1
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Ledoux N, Lelong EIJ, Simard A, Hussein S, Adjibade P, Lambert JP, Mazroui R. The Identification of Nuclear FMRP Isoform Iso6 Partners. Cells 2023; 12:2807. [PMID: 38132127 PMCID: PMC10742089 DOI: 10.3390/cells12242807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
A deficiency of FMRP, a canonical RNA-binding protein, causes the development of Fragile X Syndrome (FXS), which is characterised by multiple phenotypes, including neurodevelopmental disorders, intellectual disability, and autism. Due to the alternative splicing of the encoding FMR1 gene, multiple FMRP isoforms are produced consisting of full-length predominantly cytoplasmic (i.e., iso1) isoforms involved in translation and truncated nuclear (i.e., iso6) isoforms with orphan functions. However, we recently implicated nuclear FMRP isoforms in DNA damage response, showing that they negatively regulate the accumulation of anaphase DNA genomic instability bridges. This finding provided evidence that the cytoplasmic and nuclear functions of FMRP are uncoupled played by respective cytoplasmic and nuclear isoforms, potentially involving specific interactions. While interaction partners of cytoplasmic FMRP have been reported, the identity of nuclear FMRP isoform partners remains to be established. Using affinity purification coupled with mass spectrometry, we mapped the nuclear interactome of the FMRP isoform iso6 in U2OS. In doing so, we found FMRP nuclear interaction partners to be involved in RNA processing, pre-mRNA splicing, ribosome biogenesis, DNA replication and damage response, chromatin remodeling and chromosome segregation. By comparing interactions between nuclear iso6 and cytoplasmic iso1, we report a set of partners that bind specifically to the nuclear isoforms, mainly proteins involved in DNA-associated processes and proteasomal proteins, which is consistent with our finding that proteasome targets the nuclear FMRP iso6. The specific interactions with the nuclear isoform 6 are regulated by replication stress, while those with the cytoplasmic isoform 1 are largely insensitive to such stress, further supporting a specific role of nuclear isoforms in DNA damage response induced by replicative stress, potentially regulated by the proteasome.
Collapse
Affiliation(s)
- Nassim Ledoux
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Emeline I. J. Lelong
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Alexandre Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Samer Hussein
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Pauline Adjibade
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| | - Jean-Philippe Lambert
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et néphrologie, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada;
- PROTEO, Le Regroupement Québécois De Recherche Sur La Fonction, L’ingénierie et Les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rachid Mazroui
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (N.L.); (E.I.J.L.); (A.S.); (S.H.); (P.A.)
| |
Collapse
|
3
|
Li K, Li S, Tang S, Zhang M, Ma Z, Wang Q, Chen F. KIF22 promotes bladder cancer progression by activating the expression of CDCA3. Int J Mol Med 2021; 48:211. [PMID: 34633053 PMCID: PMC8522959 DOI: 10.3892/ijmm.2021.5044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system and is associated with a high morbidity and mortality, due to the difficulty in the accurate diagnosis of patients with early‑stage bladder cancer and the lack of effective treatments for patients with advanced bladder cancer. Thus, novel therapeutic targets are urgently required for this disease. Kinesin family member 22 (KIF22) is a kinesin‑like DNA binding protein belonging to kinesin family, and is involved in the regulation of mitosis. KIF22 has also been reported to promote the progression of several types of cancer, such as breast cancer and melanoma. The present study demonstrates the high expression of KIF22 in human bladder cancer tissues. KIF22 was found to be associated with clinical features, including clinical stage (P=0.003) and recurrence (P=0.016), and to be associated with the prognosis of patients with bladder cancer. Furthermore, it was found that KIF22 silencing inhibited the proliferation of bladder cancer cells in vitro and tumor progression in mice. Additionally, it was noted that KIF22 transcriptionally activated cell division cycle‑associated protein 3 expression, which was also confirmed in tumors in mice. Taken together, the present study investigated the molecular mechanisms underlying the promotion of bladder cancer by KIF22 and provide a novel therapeutic target for the treatment of bladder cancer. Introduction.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Song Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Shuai Tang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Minghao Zhang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Zhen Ma
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Qi Wang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Fangmin Chen
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| |
Collapse
|
4
|
Wahner Hendrickson AE, Visscher DW, Hou X, Goergen KM, Atkinson HJ, Beito TG, Negron V, Lingle WL, Bruzek AK, Hurley RM, Wagner JM, Flatten KS, Peterson KL, Schneider PA, Larson MC, Maurer MJ, Kalli KR, Oberg AL, Weroha SJ, Kaufmann SH. CHFR and Paclitaxel Sensitivity of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13236043. [PMID: 34885153 PMCID: PMC8657201 DOI: 10.3390/cancers13236043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
The poly(ADP-ribose) binding protein CHFR regulates cellular responses to mitotic stress. The deubiquitinase UBC13, which regulates CHFR levels, has been associated with better overall survival in paclitaxel-treated ovarian cancer. Despite the extensive use of taxanes in the treatment of ovarian cancer, little is known about expression of CHFR itself in this disease. In the present study, tissue microarrays containing ovarian carcinoma samples from 417 women who underwent initial surgical debulking were stained with anti-CHFR antibody and scored in a blinded fashion. CHFR levels, expressed as a modified H-score, were examined for association with histology, grade, time to progression (TTP) and overall survival (OS). In addition, patient-derived xenografts from 69 ovarian carcinoma patients were examined for CHFR expression and sensitivity to paclitaxel monotherapy. In clinical ovarian cancer specimens, CHFR expression was positively associated with serous histology (p = 0.0048), higher grade (p = 0.000014) and higher stage (p = 0.016). After correction for stage and debulking, there was no significant association between CHFR staining and overall survival (p = 0.62) or time to progression (p = 0.91) in patients with high grade serous cancers treated with platinum/taxane chemotherapy (N = 249). Likewise, no association between CHFR expression and paclitaxel sensitivity was observed in ovarian cancer PDXs treated with paclitaxel monotherapy. Accordingly, differences in CHFR expression are unlikely to play a major role in paclitaxel sensitivity of high grade serous ovarian cancer.
Collapse
Affiliation(s)
- Andrea E. Wahner Hendrickson
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
- Correspondence: (A.E.W.H.); (S.H.K.); Tel.: +1-507-284-3731 (A.E.W.H.); +1-507-284-8950 (S.H.K.); Fax: +1-507-293-0107 (A.E.W.H. & S.H.K.)
| | - Daniel W. Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
| | - Krista M. Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | - Hunter J. Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | | | - Vivian Negron
- Pathology Research Core, Mayo Clinic, Rochester, MN 55905, USA; (V.N.); (W.L.L.); (A.K.B.)
| | - Wilma L. Lingle
- Pathology Research Core, Mayo Clinic, Rochester, MN 55905, USA; (V.N.); (W.L.L.); (A.K.B.)
| | - Amy K. Bruzek
- Pathology Research Core, Mayo Clinic, Rochester, MN 55905, USA; (V.N.); (W.L.L.); (A.K.B.)
| | - Rachel M. Hurley
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jill M. Wagner
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
| | - Karen S. Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
| | - Kevin L. Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
| | - Paula A. Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
| | - Melissa C. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | - Matthew J. Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | | | - Ann L. Oberg
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (K.M.G.); (H.J.A.); (M.C.L.); (M.J.M.); (A.L.O.)
| | - S. John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (X.H.); (J.M.W.); (S.J.W.)
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA; (K.S.F.); (K.L.P.); (P.A.S.)
- Correspondence: (A.E.W.H.); (S.H.K.); Tel.: +1-507-284-3731 (A.E.W.H.); +1-507-284-8950 (S.H.K.); Fax: +1-507-293-0107 (A.E.W.H. & S.H.K.)
| |
Collapse
|
5
|
Chen X, Lin J, Chen Q, Liao X, Wang T, Li S, Mao L, Li Z. Identification of a Novel Epigenetic Signature CHFR as a Potential Prognostic Gene Involved in Metastatic Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:720979. [PMID: 34539751 PMCID: PMC8440929 DOI: 10.3389/fgene.2021.720979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Metastasis is the main cause of clear cell renal cell carcinoma (ccRCC) treatment failure, and the key genes involved in ccRCC metastasis remain largely unknown. We analyzed the ccRCC datasets in The Cancer Genome Atlas database, comparing primary and metastatic ccRCC tumor records in search of tumor metastasis-associated genes, and then carried out overall survival, Cox regression, and receiver operating characteristic (ROC) analyses to obtain potential prognostic markers. Comprehensive bioinformatics analysis was performed to verify that the checkpoint with forkhead associated and ring finger domains (CHFR) gene is a reliable candidate oncogene, which is overexpressed in ccRCC metastatic tumor tissue, and that high expression levels of CHFR indicate a poor prognosis. A detailed analysis of the methylation of CHFR in ccRCC tumors showed that three sites within 200 bp of the transcription initiation site were significantly associated with prognosis and that hypomethylation was associated with increased CHFR gene expression levels. Knockdown of CHFR in ccRCC cells inhibited cell proliferation, colony formation, and migration ability. In summary, our findings suggest that the epigenetic signature on CHFR gene is a novel prognostic feature; furthermore, our findings offer theoretical support for the study of metastasis-related genes in ccRCC and provided new insights for the clinical treatment of the disease.
Collapse
Affiliation(s)
- Xiangling Chen
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | | | - Ximian Liao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tongyu Wang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
6
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
7
|
Dai D, Zhou B, Xu W, Jin H, Wang X. CHFR Promoter Hypermethylation Is Associated with Gastric Cancer and Plays a Protective Role in Gastric Cancer Process. J Cancer 2019; 10:949-956. [PMID: 30854101 PMCID: PMC6400794 DOI: 10.7150/jca.27224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Chromosomally unstable tumors account for 50% of gastric cancer. CHFR plays a role in controlling chromosomal instability and its inactivation will eventually lead to tumorigenesis. In addition to genetic deletion, DNA methylation could silence the expression of many cancer-related genes including CHFR. Its methylation was found to be associated with the initiation and progression of gastric cancer. Methods: We performed a meta-analysis involving methylation analyses of CHFR promoter in gastric cancer. Nineteen studies with 1,249 tumor tissues and 745 normal tissues had been included in current study. Results: We found that CHFR methylation was significantly higher in gastric cancer (studies numbers = 15, cases/controls = 862/745, odds ratio (OR) = 7.46, 95% confidence index (95% CI) = 4.99-11.14). Methylation array data was also obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas network (TCGA). There were 7 out of 13 CHFR methylation probes target to the same CpG island region (hg19, 131973620-131975130) showed the CHFR methylation was higher in gastric cancers than normal controls. Eight probes showed CHFR promoter hypermethylation was associated with longer overall survival of gastric cancer patients (Hazard Ratio < 1). Conclusions: The CHFR promoter hypermethylation was associated with gastric cancer and played a protective role in gastric cancer process. Its methylation could be a potential biomarker for the diagnosis and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Bingluo Zhou
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Shah VJ, Maddika S. CRL7 SMU1 E3 ligase complex-driven H2B ubiquitylation functions in sister chromatid cohesion by regulating SMC1 expression. J Cell Sci 2018; 131:jcs.213868. [PMID: 29507117 DOI: 10.1242/jcs.213868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
Cullin-RING-type E3 ligases (CRLs) control a broad range of biological processes by ubiquitylating numerous cellular substrates. However, the role of CRL E3 ligases in chromatid cohesion is unknown. In this study, we identified a new CRL-type E3 ligase (designated as CRL7SMU1 complex) that has an essential role in the maintenance of chromatid cohesion. We demonstrate that SMU1, DDB1, CUL7 and RNF40 are integral components of this complex. SMU1, by acting as a substrate recognition module, binds to H2B and mediates monoubiquitylation at the lysine (K) residue K120 through CRL7SMU1 E3 ligase complex. Depletion of CRL7SMU1 leads to loss of H2B ubiquitylation at the SMC1a locus and, thus, subsequently compromised SMC1a expression in cells. Knockdown of CRL7SMU1 components or loss of H2B ubiquitylation leads to defective sister chromatid cohesion, which is rescued by restoration of SMC1a expression. Together, our results unveil an important role of CRL7SMU1 E3 ligase in promoting H2B ubiquitylation for maintenance of sister chromatid cohesion during mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Varun Jayeshkumar Shah
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India-500 039.,Graduate studies, Manipal Academy of Higher Education, Manipal, India-576 104
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India-500 039
| |
Collapse
|
9
|
Pike R, Ortiz-Zapater E, Lumicisi B, Santis G, Parsons M. KIF22 coordinates CAR and EGFR dynamics to promote cancer cell proliferation. Sci Signal 2018; 11:11/515/eaaq1060. [PMID: 29382784 DOI: 10.1126/scisignal.aaq1060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is a transmembrane receptor that plays a key role in cell-cell adhesion. CAR is found in normal epithelial cells and is increased in abundance in various human tumors, including lung carcinomas. We investigated the potential mechanisms by which CAR contributes to cancer cell growth and found that depletion of CAR in human lung cancer cells reduced anchorage-independent growth, epidermal growth factor (EGF)-dependent proliferation, and tumor growth in vivo. EGF induced the phosphorylation of CAR and its subsequent relocalization to cell junctions through the activation of the kinase PKCδ. EGF promoted the binding of CAR to the chromokinesin KIF22. KIF22-dependent regulation of microtubule dynamics led to delayed EGFR internalization, enhanced EGFR signaling, and coordination of CAR dynamics at cell-cell junctions. These data suggest a role for KIF22 in the coordination of membrane receptors and provide potential new therapeutic strategies to combat lung tumor growth.
Collapse
Affiliation(s)
- Rosemary Pike
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.,Division of Asthma, Allergy and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London SE1 1UL, UK
| | - Brooke Lumicisi
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - George Santis
- Division of Asthma, Allergy and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
10
|
Kong XW, Wang DH, Zhou CJ, Zhou HX, Liang CG. Loss of function of KIF1B impairs oocyte meiotic maturation and early embryonic development in mice. Mol Reprod Dev 2016; 83:1027-1040. [PMID: 27696585 DOI: 10.1002/mrd.22744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
Kinesin family member 1B (KIF1B) is an important microtubule-dependent monomeric motor in mammals, although little is known about its role in meiosis. We profiled KIF1B expression and localization during oocyte maturation and early embryonic development in mice, revealing a dynamic pattern throughout meiotic progression. Depletion or inhibition of KIF1B leads to abnormal polar body extrusion, disordered spindle dynamics, defects in chromosome congression, increased aneuploidy, and impaired embryonic development. Further, KIF1B depletion affects the distribution of mitochondria and abundance of ATP. Taken together, our study demonstrates that mouse KIF1B is important for spindle assembly, chromosome congression, and mitochondrial distribution during oocyte maturation and early embryonic development. Mol. Reprod. Dev. 83: 1027-1040, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Hong-Xia Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
11
|
Zhong A, Tan FQ, Yang WX. Chromokinesin: Kinesin superfamily regulating cell division through chromosome and spindle. Gene 2016; 589:43-48. [DOI: 10.1016/j.gene.2016.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/22/2016] [Accepted: 05/15/2016] [Indexed: 01/23/2023]
|
12
|
Park SM, Littleton JT, Park HR, Lee JH. Drosophila Homolog of Human KIF22 at the Autism-Linked 16p11.2 Loci Influences Synaptic Connectivity at Larval Neuromuscular Junctions. Exp Neurobiol 2016; 25:33-9. [PMID: 26924931 PMCID: PMC4766112 DOI: 10.5607/en.2016.25.1.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/13/2022] Open
Abstract
Copy number variations at multiple chromosomal loci, including 16p11.2, have recently been implicated in the pathogenesis of autism spectrum disorder (ASD), a neurodevelopmental disease that affects 1~3% of children worldwide. The aim of this study was to investigate the roles of human genes at the 16p11.2 loci in synaptic development using Drosophila larval neuromuscular junctions (NMJ), a well-established model synapse with stereotypic innervation patterns. We conducted a preliminary genetic screen based on RNA interference in combination with the GAL4-UAS system, followed by mutational analyses. Our result indicated that disruption of klp68D, a gene closely related to human KIF22, caused ectopic innervations of axon branches forming type III boutons in muscle 13, along with less frequent re-routing of other axon branches. In addition, mutations in klp64D, of which gene product forms Kinesin-2 complex with KLP68D, led to similar targeting errors of type III axons. Mutant phenotypes were at least partially reproduced by knockdown of each gene via RNA interference. Taken together, our data suggest the roles of Kinesin-2 proteins, including KLP68D and KLP64D, in ensuring proper synaptic wiring.
Collapse
Affiliation(s)
- Sang Mee Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.; Department of Biology & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.; Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.; Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612, Korea.; The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Cleven AHG, Derks S, Draht MXG, Smits KM, Melotte V, Van Neste L, Tournier B, Jooste V, Chapusot C, Weijenberg MP, Herman JG, de Bruïne AP, van Engeland M. CHFR promoter methylation indicates poor prognosis in stage II microsatellite stable colorectal cancer. Clin Cancer Res 2015; 20:3261-71. [PMID: 24928946 DOI: 10.1158/1078-0432.ccr-12-3734] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Data on the prognostic significance of promoter CpG island methylation in colorectal cancer (CRC) are conflicting, possibly due to associations between methylation and other factors affecting survival such as genetic alterations and use of adjuvant therapy. Here, we examine the prognostic impact of promoter methylation in patients with CRC treated with surgery alone in the context of microsatellite instability (MSI), BRAF and KRAS mutations. EXPERIMENTAL METHODS One hundred and seventy-three CRCs were analyzed for promoter methylation of 19 tumor suppressor and DNA repair genes, the CpG island methylator phenotype (CIMP), MSI, the exon 15 V600E BRAF mutation and KRAS codon 12 and 13 mutations. RESULTS Unsupervised hierarchical clustering based on methylation status of 19 genes revealed three subgroups: cluster 1 [CL1, 57% (98/173) of CRCs], cluster 2 [CL2, 25% (43/173) of CRCs], and cluster 3 [CL3, 18% (32/173) of CRCs]. CL3 had the highest methylation index (0.25, 0.49, and 0.69, respectively, P = <0.01) and was strongly associated with CIMP (P < 0.01). Subgroup analysis for tumor stage, MSI, and BRAF status showed no statistically significant differences in survival between CL1, CL2, and CL3 nor between CIMP and non-CIMP CRCs. Analyzing genes separately revealed that CHFR promoter methylation was associated with a poor prognosis in stage II, microsatellite stability (MSS), BRAF wild-type (WT) CRCs: multivariate Cox proportional HR = 3.89 [95% confidence interval (CI), 1.58-9.60, P < 0.01; n = 66] and HR = 2.11 (95% CI, 0.95-4.69, P = 0.068, n = 136) in a second independent population-based study. CONCLUSIONS CHFR promoter CpG island methylation, which is associated with MSI, also occurs frequently in MSS CRCs and is a promising prognostic marker in stage II, MSS, BRAF WT CRCs.
Collapse
Affiliation(s)
- Arjen H G Cleven
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Derks
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muriel X G Draht
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kim M Smits
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, MarylandAuthors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Veerle Melotte
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leander Van Neste
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin Tournier
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valerie Jooste
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Caroline Chapusot
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matty P Weijenberg
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James G Herman
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adriaan P de Bruïne
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manon van Engeland
- Authors' Affiliations: Departments of Pathology, Radiation Oncology (MAASTRO) and Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Service de Pathologie; Registre des cancers digestifs, Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France; and The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Derks S, Cleven AHG, Melotte V, Smits KM, Brandes JC, Azad N, van Criekinge W, de Bruïne AP, Herman JG, van Engeland M. Emerging evidence for CHFR as a cancer biomarker: from tumor biology to precision medicine. Cancer Metastasis Rev 2015; 33:161-71. [PMID: 24375389 PMCID: PMC3988518 DOI: 10.1007/s10555-013-9462-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel insights in the biology of cancer have switched the paradigm of a “one-size-fits-all” cancer treatment to an individualized biology-driven treatment approach. In recent years, a diversity of biomarkers and targeted therapies has been discovered. Although these examples accentuate the promise of personalized cancer treatment, for most cancers and cancer subgroups no biomarkers and effective targeted therapy are available. The great majority of patients still receive unselected standard therapies with no use of their individual molecular characteristics. Better knowledge about the underlying tumor biology will lead the way toward personalized cancer treatment. In this review, we summarize the evidence for a promising cancer biomarker: checkpoint with forkhead and ring finger domains (CHFR). CHFR is a mitotic checkpoint and tumor suppressor gene, which is inactivated in a diverse group of solid malignancies, mostly by promoter CpG island methylation. CHFR inactivation has shown to be an indicator of poor prognosis and sensitivity to taxane-based chemotherapy. Here we summarize the current knowledge of altered CHFR expression in cancer, the impact on tumor biology and implications for personalized cancer treatment.
Collapse
Affiliation(s)
- Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjen H. G. Cleven
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Kim M. Smits
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johann C. Brandes
- Department of Hematology and Oncology, Atlanta VA Medical Center Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Nilofer Azad
- Department of Gastrointestinal Oncology, The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Wim van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
- MDxHealth, Irvine, CA USA
| | - Adriaan P. de Bruïne
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - James G. Herman
- Department of Tumor Biology, The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
15
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Danielsen JMR, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177-89. [PMID: 24407421 PMCID: PMC3915904 DOI: 10.1038/cr.2014.3] [Citation(s) in RCA: 1693] [Impact Index Per Article: 153.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022] Open
Abstract
The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.
Collapse
Affiliation(s)
- Xiao-Li Ping
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bao-Fa Sun
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Xiao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jia Wang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Samir Adhikari
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Shi
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Lv
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Sheng Chen
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Zhao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ang Li
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ujwal Dahal
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Min Lou
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Liu
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Zhejiang 310058, China
| | - Wei-Ping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Xiao-Fan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Tianjin 300041, China
| | - Yong-Liang Zhao
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinquan Wang
- Center for Structural Biology, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jannie M Rendtlew Danielsen
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Copenhagen, Denmark
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Center For Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
16
|
Shinde SR, Gangula NR, Kavela S, Pandey V, Maddika S. TOPK and PTEN participate in CHFR mediated mitotic checkpoint. Cell Signal 2013; 25:2511-7. [PMID: 24012691 PMCID: PMC3819987 DOI: 10.1016/j.cellsig.2013.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/24/2013] [Indexed: 01/15/2023]
Abstract
Mitotic progression is regulated by co-ordinated action of several proteins and is crucial for the maintenance of genomic stability. CHFR (Check point protein with FHA and RING domains) is an E3 ubiquitin ligase and a checkpoint protein that regulates entry into mitosis. But the molecular players involved in CHFR mediated mitotic checkpoint are not completely understood. In this study, we identified TOPK/PBK, a serine/threonine kinase and PTEN, a lipid phosphatase to play an important role in CHFR mediated mitotic transitions. We demonstrated that CHFR ubiquitinates and regulates TOPK levels, which is essential for its checkpoint function. Moreover, TOPK phosphorylates and inactivates PTEN, which in turn activates Akt that leads to proper G2/M progression. Collectively, our results reveal TOPK and PTEN as new players in CHFR mediated mitotic checkpoint. TOPK is identified as a novel CHFR associated protein. TOPK is a substrate of CHFR. TOPK participates in CHFR mediated mitotic stress check point. PTEN is phosphorylated by TOPK and is required for mitotic entry.
Collapse
Affiliation(s)
- Swapnil R Shinde
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | | | | | | | | |
Collapse
|
17
|
Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X, He QY. Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 2013; 12:2391-9. [PMID: 22887948 DOI: 10.1002/pmic.201100652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genistein exerts its anticarcinogenic effects by inducing G2/M arrest and apoptosis of cancer cells. However, the precise molecular mechanism of action of genistein has not been completely elucidated. In this study, we used quantitative proteomics to identify the genistein-induced protein alterations in gastric cancer cells and investigate the molecular mechanism responsible for the anti-cancer actions of genistein. Total 86 proteins were identified to be regulated by genistein, most of which were clustered into the regulation of cell division and G2/M transition, consistent with the anti-cancer effect of genistein. Many proteins including kinesin family proteins, TPX2, CDCA8, and CIT were identified for the first time to be regulated by genistein. Interestingly, five kinesin family proteins including KIF11, KIF20A, KIF22, KIF23, and CENPF were found to be simultaneously downregulated by genistein. Significantly decreased KIF20A was selected for further functional studies. The silencing of KIF20A inhibited cell viability and induced G2/M arrest, similar to the effects of genistein treatment in gastric cancer. And the silencing of KIF20A also increased cancer cell sensitivity to genistein inhibition, whereas overexpression of KIF20A markedly attenuated genistein-induced cell viability inhibition and G2/M arrest. These observations suggested that KIF20A played an important role in anti-cancer actions of genistein, and thus may be a potential molecular target for drug intervention of gastric cancer.
Collapse
Affiliation(s)
- Guang-Rong Yan
- Institute of Life and Health Engineering, and National Engineering and Research Center for Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and in general, are incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity, and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this idea, we present a systematic analysis of the kinesin superfamily, family by family, for predicted regions of ID. We combine this analysis with a comprehensive review of kinesin binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that ID is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins.
Collapse
|
19
|
Seeger MA, Zhang Y, Rice SE. Kinesin tail domains are intrinsically disordered. Proteins 2012; 80:2437-46. [PMID: 22674872 DOI: 10.1002/prot.24128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 12/11/2022]
Abstract
Kinesin motor proteins transport a wide variety of molecular cargoes in a spatially and temporally regulated manner. Kinesin motor domains, which hydrolyze ATP to produce a directed mechanical force along a microtubule, are well conserved throughout the entire superfamily. Outside of the motor domains, kinesin sequences diverge along with their transport functions. The nonmotor regions, particularly the tails, respond to a wide variety of structural and molecular cues that enable kinesins to carry specific cargoes in response to particular cellular signals. Here, we demonstrate that intrinsic disorder is a common structural feature of kinesins. A bioinformatics survey of the full-length sequences of all 43 human kinesins predicts that significant regions of intrinsically disordered residues are present in all kinesins. These regions are concentrated in the nonmotor domains, particularly in the tails and near sites for ligand binding or post-translational modifications. In order to experimentally verify these predictions, we expressed and purified the tail domains of kinesins representing three different families (Kif5B, Kif10, and KifC3). Circular dichroism and NMR spectroscopy experiments demonstrate that the isolated tails are disordered in vitro, yet they retain their functional microtubule-binding activity. On the basis of these results, we propose that intrinsic disorder is a common structural feature that confers functional specificity to kinesins.
Collapse
Affiliation(s)
- Mark A Seeger
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
20
|
CHEN K, CHENG HH, ZHOU RJ. Molecular mechanisms and functions of autophagy and the ubiq-uitin-proteasome pathway. YI CHUAN = HEREDITAS 2012; 34:5-18. [DOI: 10.3724/sp.j.1005.2012.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Boyden ED, Campos-Xavier AB, Kalamajski S, Cameron TL, Suarez P, Tanackovic G, Andria G, Ballhausen D, Briggs MD, Hartley C, Cohn DH, Davidson HR, Hall C, Ikegawa S, Jouk PS, König R, Megarbané A, Nishimura G, Lachman RS, Mortier G, Rimoin DL, Rogers RC, Rossi M, Sawada H, Scott R, Unger S, Valadares ER, Bateman JF, Warman ML, Superti-Furga A, Bonafé L. Recurrent dominant mutations affecting two adjacent residues in the motor domain of the monomeric kinesin KIF22 result in skeletal dysplasia and joint laxity. Am J Hum Genet 2011; 89:767-72. [PMID: 22152678 DOI: 10.1016/j.ajhg.2011.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Eric D Boyden
- Children's Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Keller JA, Petty EM. CHFR binds to and regulates MAD2 in the spindle checkpoint through its cysteine-rich domain. Biochem Biophys Res Commun 2011; 409:389-93. [PMID: 21575600 DOI: 10.1016/j.bbrc.2011.04.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 12/30/2022]
Abstract
CHFR has been implicated as a tumor suppressor in a multitude of cancers. It was originally identified as a major component of the antephase checkpoint. Recently, CHFR was reported to interact with MAD2, an important component of the spindle assembly checkpoint, where CHFR knockdown resulted in mislocalization of MAD2 and disruption of the MAD2/CDC20 interaction. To further understand how CHFR interacts with MAD2, we deleted key functional domains of CHFR, and investigated the effect on MAD2 binding and function. Here we show that deletion of the cysteine-rich domain of CHFR is required for the CHFR/MAD2 interaction as well as proper localization of MAD2 in the cell. Furthermore, the cysteine-rich domain deletion exhibits impaired ability to promote the MAD2/CDC20 interaction, leading to an increase in mitotic defects relative to wild type CHFR. These data support a critical role for CHFR in the MAD2 spindle checkpoint. Furthermore, these data establish the cysteine-rich domain of CHFR as the essential domain for the CHFR/MAD2 interaction and for promoting interaction between MAD2 and CDC20 to inhibit the anaphase-promoting complex.
Collapse
Affiliation(s)
- Jennifer A Keller
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
23
|
Oberoi J, Richards MW, Crumpler S, Brown N, Blagg J, Bayliss R. Structural basis of poly(ADP-ribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains (CHFR). J Biol Chem 2010; 285:39348-58. [PMID: 20880844 PMCID: PMC2998101 DOI: 10.1074/jbc.m110.159855] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/26/2010] [Indexed: 01/07/2023] Open
Abstract
Cellular stress in early mitosis activates the antephase checkpoint, resulting in the decondensation of chromosomes and delayed mitotic progression. Checkpoint with forkhead-associated and RING domains (CHFR) is central to this checkpoint, and its activity is ablated in many tumors and cancer cell lines through promoter hypermethylation or mutation. The interaction between the PAR-binding zinc finger (PBZ) of CHFR and poly(ADP-ribose) (PAR) is crucial for a functional antephase checkpoint. We determined the crystal structure of the cysteine-rich region of human CHFR (amino acids 425-664) to 1.9 Å resolution, which revealed a multizinc binding domain of elaborate topology within which the PBZ is embedded. The PBZ of CHFR closely resembles the analogous motifs from aprataxin-like factor and CG1218-PA, which lie within unstructured regions of their respective proteins. Based on co-crystal structures of CHFR bound to several different PAR-like ligands (adenosine 5'-diphosphoribose, adenosine monophosphate, and P(1)P(2)-diadenosine 5'-pyrophosphate), we made a model of the CHFR-PAR interaction, which we validated using site-specific mutagenesis and surface plasmon resonance. The PBZ motif of CHFR recognizes two adenine-containing subunits of PAR and the phosphate backbone that connects them. More generally, PBZ motifs may recognize different numbers of PAR subunits as required to carry out their functions.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| | - Mark W. Richards
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| | - Simon Crumpler
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Nathan Brown
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Julian Blagg
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Richard Bayliss
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| |
Collapse
|
24
|
Hsiao YH, Su YA, Tsai HD, Mason JT, Chou MC, Man YG. Increased invasiveness and aggressiveness in breast epithelia with cytoplasmic p63 expression. Int J Biol Sci 2010; 6:428-42. [PMID: 20714441 PMCID: PMC2920576 DOI: 10.7150/ijbs.6.428] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/05/2010] [Indexed: 12/24/2022] Open
Abstract
Our previous studies revealed that pregnancy associated breast cancer (PABC) had significantly reduced nuclear p63 expression in myoepithelia, while intense cytoplasmic p63 expression in associated epithelia. Our current study assessed these epithelia using immunohistochemistry with a panel of aggressiveness and invasiveness related markers and comparative genomic hybridization (array-CGH) with over 30,000 DNA probes. These epithelia showed several unique alterations, including (1) immunohistochemical and morphological resemblance to invasive cancer, (2) significant gain in copy numbers of DNA coding genes for morphogenesis, angiogenesis, and metastasis, and (3) significant loss in copy numbers of DNA coding genes for tumor suppressors, cell adhesion, and macromolecular complex assembly or intra-cellular trafficking. Detected array-CGH alterations correlated well with in vivo expression of a number of corresponding proteins tested. These findings suggest that aberrant sub-cellular localization of p63 expression in normal or hyperplastic appearing epithelial cells may significant contribute to increased invasiveness and aggressiveness of these cells.
Collapse
Affiliation(s)
- Yi-Hsuan Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Ande SR, Chen J, Maddika S. The ubiquitin pathway: An emerging drug target in cancer therapy. Eur J Pharmacol 2009; 625:199-205. [DOI: 10.1016/j.ejphar.2009.08.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 01/17/2023]
|