fatty acids to primarily fuel different organs of the host. Therefore, employing individual microbiota is nowadays becoming a propitious target in biomedical for improving gut dysbiosis conditions of the host. Among other gut microbial communities, Bacteroides and Bifidobacteria are coevolved to utilise diverse ranges of diet- and host-derived glycans through harmonising distinct glycan utilisation systems. These gut symbionts frequently share digested oligosaccharides, carbohydrate-active enzymes and fermentable intermediate molecules for sustaining gut microbial symbiosis and improving fitness of own or other communities. Genomics approaches have provided unprecedented insights into these functions, but their precise mechanisms of action have poorly known. Sympathetic glycan-utilising strategy of each gut commensal will provide overview of mechanistic dynamic nature of the gut environment and will then assist in applying aptly personalised nutritional therapy. Thus, the review critically summarises cutting edge understanding of major plant- and host-derived glycan-utilising systems of Bacteroides and Bifidobacteria. Their evolutionary adaptation to gut environment and roles of postbiotics in human health are also highlighted.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS, Nagar, Punjab, 140306, India.
| |
Collapse
|
13
|
Saburi W. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases. Biosci Biotechnol Biochem 2016; 80:1294-305. [PMID: 27031293 DOI: 10.1080/09168451.2016.1166934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.
Collapse
Affiliation(s)
- Wataru Saburi
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
14
|
Ye Y, Saburi W, Odaka R, Kato K, Sakurai N, Komoda K, Nishimoto M, Kitaoka M, Mori H, Yao M. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. FEBS Lett 2016; 590:828-37. [PMID: 26913570 DOI: 10.1002/1873-3468.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 11/11/2022]
Abstract
In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding.
Collapse
Affiliation(s)
- Yuxin Ye
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Rei Odaka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naofumi Sakurai
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Keisuke Komoda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Mamoru Nishimoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Department of Pharmacology, Basic Medical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Kitaoka M. Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 2015; 99:8377-90. [PMID: 26293338 DOI: 10.1007/s00253-015-6927-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Phosphorylases are useful catalysts for the practical preparation of various sugars. The number of known specificities was 13 in 2002 and is now 30. The drastic increase in available genome sequences has facilitated the discovery of novel activities. Most of these novel phosphorylase activities have been identified through the investigations of glycoside hydrolase families containing known phosphorylases. Here, the diversity of phosphorylases in each family is described in detail.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| |
Collapse
|
16
|
Puchart V. Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential. Biotechnol Adv 2015; 33:261-76. [DOI: 10.1016/j.biotechadv.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/20/2022]
|
17
|
O'Neill EC, Field RA. Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 2015; 403:23-37. [PMID: 25060838 PMCID: PMC4336185 DOI: 10.1016/j.carres.2014.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 01/10/2023]
Abstract
Carbohydrate phosphorylases are readily accessible but under-explored catalysts for glycoside synthesis. Their use of accessible and relatively stable sugar phosphates as donor substrates underlies their potential. A wide range of these enzymes has been reported of late, displaying a range of preferences for sugar donors, acceptors and glycosidic linkages. This has allowed this class of enzymes to be used in the synthesis of diverse carbohydrate structures, including at the industrial scale. As more phosphorylase enzymes are discovered, access to further difficult to synthesise glycosides will be enabled. Herein we review reported phosphorylase enzymes and the glycoside products that they have been used to synthesise.
Collapse
Affiliation(s)
- Ellis C O'Neill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 2013; 289:53-64. [PMID: 24214982 PMCID: PMC3879575 DOI: 10.1074/jbc.m113.525295] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.
Collapse
Affiliation(s)
- Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH United Kingdom and
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships. Curr Opin Struct Biol 2013; 23:652-9. [DOI: 10.1016/j.sbi.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
|
20
|
Koyama Y, Hidaka M, Nishimoto M, Kitaoka M. Directed evolution to enhance thermostability of galacto-N-biose/lacto-N-biose I phosphorylase. Protein Eng Des Sel 2013; 26:755-61. [PMID: 24065834 DOI: 10.1093/protein/gzt049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Galacto-N-biose/lacto-N-biose I phosphorylase (GLNBP) is the key enzyme in the enzymatic production of lacto-N-biose I. For the purpose of industrial use, we improved the thermostability of GLNBP by evolutionary engineering in which five substitutions in the amino acid sequence were selected from a random mutagenesis GLNBP library constructed using error-prone polymerase chain reaction. Among them, C236Y and D576V mutants showed considerably improved thermostability. Structural analysis of C236Y revealed that the hydroxyl group of Tyr236 forms a hydrogen bond with the carboxyl group of E319. The C236Y and D576V mutations together contributed to the thermostability. The C236Y/D576V mutant exhibited 20°C higher thermostability than the wild type.
Collapse
Affiliation(s)
- Yoshiyuki Koyama
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | |
Collapse
|
21
|
Unraveling the Leloir pathway of Bifidobacterium bifidum: significance of the uridylyltransferases. Appl Environ Microbiol 2013; 79:7028-35. [PMID: 24014529 DOI: 10.1128/aem.02460-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The GNB/LNB (galacto-N-biose/lacto-N-biose) pathway plays a crucial role in bifidobacteria during growth on human milk or mucin from epithelial cells. It is thought to be the major route for galactose utilization in Bifidobacterium longum as it is an energy-saving variant of the Leloir pathway. Both pathways are present in B. bifidum, and galactose 1-phosphate (gal1P) is considered to play a key role. Due to its toxic nature, gal1P is further converted into its activated UDP-sugar through the action of poorly characterized uridylyltransferases. In this study, three uridylyltransferases (galT1, galT2, and ugpA) from Bifidobacterium bifidum were cloned in an Escherichia coli mutant and screened for activity on the key intermediate gal1P. GalT1 and GalT2 showed UDP-glucose-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.12), whereas UgpA showed promiscuous UTP-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.10). The activity of UgpA toward glucose 1-phosphate was about 33-fold higher than that toward gal1P. GalT1, as part of the bifidobacterial Leloir pathway, was about 357-fold more active than GalT2, the functional analog in the GNB/LNB pathway. These results suggest that GalT1 plays a more significant role than previously thought and predominates when B. bifidum grows on lactose and human milk oligosaccharides. GalT2 activity is required only during growth on substrates with a GNB core such as mucin glycans.
Collapse
|
22
|
Ito T, Katayama T, Hattie M, Sakurama H, Wada J, Suzuki R, Ashida H, Wakagi T, Yamamoto K, Stubbs KA, Fushinobu S. Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum. J Biol Chem 2013; 288:11795-806. [PMID: 23479733 DOI: 10.1074/jbc.m112.420109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides contain a large variety of oligosaccharides, of which lacto-N-biose I (Gal-β1,3-GlcNAc; LNB) predominates as a major core structure. A unique metabolic pathway specific for LNB has recently been identified in the human commensal bifidobacteria. Several strains of infant gut-associated bifidobacteria possess lacto-N-biosidase, a membrane-anchored extracellular enzyme, that liberates LNB from the nonreducing end of human milk oligosaccharides and plays a key role in the metabolic pathway of these compounds. Lacto-N-biosidase belongs to the glycoside hydrolase family 20, and its reaction proceeds via a substrate-assisted catalytic mechanism. Several crystal structures of GH20 β-N-acetylhexosaminidases, which release monosaccharide GlcNAc from its substrate, have been determined, but to date, a structure of lacto-N-biosidase is unknown. Here, we have determined the first three-dimensional structures of lacto-N-biosidase from Bifidobacterium bifidum JCM1254 in complex with LNB and LNB-thiazoline (Gal-β1,3-GlcNAc-thiazoline) at 1.8-Å resolution. Lacto-N-biosidase consists of three domains, and the C-terminal domain has a unique β-trefoil-like fold. Compared with other β-N-acetylhexosaminidases, lacto-N-biosidase has a wide substrate-binding pocket with a -2 subsite specific for β-1,3-linked Gal, and the residues responsible for Gal recognition were identified. The bound ligands are recognized by extensive hydrogen bonds at all of their hydroxyls consistent with the enzyme's strict substrate specificity for the LNB moiety. The GlcNAc sugar ring of LNB is in a distorted conformation near (4)E, whereas that of LNB-thiazoline is in a (4)C1 conformation. A possible conformational pathway for the lacto-N-biosidase reaction is discussed.
Collapse
Affiliation(s)
- Tasuku Ito
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 2013; 17:301-9. [PMID: 23403067 DOI: 10.1016/j.cbpa.2013.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylases are one group of carbohydrate active enzymes involved in the cleavage and formation of glycosidic linkages together with glycoside hydrolases and sugar nucleotide-dependent glycosyltransferases. Noticeably, the catalyzed phosphorolysis is reversible, making phosphorylases suitable catalysts for efficient synthesis of particular oligosaccharides from a donor sugar 1-phosphate and suitable carbohydrate acceptors with strict regioselectivity. Although utilization of phosphorylases for oligosaccharide synthesis has been limited because only few different enzymes are known, recently the number of reported phosphorylases has gradually increased, providing the variation making these enzymes useful tools for efficient synthesis of diverse oligosaccharides.
Collapse
|
24
|
Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, Schiller A. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chemistry 2012; 18:10786-801. [PMID: 22887462 DOI: 10.1002/chem.201103069] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glycosylation can significantly improve the physicochemical and biological properties of small molecules like vitamins, antibiotics, flavors, and fragrances. The chemical synthesis of glycosides is, however, far from trivial and involves multistep routes that generate lots of waste. In this review, biocatalytic alternatives are presented that offer both stricter specificities and higher yields. The advantages and disadvantages of different enzyme classes are discussed and illustrated with a number of recent examples. Progress in the field of enzyme engineering and screening are expected to result in new applications of biocatalytic glycosylation reactions in various industrial sectors.
Collapse
Affiliation(s)
- Tom Desmet
- University of Ghent, Centre for Industrial Biotechnology and Biocatalysis, Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Intestinal colonization of bifidobacteria is important for the health of infants. Human milk oligosaccharides (HMO) have been identified as growth factors for bifidobacteria. Recently, a bifidobacterial enzymatic system to metabolize HMO was identified. 1,3-β-Galactosyl-N-acetylhexosamine phosphorylase (GLNBP, EC 2.4.1.211), which catalyzes the reversible phosphorolysis of galacto-N-biose (GNB) (Galβ1→3GalNAc)] and lacto-N-biose I (LNB) (Galβ1→3GlcNAc), is a key enzyme to explain the metabolism of HMO. Infant-type bifidobacteria possess the intracellular pathway to specifically metabolize GNB and LNB (GNB/LNB pathway). Bifidobacterium bifidum possesses extracellular enzymes to liberate LNB from HMO. However, Bifidobacterium longum subsp. infantis imports intact HMO to be hydrolyzed by intracellular enzymes. Bifidobacterial enzymes related to the metabolism of HMO are useful tools for preparing compounds related to HMO. For instance, LNB and GNB were produced from sucrose and GlcNAc/GalNAc in 1 pot using 4 bifidobacterial enzymes, including GLNBP. LNB is expected to be a selective bifidus factor for infant-type strains.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
26
|
Badieyan S, Bevan DR, Zhang C. A salt-bridge controlled by ligand binding modulates the hydrolysis reaction in a GH5 endoglucanase. Protein Eng Des Sel 2012; 25:223-33. [PMID: 22419828 DOI: 10.1093/protein/gzs010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cellulases, distributed in at least 15 families of glycoside hydrolases, will play a key role in biomass conversion and renewable energy challenges of the future. Cel5B from Clostridium thermocellum is a β-1,4-endoglucanase and a member of family 5 of glycoside hydrolases (GH5) and is characterized by an (α/β)(8) barrel structure. In contrast to other retaining enzymes, in which the catalytic carboxylate groups (glutamate or aspartate) are positioned ≈ 5.5 Å apart to facilitate nucleophilic attack on the anomeric carbon of the sugar substrate, these two residues in Cel5B are positioned ≈ 10 Å from each other in the unliganded wild-type structure. The structure of the enzyme solved in complex with a cleavage product (cellobiose) revealed ligand-induced conformational changes in the loop carrying Glu140 (proton donor). The reorientation of Glu140 in the complex reduces the separation of the catalytic glutamate residues to 4.3 Å. In this study, we took advantage of conventional and steered molecular dynamics (MD) simulations along with in silico and in vitro mutagenesis to investigate the ligand-induced changes of the enzyme and interactions involved in preservation of Cel5B conformations in the presence and absence of substrate. We determined that the variation in separation of catalytic glutamates in the absence and presence of substrate is due to the different protonation states of the proton donor glutamate that is largely governed by conformational changes in the β3α3 loop. In the absence of substrate, the conformation of Cel5B is preserved by an electrostatic interaction between deprotonated Glu140 and protonated His91. The ion pair is interrupted upon the binding of substrate, and the positional displacement of the β3α3 loop allows Glu140 to become oriented within the active site in a less hydrophilic microenvironment that assists in Glu140 protonation.
Collapse
Affiliation(s)
- Somayesadat Badieyan
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
27
|
Nishimoto M, Hidaka M, Nakajima M, Fushinobu S, Kitaoka M. Identification of amino acid residues that determine the substrate preference of 1,3-β-galactosyl-N-acetylhexosamine phosphorylase. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Naumoff DG. Hierarchical classification of glycoside hydrolases. BIOCHEMISTRY (MOSCOW) 2011; 76:622-35. [PMID: 21639842 DOI: 10.1134/s0006297911060022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin.
Collapse
Affiliation(s)
- D G Naumoff
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
29
|
Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 2011; 22:361-8. [PMID: 21926104 DOI: 10.1093/glycob/cwr116] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The breast-fed infant intestine is often colonized by particular bifidobacteria, and human milk oligosaccharides (HMOs) are considered to be bifidogenic. Recent studies showed that Bifidobacterium longum subsp. infantis can grow on HMOs as the sole carbon source. This ability has been ascribed to the presence of a gene cluster (HMO cluster-1) contained in its genome. However, the metabolism of HMOs by the organism remains unresolved because no enzymatic studies have been completed. In the present study, we characterized β-galactosidases of this subspecies to understand how the organism degrades type-1 (Galβ1-3GlcNAc) and type-2 (Galβ1-4GlcNAc) isomers of HMOs. The results revealed that the locus tag Blon_2016 gene, which is distantly located from the HMO cluster-1, encodes a novel β-galactosidase (Bga42A) with a significantly higher specificity for lacto-N-tetraose (LNT; Galβ1-3GlcNAcβ1-3Galβ1-4Glc) than for lacto-N-biose I (Galβ1-3GlcNAc), lactose (Lac) and type-2 HMOs. The proposed name of Bga42A is LNT β-1,3-galactosidase. The Blon_2334 gene (Bga2A) located within the HMO cluster-1 encodes a β-galactosidase specific for Lac and type-2 HMOs. Real-time quantitative reverse transcription-polymerase chain reaction analysis revealed the physiological significance of Bga42A and Bga2A in HMO metabolism. The organism therefore uses two different β-galactosidases to selectively degrade type-1 and type-2 HMOs. Despite the quite rare occurrence in nature of β-galactosidases acting on type-1 chains, the close homologs of Bga42A were present in the genomes of infant-gut associated bifidobacteria that are known to consume LNT. The predominance of type-1 chains in HMOs and the conservation of Bga42A homologs suggest the coevolution of these bifidobacteria with humans.
Collapse
Affiliation(s)
- Erina Yoshida
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen C, Chao C, Soetaert W, Wim S, Desmet T, Tom D. Characterization of β-galactoside phosphorylases with diverging acceptor specificities. Enzyme Microb Technol 2011; 49:59-65. [PMID: 22112272 DOI: 10.1016/j.enzmictec.2011.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/25/2022]
Abstract
Glycoside phosphorylases are a special group of carbohydrate-active enzymes, with characteristics in between those of glycoside hydrolases and glycosyl transferases. The phosphorylases from family GH-112 are exceptional because they employ galactose-1-phosphate instead of glucose-1-phosphate as glycosyl donor. Different acceptor specificities have been observed in this family, ranging from l-rhamnose to GlcNAc, GalNAc and a combination of the latter. Three new phosphorylases from previously unexplored branches of the phylogenetic tree of family GH-112 have now been characterized to shed more light on this divergence in acceptor specificity. The enzymes from Erysipelothrix rhusiopathiae and Streptobacillus moniliformis were found to prefer GalNAc as acceptor, while that from Anaerococcus prevotii displays similar activities on GalNAc and GlcNAc. These results confirm the correlation between the amino acid residue at position 162 and the enzyme's specificity, i.e. a threonine in the former group and a valine in the latter. However, mutagenesis of residue 162 did not allow the rational transformation of the substrate preference, as the substitution of valine by threonine in the enzyme from Bifidobacterium longum did not tighten its specificity towards GalNAc. Unexpectedly, introducing an isoleucine at position 162 increased the preference for GlcNAc as acceptor, which illustrates that the structure-function relationships in β-galactoside phosphorylases are not yet completely understood. Several other positions have also been examined by mutational analysis but true determinants of the acceptor specificity in family GH-112 could not be identified.
Collapse
Affiliation(s)
- Chao Chen
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Luley-Goedl C, Nidetzky B. Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences. Biotechnol J 2011; 5:1324-38. [PMID: 21154671 DOI: 10.1002/biot.201000217] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Disaccharide phosphorylases are glycosyltransferases (EC 2.4.1.α) of specialized carbohydrate metabolism in microorganisms. They catalyze glycosyl transfer to phosphate using a disaccharide as donor substrate. Phosphorylases for the conversion of naturally abundant disaccharides including sucrose, maltose, α,α-trehalose, cellobiose, chitobiose, and laminaribiose have been described. Structurally, these disaccharide phosphorylases are often closely related to glycoside hydrolases and transglycosidases. Mechanistically, they are categorized according the stereochemical course of the reaction catalyzed, whereby the anomeric configuration of the disaccharide donor substrate may be retained or inverted in the sugar 1-phosphate product. Glycosyl transfer with inversion is thought to occur through a single displacement-like catalytic mechanism, exemplified by the reaction coordinate of cellobiose/chitobiose phosphorylase. Reaction via configurational retention takes place through the double displacement-like mechanism employed by sucrose phosphorylase. Retaining α,α-trehalose phosphorylase (from fungi) utilizes a different catalytic strategy, perhaps best described by a direct displacement mechanism, to achieve stereochemical control in an overall retentive transformation. Disaccharide phosphorylases have recently attracted renewed interest as catalysts for synthesis of glycosides to be applied as food additives and cosmetic ingredients. Relevant examples are lacto-N-biose and glucosylglycerol whose enzymatic production was achieved on multikilogram scale. Protein engineering of phosphorylases is currently pursued in different laboratories with the aim of broadening the donor and acceptor substrate specificities of naturally existing enzyme forms, to eventually generate a toolbox of new catalysts for glycoside synthesis.
Collapse
Affiliation(s)
- Christiane Luley-Goedl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, Austria
| | | |
Collapse
|
32
|
|
33
|
Yu H, Thon V, Lau K, Cai L, Chen Y, Mu S, Li Y, Wang PG, Chen X. Highly efficient chemoenzymatic synthesis of β1-3-linked galactosides. Chem Commun (Camb) 2010; 46:7507-9. [PMID: 20830443 DOI: 10.1039/c0cc02850a] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel D-galactosyl-β1-3-N-acetyl-D-hexosamine phosphorylase cloned from Bifidobacterium infantis (BiGalHexNAcP) was used with a recombinant E. coli K-12 galactokinase (GalK) for efficient one-pot two-enzyme synthesis of T-antigens, galacto-N-biose (Galβ1-3GalNAc), lacto-N-biose (Galβ1-3GlcNAc), and their derivatives.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M, Ashida H, Yamamoto K. Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 2010; 20:1402-9. [PMID: 20581010 DOI: 10.1093/glycob/cwq101] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bifidobacteria are predominant in the intestines of breast-fed infants and offer health benefits to the host. Human milk oligosaccharides (HMOs) are considered to be one of the most important growth factors for intestinal bifidobacteria. HMOs contain two major structures of core tetrasaccharide: lacto-N-tetraose (Galβ1-3GlcNAcβ1-3Galβ1-4Glc; type 1 chain) and lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc; type 2 chain). We previously identified the unique metabolic pathway for lacto-N-tetraose in Bifidobacterium bifidum. Here, we clarified the degradation pathway for lacto-N-neotetraose in the same bifidobacteria. We cloned one β-galactosidase (BbgIII) and two β-N-acetylhexosaminidases (BbhI and BbhII), all of which are extracellular membrane-bound enzymes. The recombinant BbgIII hydrolyzed lacto-N-neotetraose into Gal and lacto-N-triose II, and furthermore the recombinant BbhI, but not BbhII, catalyzed the hydrolysis of lacto-N-triose II to GlcNAc and lactose. Since BbgIII and BbhI were highly specific for lacto-N-neotetraose and lacto-N-triose II, respectively, they may play essential roles in degrading the type 2 oligosaccharides in HMOs.
Collapse
Affiliation(s)
- Mika Miwa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Syntheses of mucin-type O-glycopeptides and oligosaccharides using transglycosylation and reverse-hydrolysis activities of Bifidobacterium endo-α-N-acetylgalactosaminidase. Glycoconj J 2009; 27:125-32. [DOI: 10.1007/s10719-009-9247-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
36
|
Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K. Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 2009; 19:1010-7. [PMID: 19520709 DOI: 10.1093/glycob/cwp082] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bifidobacteria are predominant bacteria present in the intestines of breast-fed infants and offer important health benefits for the host. Human milk oligosaccharides are one of the most important growth factors for bifidobacteria and are frequently fucosylated at their non-reducing termini. Previously, we identified 1,2-alpha-l-fucosidase (AfcA) belonging to the novel glycoside hydrolase (GH) family 95, from Bifidobacterium bifidum JCM1254 (Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, Yamanoi T, Kumagai H, Yamamoto K. 2004. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-l-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol. 186:4885-4893). Here, we identified a gene encoding a novel 1,3-1,4-alpha-l-fucosidase from the same strain and termed it afcB. The afcB gene encodes a 1493-amino acid polypeptide containing an N-terminal signal sequence, a GH29 alpha-l-fucosidase domain, a carbohydrate binding module (CBM) 32 domain, a found-in-various-architectures (FIVAR) domain and a C-terminal transmembrane region, in this order. The recombinant enzyme was expressed in Escherichia coli and was characterized. The enzyme specifically released alpha1,3- and alpha1,4-linked fucosyl residues from 3-fucosyllactose, various Lewis blood group substances (a, b, x, and y types), and lacto-N-fucopentaose II and III. However, the enzyme did not act on glycoconjugates containing alpha1,2-fucosyl residue or on synthetic alpha-fucoside (p-nitrophenyl-alpha-l-fucoside). The afcA and afcB genes were introduced into the B. longum 105-A strain, which has no intrinsic alpha-l-fucosidase. The transformant carrying afcA could utilize 2'-fucosyllactose as the sole carbon source, whereas that carrying afcB was able to utilize 3-fucosyllactose and lacto-N-fucopentaose II. We suggest that AfcA and AfcB play essential roles in degrading alpha1,2- and alpha1,3/4-fucosylated milk oligosaccharides, respectively, and also glycoconjugates, in the gastrointestinal tracts.
Collapse
Affiliation(s)
- Hisashi Ashida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakajima M, Nishimoto M, Kitaoka M. Characterization of three beta-galactoside phosphorylases from Clostridium phytofermentans: discovery of d-galactosyl-beta1->4-l-rhamnose phosphorylase. J Biol Chem 2009; 284:19220-7. [PMID: 19491100 DOI: 10.1074/jbc.m109.007666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized three d-galactosyl-beta1-->3-N-acetyl-d-hexosamine phosphorylase (EC 2.4.1.211) homologs from Clostridium phytofermentans (Cphy0577, Cphy1920, and Cphy3030 proteins). Cphy0577 and Cphy3030 proteins exhibited similar activity on galacto-N-biose (GNB; d-Gal-beta1-->3-d-GalNAc) and lacto-N-biose I (LNB; d-Gal-beta1-->3-d-GlcNAc), thus indicating that they are d-galactosyl-beta1-->3-N-acetyl-d-hexosamine phosphorylases, subclassified as GNB/LNB phosphorylase. In contrast, Cphy1920 protein phosphorolyzed neither GNB nor LNB. It showed the highest activity with l-rhamnose as the acceptor in the reverse reaction using alpha-d-galactose 1-phosphate as the donor. The reaction product was d-galactosyl-beta1-->4-l-rhamnose. The enzyme also showed activity on l-mannose, l-lyxose, d-glucose, 2-deoxy-d-glucose, and d-galactose in this order. When d-glucose derivatives were used as acceptors, reaction products were beta-1,3-galactosides. Kinetic parameters of phosphorolytic activity on d-galactosyl-beta1-->4-l-rhamnose were k(cat) = 45 s(-1) and K(m) = 7.9 mm, thus indicating that these values are common among other phosphorylases. We propose d-galactosyl-beta1-->4-l-rhamnose phosphorylase as the name for Cphy1920 protein.
Collapse
Affiliation(s)
- Masahiro Nakajima
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | |
Collapse
|