1
|
Moedas MF, Simões RJM, Silva MFB. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies. Biochem Pharmacol 2024; 222:116034. [PMID: 38307136 DOI: 10.1016/j.bcp.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The urea cycle (UC) is a critically important metabolic process for the disposal of nitrogen (ammonia) produced by amino acids catabolism. The impairment of this liver-specific pathway induced either by primary genetic defects or by secondary causes, namely those associated with hepatic disease or drug administration, may result in serious clinical consequences. Urea cycle disorders (UCD) and certain organic acidurias are the major groups of inherited rare diseases manifested with hyperammonemia (HA) with UC dysregulation. Importantly, several commonly prescribed drugs, including antiepileptics in monotherapy or polytherapy from carbamazepine to valproic acid or specific antineoplastic agents such as asparaginase or 5-fluorouracil may be associated with HA by mechanisms not fully elucidated. HA, disclosing an imbalance between ammoniagenesis and ammonia disposal via the UC, can evolve to encephalopathy which may lead to significant morbidity and central nervous system damage. This review will focus on biochemical mechanisms related with HA emphasizing some poorly understood perspectives behind the disruption of the UC and mitochondrial energy metabolism, namely: i) changes in acetyl-CoA or NAD+ levels in subcellular compartments; ii) post-translational modifications of key UC-related enzymes, namely acetylation, potentially affecting their catalytic activity; iii) the mitochondrial sirtuins-mediated role in ureagenesis. Moreover, the main UCD associated with HA will be summarized to highlight the relevance of investigating possible genetic mutations to account for unexpected HA during certain pharmacological therapies. The ammonia-induced effects should be avoided or overcome as part of safer therapeutic strategies to protect patients under treatment with drugs that may be potentially associated with HA.
Collapse
Affiliation(s)
- Marco F Moedas
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ricardo J M Simões
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
3
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Hu SH, Feng YY, Yang YX, Ma HD, Zhou SX, Qiao YN, Zhang KH, Zhang L, Huang L, Yuan YY, Lin Y, Zhang XY, Li Y, Li HT, Zhao JY, Xu W, Zhao SM. Amino acids downregulate SIRT4 to detoxify ammonia through the urea cycle. Nat Metab 2023; 5:626-641. [PMID: 37081161 DOI: 10.1038/s42255-023-00784-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/10/2023] [Indexed: 04/22/2023]
Abstract
Ammonia production via glutamate dehydrogenase is inhibited by SIRT4, a sirtuin that displays both amidase and non-amidase activities. The processes underlying the regulation of ammonia removal by amino acids remain unclear. Here, we report that SIRT4 acts as a decarbamylase that responds to amino acid sufficiency and regulates ammonia removal. Amino acids promote lysine 307 carbamylation (OTCCP-K307) of ornithine transcarbamylase (OTC), which activates OTC and the urea cycle. Proteomic and interactome screening identified OTC as a substrate of SIRT4. SIRT4 decarbamylates OTCCP-K307 and inactivates OTC in an NAD+-dependent manner. SIRT4 expression was transcriptionally upregulated by the amino acid insufficiency-activated GCN2-eIF2α-ATF4 axis. SIRT4 knockout in cultured cells caused higher OTCCP-K307 levels, activated OTC, elevated urea cycle intermediates and urea production via amino acid catabolism. Sirt4 ablation decreased male mouse blood ammonia levels and ameliorated CCl4-induced hepatic encephalopathy phenotypes. We reveal that SIRT4 safeguards cellular ammonia toxicity during amino acid catabolism.
Collapse
Affiliation(s)
- Song-Hua Hu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yu-Yang Feng
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Yuan-Xin Yang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Hui-Da Ma
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Centre for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Shu-Xian Zhou
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Ya-Nan Qiao
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Kai-Hui Zhang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lei Zhang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Huang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Lin
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Xin-Yan Zhang
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Yao Li
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Hai-Tao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Centre for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jian-Yuan Zhao
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China.
| | - Wei Xu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China.
| | - Shi-Min Zhao
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodelling and Health, State Key Laboratory of Genetic Engineering, and Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China.
| |
Collapse
|
5
|
Fan K, Zhu K, Wang J, Ni X, Shen S, Gong Z, Cheng X, Zhang C, Liu H, Suo T, Ni X, Liu H. Inhibition of 14-3-3ε by K50 acetylation activates YAP1 to promote cholangiocarcinoma growth. Exp Cell Res 2022; 421:113404. [PMID: 36341908 DOI: 10.1016/j.yexcr.2022.113404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 12/29/2022]
Abstract
14-3-3 proteins are ubiquitous adapters combining with phosphorylated serine/threonine motifs to regulate multiple cellular processes. As a negative regulator, 14-3-3 proteins could sequester the phosphorylated YAP1 in cytoplasm to inhibit its activity. In this study, we identified the K50 acetylation (K50ac) of 14-3-3ε protein and investigated its roles and mechanism in cholangiocarcinoma progression. The NAD (+)-dependent protein deacetylases inhibitor, NAM treatment significantly up-regulated the K50ac of 14-3-3ε. K50R mutation resulted in the decrease of K50ac of 14-3-3ε. The K50ac of 14-3-3ε was reversibly mediated by PCAF acetyltransferase and sirt1 deacetylases. K50ac had no obvious effect on the protein stability of 14-3-3ε, but inhibited the combination of 14-3-3ε with phosphorylated YAP1, which resulted in the activation of YAP1 in cholangiocarcinoma. K50R significantly decreased cholangiocarcinoma cell proliferation in vitro and the growth of tumor xenograft in vivo compared with WT (wild type) 14-3-3ε. The level of K50ac were higher in cholangiocarcinoma tissues accompanied by the accumulation of YAP1 in nuclear than para-carcinoma tissues. Our study revealed the underlying mechanism of K50ac of 14-3-3ε and its roles in cholangiocarcinoma, providing a potential targeting for cholangiocarcinoma therapy.
Collapse
Affiliation(s)
- Kun Fan
- Department of General Surgery, Central Hospital of Xuhui District, China; Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Kaihua Zhu
- Department of General Surgery, Central Hospital of Xuhui District, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Xi Cheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Cheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China.
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China.
| | - Houbao Liu
- Department of General Surgery, Central Hospital of Xuhui District, China; Department of General Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China.
| |
Collapse
|
6
|
Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochem Biophys Res Commun 2022; 607:131-137. [DOI: 10.1016/j.bbrc.2022.03.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
|
7
|
Fan K, Ni X, Shen S, Gong Z, Wang J, Xin Y, Zheng B, Sun W, Liu H, Suo T, Ni X, Liu H. Acetylation stabilizes stathmin1 and promotes its activity contributing to gallbladder cancer metastasis. Cell Death Dis 2022; 8:265. [PMID: 35581193 PMCID: PMC9114396 DOI: 10.1038/s41420-022-01051-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 01/16/2023]
Abstract
Gallbladder cancer is the most common biliary tract malignant tumor with highly metastatic characters and poor prognosis. However, the underlying mechanism remains unclear. Stathmin1 is ubiquitous phosphoprotein, regulating microtubule stabilization. We identified the acetylation of stahtmin1 at lysine 9 (K9) in gallbladder cancer. K9 acetylation of stathmin1 was reversely regulated by the acetyltransferase PCAF and the deacetylases sirt2. K9 acetylation of stathmin1 inhibited the combining of stathmin1 to E3 ubiquitin ligase RLIM, thereby inhibiting its ubiquitination degradation. Moreover, K9 acetylation also promoted the activity of stahtmin1 interacting and destabilizing microtubule through the inhibition of stathmin1 phosphorylation. K9 acetylated stathmin1 significantly promoted gallbladder cancer cell migration and invasion viability in vitro and lung metastasis in vivo, and indicated poor prognosis of nude mice. IHC assay suggested the positive correlation of high levels of K9 acetylation and stathmin1 expression in gallbladder cancer. Our study revealed that K9 acetylation up-regulated stathmin1 protein stability and microtubule-destabilizing activity to promoted gallbladder cancer metastasis, which provides a potential target for gallbladder cancer therapy.
Collapse
Affiliation(s)
- Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Wentao Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China. .,Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of General Surgery, Central Hospital of Xuhui District, Shanghai, China. .,Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China. .,Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Jia X, Xiong X, Chen H, Xiao G, Cheng Q, Zhang Z. Promising Novel Method of Acetylation Modification for Regulating Fatty Acid Metabolism in Brassica napus L. BIOLOGY 2022; 11:483. [PMID: 35453683 PMCID: PMC9029296 DOI: 10.3390/biology11040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, lysine acetylation analysis was conducted using two Brassica napus near-isogenic lines, HOCR and LOCR, containing high and low oleic acid contents, respectively, to explore this relationship. Proteins showing differences in quantitative information between the B. napus lines were identified in lysine acetylation analysis, and KEGG pathways were analyzed, yielding 45 enriched proteins, most of which are involved in carbon fixation in photosynthetic organisms, photosynthesis, ascorbate and aldarate metabolism, and glycolysis. Potential key genes related to fatty acid metabolisms were determined. To further explore the effect of acetylation modification on fatty acid metabolisms, the acyl-ACP3 related gene BnaACP363K was cloned, and a base mutation at No.63 was changed via overlapping primer PCR method. This study is the first to demonstrate that acetylation modification can regulate oleic acid metabolisms, which provides a promising approach for the study of the molecular mechanism of oleic acid in rapeseed.
Collapse
Affiliation(s)
- Xiaojiang Jia
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Junlebao Dairy Co., Ltd., Shijiazhuang 050221, China
| | - Xinghua Xiong
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Gang Xiao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Qian Cheng
- Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha 410205, China
| | - Zhenqian Zhang
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
10
|
Couchet M, Breuillard C, Corne C, Rendu J, Morio B, Schlattner U, Moinard C. Ornithine Transcarbamylase - From Structure to Metabolism: An Update. Front Physiol 2021; 12:748249. [PMID: 34658931 PMCID: PMC8517447 DOI: 10.3389/fphys.2021.748249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Ornithine transcarbamylase (OTC; EC 2.1.3.3) is a ubiquitous enzyme found in almost all organisms, including vertebrates, microorganisms, and plants. Anabolic, mostly trimeric OTCs catalyze the production of L-citrulline from L-ornithine which is a part of the urea cycle. In eukaryotes, such OTC localizes to the mitochondrial matrix, partially bound to the mitochondrial inner membrane and part of channeling multi-enzyme assemblies. In mammals, mainly two organs express OTC: the liver, where it is an integral part of the urea cycle, and the intestine, where it synthesizes citrulline for export and plays a major role in amino acid homeostasis, particularly of L-glutamine and L-arginine. Here, we give an overview on OTC genes and proteins, their tissue distribution, regulation, and physiological function, emphasizing the importance of OTC and urea cycle enzymes for metabolic regulation in human health and disease. Finally, we summarize the current knowledge of OTC deficiency, a rare X-linked human genetic disorder, and its emerging role in various chronic pathologies.
Collapse
Affiliation(s)
- Morgane Couchet
- Université Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Charlotte Breuillard
- Université Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | | | - John Rendu
- Centre Hospitalier Université Grenoble Alpes, Grenoble, France
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Lyon, France
| | - Uwe Schlattner
- Université Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France.,Institut Universitaire de France, Paris, France
| | - Christophe Moinard
- Université Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| |
Collapse
|
11
|
Evaluating Mechanisms of IDH1 Regulation through Site-Specific Acetylation Mimics. Biomolecules 2021; 11:biom11050740. [PMID: 34065652 PMCID: PMC8157008 DOI: 10.3390/biom11050740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Isocitrate dehydrogenase (IDH1) catalyzes the reversible NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG). IDH1 mutations, primarily R132H, drive > 80% of low-grade gliomas and secondary glioblastomas and facilitate the NADPH-dependent reduction of αKG to the oncometabolite D-2-hydroxyglutarate (D2HG). While the biochemical features of human WT and mutant IDH1 catalysis have been well-established, considerably less is known about mechanisms of regulation. Proteomics studies have identified lysine acetylation in WT IDH1, indicating post-translational regulation. Here, we generated lysine to glutamine acetylation mimic mutants in IDH1 to evaluate the effects on activity. We show that mimicking lysine acetylation decreased the catalytic efficiency of WT IDH1, with less severe catalytic consequences for R132H IDH1.
Collapse
|
12
|
Cavino K, Sung B, Su Q, Na E, Kim J, Cheng X, Gromada J, Okamoto H. Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder. Endocrinology 2021; 162:5988952. [PMID: 33206168 DOI: 10.1210/endocr/bqaa211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/14/2022]
Abstract
The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.
Collapse
Affiliation(s)
- Katie Cavino
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Biin Sung
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Erqian Na
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | | | | |
Collapse
|
13
|
Carboxyl-terminal polypeptide fragment of MUC16 combing stathmin1 promotes gallbladder cancer cell migration and invasion. Med Oncol 2020; 37:114. [PMID: 33196934 DOI: 10.1007/s12032-020-01438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/30/2020] [Indexed: 01/21/2023]
Abstract
CA-125, coded by MUC16 gene, is responsible to many kinds of tumor metastasis. However, the related mechanism remains unclear. We have established a novel manner to reveal gallbladder cancer metastasis related to serum CA-125 levels through the C-terminal polypeptide of MUC16 gene production. MUC16 C-terminal polypeptide significantly promoted gallbladder cancer cell migration and invasion in vitro. Mass spectrum indicated that interaction of MUC16 C-terminal fragment with the C-terminal domain of stathmin1 inhibited the phosphorylation of stathmin1 to promote the combination with tubulin. Stathmin1 knockdown inhibited the migration and invasion of gallbladder cancer cells in vitro and lung metastasis in vivo induced by MUC16 C-terminal polypeptide. The high expression level of MUC16c consistent with stathmin1 was also confirmed in gallbladder cancer tissues. Our study revealed the underlying mechanism of gallbladder cancer metastasis related to CA-125 levels, which was beneficial for CA-125 in gallbladder cancer diagnose and therapy.
Collapse
|
14
|
Fan K, Wang J, Sun W, Shen S, Ni X, Gong Z, Zheng B, Gao Z, Ni X, Suo T, Liu H, Liu H. MUC16 C-terminal binding with ALDOC disrupts the ability of ALDOC to sense glucose and promotes gallbladder carcinoma growth. Exp Cell Res 2020; 394:112118. [PMID: 32502493 DOI: 10.1016/j.yexcr.2020.112118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
The MUC16 C-terminal (MUC16c) level is associated with tumor serum CA-125 levels, however, the roles remain unclear in gallbladder carcinoma (GBC). In this study, we found that MUC16c promoted glucose uptake and glycolysis for GBC cell proliferation. Mass spectrometry analysis suggested that MUC16c could combine with aldolase. The ALDOC mRNA and protein are overexpressed in GBC tumors. The IHC results also showed the consistent up-regulation of. ALDOC and MUC16c level in GBC tumor tissues than in peritumor tissues. We determined that MUC16c combining with ALDOC promoted ALDOC protein stability and disrupted the ability of ALDOC sensing glucose deficiency, which activated AMPK pathway and increased GBC cell proliferation. ALDOC knockdown significantly inhibited the glucose uptake and glycolysis induced by MUC16c. Our study established important roles of MUC16c promoting GBC cell glycolysis and proliferation and revealed the underlying mechanism of CA-125-related heavy tumor metabolic burden in GBC.
Collapse
Affiliation(s)
- Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Wentao Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Zhihui Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai, China; Biliary Tract Disease Institute, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Galsgaard KD, Pedersen J, Kjeldsen SAS, Winther-Sørensen M, Stojanovska E, Vilstrup H, Ørskov C, Wewer Albrechtsen NJ, Holst JJ. Glucagon receptor signaling is not required for N-carbamoyl glutamate- and l-citrulline-induced ureagenesis in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G912-G927. [PMID: 32174131 DOI: 10.1152/ajpgi.00294.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon regulates the hepatic amino acid metabolism and increases ureagenesis. Ureagenesis is activated by N-acetylglutamate (NAG), formed via activation of N-acetylglutamate synthase (NAGS). With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we investigated whether glucagon receptor-mediated activation of ureagenesis is required in a situation where NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle in vivo. Female C57BL/6JRj mice treated with a glucagon receptor antagonist (GRA), glucagon receptor knockout (Gcgr-/-) mice, and wild-type (Gcgr+/+) littermates received an intraperitoneal injection of N-carbamoyl glutamate (Car; a stable variant of NAG), l-citrulline (Cit), Car and Cit (Car + Cit), or PBS. In separate experiments, Gcgr-/- and Gcgr+/+ mice were administered N-carbamoyl glutamate and l-citrulline (wCar + wCit) in the drinking water for 8 wk. Car, Cit, and Car + Cit significantly (P < 0.05) increased plasma urea concentrations, independently of pharmacological and genetic disruption of glucagon receptor signaling (P = 0.9). Car increased blood glucose concentrations equally in GRA- and vehicle-treated mice (P = 0.9), whereas the increase upon Car + Cit was impaired in GRA-treated mice (P = 0.008). Blood glucose concentrations remained unchanged in Gcgr-/- mice upon Car (P = 0.2) and Car + Cit (P = 0.9). Eight weeks administration of wCar + wCit did not change blood glucose (P > 0.2), plasma amino acid (P > 0.4), and urea concentrations (P > 0.3) or the area of glucagon-positive cells (P > 0.3) in Gcgr-/- and Gcgr+/+ mice. Our data suggest that glucagon-mediated activation of ureagenesis is not required when NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle.NEW & NOTEWORTHY Hepatic ureagenesis is essential in amino acid metabolism and is importantly regulated by glucagon, but the exact mechanism is unclear. With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we here show, contrary to our hypothesis, that glucagon receptor-mediated activation of ureagenesis is not required when N-acetylglutamate synthase activity and/or N-acetylglutamate levels are sufficient to activate the first step of the urea cycle in vivo.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, Hilleroed, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Qin W, Wang T, Huang H, Gao Y. Profiling of lysine-acetylated proteins in human urine. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1514-1520. [PMID: 30820853 DOI: 10.1007/s11427-017-9367-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
A biomarker is a measurable indicator associated with changes in physiological state or disease. In contrast to the blood which is under homeostatic controls, urine reflects changes in the body earlier and more sensitively, and is therefore a better biomarker source. Lysine acetylation is an abundant and highly regulated post-translational modification. It plays a pivotal role in modulating diverse biological processes and is associated with various important diseases. Enrichment or visualization of proteins with specific post-translational modifications provides a method for sampling the urinary proteome and reducing sample complexity. In this study, we used anti-acetyllysine antibody-based immunoaffinity enrichment combined with high-resolution mass spectrometry to profile lysine-acetylated proteins in normal human urine. A total of 629 acetylation sites on 315 proteins were identified, including some very low-abundance proteins. This is the first proteome-wide characterization of lysine acetylation proteins in normal human urine. Our dataset provides a useful resource for the further discovery of lysine-acetylated proteins as biomarkers in urine.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - He Huang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
He L, Cai X, Cheng S, Zhou H, Zhang Z, Ren J, Ren F, Yang Q, Tao N, Chen J. Ornithine transcarbamylase downregulation is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 2019; 17:5030-5038. [PMID: 31186714 PMCID: PMC6507468 DOI: 10.3892/ol.2019.10174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortalities worldwide. The role of ornithine transcarbamylase (OTC) in HCC remains unclear. In the present study, the expression of OTC in HCC was analyzed based on datasets from the Gene Expression Omnibus database of the National Center for Biotechnology Information and further confirmed by immunohistochemistry, western blotting analysis and reverse transcription-quantitative polymerase chain reaction assays on clinical samples and cell lines. Furthermore, the associations between OTC expression and clinicopathological parameters as well as clinical outcome, including the overall and disease-free survival rates were analyzed. Finally, the effect of OTC on HCC cells was measured using proliferation, bromodeoxyuridine and colony-formation assays. Lower OTC expression was observed in HCC cells and tissues compared with primary human hepatocytes. Further investigation demonstrated that low expression of OTC in HCC was associated with larger tumor size and advanced grade. A Kaplan-Meier analysis revealed that patients with lower levels of OTC exhibited shorter overall and disease-free survival times. Notably, OTC silencing with RNA interference facilitated cell proliferation in HCC SK-Hep-1 and Huh-7 cells. However, overexpression of OTC led to inhibition of cell proliferation. In conclusion, the present study identified a novel role of OTC in HCC development, providing a potential novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengtao Cheng
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongzhong Zhou
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jihua Ren
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Ren
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiuxia Yang
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nana Tao
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Jedlicka LDL, Guterres SB, Balbino AM, Neto GB, Landgraf RG, Fernandes L, Carrilho E, Bechara EJH, Assuncao NA. Increased chemical acetylation of peptides and proteins in rats after daily ingestion of diacetyl analyzed by Nano-LC-MS/MS. PeerJ 2018; 6:e4688. [PMID: 29713565 PMCID: PMC5923218 DOI: 10.7717/peerj.4688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
Background Acetylation alters several protein properties including molecular weight, stability, enzymatic activity, protein-protein interactions, and other biological functions. Our previous findings demonstrating that diacetyl/peroxynitrite can acetylate L-lysine, L-histidine, and albumin in vitro led us to investigate whether diacetyl-treated rats suffer protein acetylation as well. Methods Wistar rats were administered diacetyl daily for four weeks, after which they were sacrificed, and their lung proteins were extracted to be analysed by Nano-LC-MS/MS (Q-TOF). A C18 reversed-phase column and gradient elution with formic acid/acetonitrile solutions from 2 to 50% over 150 min were used to separate the proteins. Protein detection was performed using a microTOF-Q II (QTOF) equipped with captive source and an electrospray-ionization source. The data from mass spectrometry were processed using a Compass 1.7 and analyzed using Protein Scape, software that uses Mascot algorithms to perform protein searches. Results A set of 3,162 acetylated peptides derived from 351 acetylated proteins in the diacetyl-treated group was identified. Among them, 23 targeted proteins were significantly more acetylated in the diacetyl-treated group than in the PBS control. Protein acetylation of the group treated with 540 mg/kg/day of diacetyl was corroborated by Western blotting analysis. Conclusions These data support our hypothesis that diacetyl exposure in animals may lead to the generation of acetyl radicals, compounds that attach to proteins, affecting their functions and triggering adverse health problems.
Collapse
Affiliation(s)
- Leticia Dias Lima Jedlicka
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.,Institute of Studies in Health and Biological, Collective Health, Universidade Federal do Sul e Sudeste do Pará, Maraba, PA, Brazil
| | - Sheila Barreto Guterres
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.,Department of Chemistry, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Aleksandro Martins Balbino
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Giuseppe Bruno Neto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Richardt Gama Landgraf
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Liliam Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Etelvino José Henriques Bechara
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nilson A Assuncao
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
19
|
Variable X-chromosome inactivation and enlargement of pericentral glutamine synthetase zones in the liver of heterozygous females with OTC deficiency. Virchows Arch 2018; 472:1029-1039. [PMID: 29623395 DOI: 10.1007/s00428-018-2345-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/27/2018] [Accepted: 03/23/2018] [Indexed: 01/28/2023]
Abstract
Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder that causes recurrent and life-threatening episodes of hyperammonemia. The clinical picture in heterozygous females is highly diverse and derives from the genotype and the degree of inactivation of the mutated X chromosome in hepatocytes. Here, we describe molecular genetic, biochemical, and histopathological findings in the livers explanted from two female patients with late-onset OTC deficiency. Analysis of X-inactivation ratios by DNA methylation-based assays showed remarkable intra-organ variation ranging from 46:54 to 82:18 (average 70:30, n = 37), in favor of the active X chromosome carrying the mutation c.583G>C (p.G195R), in the first patient and from 75:25 to 90:10 (average 82:18, n = 20) in favor of the active X chromosome carrying the splicing mutation c.663+1G>A in the second patient. The X-inactivation ratios in liver samples correlated highly with the proportions of OTC-positive hepatocytes calculated from high-resolution image analyses of the immunohistochemically detected OTC in frozen sections that was performed on total area > 5 cm2. X-inactivation ratios in blood in both female patients corresponded to the lower limit of the liver values. Our data indicate that the proportion of about 20-30% of hepatocytes expressing the functional OTC protein is not sufficient to maintain metabolic stability. X-inactivation ratios assessed in liver biopsies taken from heterozygous females with X-linked disorders should not be considered representative of the whole liver.
Collapse
|
20
|
Zhang YK, Qu YY, Lin Y, Wu XH, Chen HZ, Wang X, Zhou KQ, Wei Y, Guo F, Yao CF, He XD, Liu LX, Yang C, Guan ZY, Wang SD, Zhao J, Liu DP, Zhao SM, Xu W. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun 2017; 8:464. [PMID: 28878358 PMCID: PMC5587591 DOI: 10.1038/s41467-017-00489-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
The oncogenic mechanisms of overnutrition, a confirmed independent cancer risk factor, remain poorly understood. Herein, we report that enoyl-CoA hydratase-1 (ECHS1), the enzyme involved in the oxidation of fatty acids (FAs) and branched-chain amino acids (BCAAs), senses nutrients and promotes mTOR activation and apoptotic resistance. Nutrients-promoted acetylation of lys101 of ECHS1 impedes ECHS1 activity by impairing enoyl-CoA binding, promoting ECHS1 degradation and blocking its mitochondrial translocation through inducing ubiquitination. As a result, nutrients induce the accumulation of BCAAs and FAs that activate mTOR signaling and stimulate apoptosis, respectively. The latter was overcome by selection of BCL-2 overexpressing cells under overnutrition conditions. The oncogenic effects of nutrients were reversed by SIRT3, which deacetylates lys101 acetylation. Severely decreased ECHS1, accumulation of BCAAs and FAs, activation of mTOR and overexpression of BCL-2 were observed in cancer tissues from metabolic organs. Our results identified ECHS1, a nutrients-sensing protein that transforms nutrient signals into oncogenic signals.Overnutrition has been linked to increased risk of cancer. Here, the authors show that exceeding nutrients suppress Enoyl-CoA hydratase-1 (ECHS1) activity by inducing its acetylation resulting in accumulation of fatty acids and branched-chain amino acids and oncogenic mTOR activation.
Collapse
Affiliation(s)
- Ya-Kun Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Shanghai, 200032, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Xiao-Hui Wu
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200032, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China
| | - Xu Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China
| | - Kai-Qiang Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Yun Wei
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Fushen Guo
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Cui-Fang Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Xia-Di He
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - Li-Xia Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zong-Yuan Guan
- Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, 10031, USA
| | - Shi-Dong Wang
- Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jianyuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100010, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, Institutes of Biomedical Sciences and School of Life Sciences, Shanghai, 200011, China.
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development, Shanghai, 200433, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Mauvoisin D, Atger F, Dayon L, Núñez Galindo A, Wang J, Martin E, Da Silva L, Montoliu I, Collino S, Martin FP, Ratajczak J, Cantó C, Kussmann M, Naef F, Gachon F. Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome. Cell Rep 2017; 20:1729-1743. [PMID: 28813682 PMCID: PMC5568034 DOI: 10.1016/j.celrep.2017.07.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022] Open
Abstract
Lysine acetylation is involved in various biological processes and is considered a key reversible post-translational modification in the regulation of gene expression, enzyme activity, and subcellular localization. This post-translational modification is therefore highly relevant in the context of circadian biology, but its characterization on the proteome-wide scale and its circadian clock dependence are still poorly described. Here, we provide a comprehensive and rhythmic acetylome map of the mouse liver. Rhythmic acetylated proteins showed subcellular localization-specific phases that correlated with the related metabolites in the regulated pathways. Mitochondrial proteins were over-represented among the rhythmically acetylated proteins and were highly correlated with SIRT3-dependent deacetylation. SIRT3 activity being nicotinamide adenine dinucleotide (NAD)+ level-dependent, we show that NAD+ is orchestrated by both feeding rhythms and the circadian clock through the NAD+ salvage pathway but also via the nicotinamide riboside pathway. Hence, the diurnal acetylome relies on a functional circadian clock and affects important diurnal metabolic pathways in the mouse liver.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- Diabetes and Circadian Rhythms Department, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Florian Atger
- Diabetes and Circadian Rhythms Department, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Loïc Dayon
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Eva Martin
- Diabetes and Circadian Rhythms Department, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Laetitia Da Silva
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Ivan Montoliu
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Sebastiano Collino
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Francois-Pierre Martin
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Joanna Ratajczak
- Diabetes and Circadian Rhythms Department, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Carles Cantó
- Diabetes and Circadian Rhythms Department, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Martin Kussmann
- Systems Nutrition, Metabonomics & Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Gachon
- Diabetes and Circadian Rhythms Department, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Xu W, Zhao J, Zhao S. The emergence of intracellular metabolite signaling networks. IUBMB Life 2016; 68:871-872. [PMID: 27766754 DOI: 10.1002/iub.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022]
Abstract
The signals of intracellular metabolites are integrated into cellular signaling networks by forming metabolite-derived posttranslational modifications or by non-covalently binding to proteins. These signals serve to coordinate cell metabolism and to regulate various aspects of cell physiology. © 2016 IUBMB Life, 68(11):871-872, 2016.
Collapse
Affiliation(s)
- Wei Xu
- The Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, 200011, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jianyuan Zhao
- School of Life Sciences, Fudan University, Shanghai, 200011, People's Republic of China
| | - Shimin Zhao
- The Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, 200011, People's Republic of China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200011, People's Republic of China. .,School of Life Sciences, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
23
|
Papanicolaou KN, O'Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol 2014; 5:301. [PMID: 25228883 PMCID: PMC4151196 DOI: 10.3389/fphys.2014.00301] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022] Open
Abstract
Lysine modifications have been studied extensively in the nucleus, where they play pivotal roles in gene regulation and constitute one of the pillars of epigenetics. In the cytoplasm, they are critical to proteostasis. However, in the last decade we have also witnessed the emergence of mitochondria as a prime locus for post-translational modification (PTM) of lysine thanks, in large measure, to evolving proteomic techniques. Here, we review recent work on evolving set of PTM that arise from the direct reaction of lysine residues with energized metabolic thioester-coenzyme A intermediates, including acetylation, succinylation, malonylation, and glutarylation. We highlight the evolutionary conservation, kinetics, stoichiometry, and cross-talk between members of this emerging family of PTMs. We examine the impact on target protein function and regulation by mitochondrial sirtuins. Finally, we spotlight work in the heart and cardiac mitochondria, and consider the roles acetylation and other newly-found modifications may play in heart disease.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
24
|
Zhao D, Li FL, Cheng ZL, Lei QY. Impact of acetylation on tumor metabolism. Mol Cell Oncol 2014; 1:e963452. [PMID: 27308346 PMCID: PMC4905055 DOI: 10.4161/23723548.2014.963452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023]
Abstract
Acetylation of protein lysine residues is a reversible and dynamic process that is controlled by histone acetyltransferases (HATs) and deacetylases (HDACs and SIRTs). Recent studies have revealed that acetylation modulates not only nuclear proteins but also cytoplasmic or mitochondrial proteins, including many metabolic enzymes. In tumors, cellular metabolism is reprogrammed to provide intermediates for biosynthesis such as nucleotides, fatty acids, and amino acids, and thereby favor the rapid proliferation of cancer cells and tumor development. An increasing number of investigations have indicated that acetylation plays an important role in tumor metabolism. Here, we summarize the substrates that are modified by acetylation, especially oncogenes, tumor suppressor genes, and enzymes that are implicated in tumor metabolism.
Collapse
Affiliation(s)
- Di Zhao
- Key Laboratory of Molecular Medicine; Ministry of Education, and Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, People's Republic of China; Molecular and Cell Biology Lab; Institutes of Biomedical Sciences; Fudan University; Shanghai, People's Republic of China
| | - Fu-Long Li
- Key Laboratory of Molecular Medicine; Ministry of Education, and Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, People's Republic of China; Molecular and Cell Biology Lab; Institutes of Biomedical Sciences; Fudan University; Shanghai, People's Republic of China
| | - Zhou-Li Cheng
- Key Laboratory of Molecular Medicine; Ministry of Education, and Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, People's Republic of China; Molecular and Cell Biology Lab; Institutes of Biomedical Sciences; Fudan University; Shanghai, People's Republic of China
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine; Ministry of Education, and Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, People's Republic of China; Molecular and Cell Biology Lab; Institutes of Biomedical Sciences; Fudan University; Shanghai, People's Republic of China
| |
Collapse
|
25
|
Pougovkina O, te Brinke H, Ofman R, van Cruchten AG, Kulik W, Wanders RJA, Houten SM, de Boer VCJ. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 2014; 23:3513-22. [PMID: 24516071 DOI: 10.1093/hmg/ddu059] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria integrate metabolic networks for maintaining bioenergetic requirements. Deregulation of mitochondrial metabolic networks can lead to mitochondrial dysfunction, which is a common hallmark of many diseases. Reversible post-translational protein acetylation modifications are emerging as critical regulators of mitochondrial function and form a direct link between metabolism and protein function, via the metabolic intermediate acetyl-CoA. Sirtuins catalyze protein deacetylation, but how mitochondrial acetylation is determined is unclear. We report here a mechanism that explains mitochondrial protein acetylation dynamics in vivo. Food withdrawal in mice induces a rapid increase in hepatic protein acetylation. Furthermore, using a novel LC-MS/MS method, we were able to quantify protein acetylation in human fibroblasts. We demonstrate that inducing fatty acid oxidation in fibroblasts increases protein acetylation. Furthermore, we show by using radioactively labeled palmitate that fatty acids are a direct source for mitochondrial protein acetylation. Intriguingly, in a mouse model that resembles human very-long chain acyl-CoA dehydrogenase (VLCAD) deficiency, we demonstrate that upon food-withdrawal, hepatic protein hyperacetylation is absent. This indicates that functional fatty acid oxidation is necessary for protein acetylation to occur in the liver upon food withdrawal. Furthermore, we now demonstrate that protein acetylation is abundant in human liver peroxisomes, an organelle where acetyl-CoA is solely generated by fatty acid oxidation. Our findings provide a mechanism for metabolic control of protein acetylation, which provides insight into the pathophysiogical role of protein acetylation dynamics in fatty acid oxidation disorders and other metabolic diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Olga Pougovkina
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and
| | - Heleen te Brinke
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and
| | - Rob Ofman
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and
| | | | - Wim Kulik
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Department of Pediatrics, Emma's Children Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander M Houten
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Department of Pediatrics, Emma's Children Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Vincent C J de Boer
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Department of Pediatrics, Emma's Children Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Abstract
Sirtuins are a class of histone deacetylases that have a wide range of regulatory roles in the cell. Three sirtuins, SIRT3 to SIRT5, localize to and function within the mitochondria. Mitochondrial dysfunction is thought to be the underlying mechanism of several age-related diseases, such as metabolic syndrome, cancer, and neurodegeneration. This review examines current evidence that mitochondrial sirtuins are involved in regulating mitochondrial function and pathogenesis.
Collapse
Affiliation(s)
- Jennifer Shih
- Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
27
|
Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 2013; 4:842-51. [PMID: 23954790 DOI: 10.1016/j.celrep.2013.07.024] [Citation(s) in RCA: 572] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/08/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), human (HeLa) cells, and mouse liver tissue, demonstrating widespread succinylation in diverse organisms. A majority of succinylation sites in bacteria, yeast, and mouse liver were acetylated at the same position. Quantitative analysis of succinylation in yeast showed that succinylation was globally altered by growth conditions and mutations that affected succinyl-coenzyme A (succinyl-CoA) metabolism in the tricarboxylic acid cycle, indicating that succinylation levels are globally affected by succinyl-CoA concentration. We preferentially detected succinylation on abundant proteins, suggesting that succinylation occurs at a low level and that many succinylation sites remain unidentified. These data provide a systems-wide view of succinylation and its dynamic regulation and show its extensive overlap with acetylation.
Collapse
|
28
|
Wagner GR, Payne RM. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 2013; 288:29036-45. [PMID: 23946487 DOI: 10.1074/jbc.m113.486753] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alterations in mitochondrial protein acetylation are implicated in the pathophysiology of diabetes, the metabolic syndrome, mitochondrial disorders, and cancer. However, a viable mechanism responsible for the widespread acetylation in mitochondria remains unknown. Here, we demonstrate that the physiologic pH and acyl-CoA concentrations of the mitochondrial matrix are sufficient to cause dose- and time-dependent, but enzyme-independent acetylation and succinylation of mitochondrial and nonmitochondrial proteins in vitro. These data suggest that protein acylation in mitochondria may be a chemical event facilitated by the alkaline pH and high concentrations of reactive acyl-CoAs present in the mitochondrial matrix. Although these results do not exclude the possibility of enzyme-mediated protein acylation in mitochondria, they demonstrate that such a mechanism may not be required in its unique chemical environment. These findings may have implications for the evolutionary roles that the mitochondria-localized SIRT3 deacetylase and SIRT5 desuccinylase have in the maintenance of metabolic health.
Collapse
Affiliation(s)
- Gregory R Wagner
- From the Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | | |
Collapse
|
29
|
Fang RS, Dong YC, Xu TY, He GQ, Chen QH. Ethyl carbamate formation regulated by ornithine transcarbamylase and urea metabolism in the processing of Chinese yellow rice wine. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruo-Si Fang
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Ya-Chen Dong
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Teng-Yang Xu
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Guo-Qing He
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Qi-He Chen
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| |
Collapse
|
30
|
Dölle C, Rack JGM, Ziegler M. NAD and ADP-ribose metabolism in mitochondria. FEBS J 2013; 280:3530-41. [PMID: 23617329 DOI: 10.1111/febs.12304] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial metabolism is intimately connected to the universal coenzyme NAD. In addition to its role in redox reactions of energy transduction, NAD serves as substrate in regulatory reactions that lead to its degradation. Importantly, all types of the known NAD-consuming signalling reactions have been reported to take place in mitochondria. These reactions include the generation of second messengers, as well as post-translational protein modifications such as ADP-ribosylation and protein deacetylation. Therefore, the availability and redox state of NAD emerged as important factors in the regulation of mitochondrial metabolism. Molecular mechanisms and targets of mitochondrial NAD-dependent protein deacetylation and mono-ADP-ribosylation have been established, whereas poly-ADP-ribosylation and NAD-derived messenger generation in the organelles await in-depth characterization. In this review, we highlight the major NAD-dependent reactions occurring within mitochondria and describe their metabolic and regulatory functions. We also discuss the metabolic fates of the NAD-degradation products, nicotinamide and ADP-ribose, and how the mitochondrial NAD pool is restored.
Collapse
Affiliation(s)
- Christian Dölle
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
31
|
Xu W, Li Y, Liu C, Zhao S. Protein lysine acetylation guards metabolic homeostasis to fight against cancer. Oncogene 2013; 33:2279-85. [PMID: 23665675 DOI: 10.1038/onc.2013.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023]
Abstract
Properly coordinated metabolism and maintained metabolite homeostasis are important because altered metabolite homeostasis has a causal role in many human diseases, including cancer. Metabolite homeostasis is maintained by fine-tuned coordination of metabolite generation and utilization. Metabolite deregulation has recently been shown to alter the signaling pathways and reprogram epigenetic factors associated with tumorigenesis. Protein lysine acetylation is emerging as a metabolism-coordinating mechanism. Mechanistic studies have shown that acetylation may have roles in nutrient adaptation and in maintaining metabolite homeostasis by exerting regulatory effects on metabolic enzymes, metabolic pathways and metabolic networks. Here we review recent progress in the determination of the role of acetylation regulation in metabolism coordination. In particular, we review links between deregulated acetylation in metabolic enzymes and tumorigenesis. We further hypothesize on applications of the mediation of acetylation to restore deregulated metabolism coordination and thus develop novel means of cancer treatment.
Collapse
Affiliation(s)
- W Xu
- 1] Sate Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Y Li
- Sate Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - C Liu
- Sate Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - S Zhao
- 1] Sate Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 2013; 110:6601-6. [PMID: 23576753 DOI: 10.1073/pnas.1302961110] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD(+)-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.
Collapse
|
33
|
Shao J, Xu D, Hu L, Kwan YW, Wang Y, Kong X, Ngai SM. Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. MOLECULAR BIOSYSTEMS 2013; 8:2964-73. [PMID: 22936054 DOI: 10.1039/c2mb25251a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) which has been linked to many biological and pathological implications. Hence, localization of lysine acetylation is essential for deciphering the mechanism of such implications. Whereas many acetylated lysines in human proteins have been localized through experimental approaches in wet lab, it still fails to reach completion. In the present study, we proposed a novel feature extraction approach, bi-relative adapted binomial score Bayes (BRABSB), combined with support vector machines (SVMs) to construct a human-specific lysine acetylation predictor, which yields, on average, a sensitivity of 83.91%, a specificity of 87.25% and an accuracy of 85.58%, in the case of 5-fold cross validation experiments. Results obtained through the validation on independent data sets show that the proposed approach here outperforms other existing lysine acetylation predictors. Furthermore, due to the fact that global analysis of human lysine acetylproteins, which would ultimately facilitate the systematic investigation of the biological and pathological consequences associated with lysine acetylation events, remains to be resolved, we made an attempt to systematically analyze human lysine acetylproteins, demonstrating their diversity with respect to subcellular localization as well as biological process and predominance by "binding" in terms of molecular function. Our analysis also revealed that human lysine acetylproteins are significantly enriched in neurodegenerative disorders and cancer pathways. Remarkably, lysine acetylproteins in mitochondria are significantly related to neurodegenerative disorders and those in the nucleus are instead significantly involved in pathways in cancers, all of which might ultimately provide novel global insights into such pathological processes for the therapeutic purpose. The web server is deployed at http://www.bioinfo.bio.cuhk.edu.hk/bpbphka.
Collapse
Affiliation(s)
- Jianlin Shao
- Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Xiong Y, Guan KL. Mechanistic insights into the regulation of metabolic enzymes by acetylation. ACTA ACUST UNITED AC 2012; 198:155-64. [PMID: 22826120 PMCID: PMC3410420 DOI: 10.1083/jcb.201202056] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates.
Collapse
Affiliation(s)
- Yue Xiong
- Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|
35
|
Xing S, Poirier Y. The protein acetylome and the regulation of metabolism. TRENDS IN PLANT SCIENCE 2012; 17:423-30. [PMID: 22503580 DOI: 10.1016/j.tplants.2012.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 05/23/2023]
Abstract
Acetyl-coenzyme A (CoA) is a central metabolite involved in numerous anabolic and catabolic pathways, as well as in protein acetylation. Beyond histones, a large number of metabolic enzymes are acetylated in both animal and bacteria, and the protein acetylome is now emerging in plants. Protein acetylation is influenced by the cellular level of both acetyl-CoA and NAD(+), and regulates the activity of several enzymes. Acetyl-CoA is thus ideally placed to act as a key molecule linking the energy balance of the cell to the regulation of gene expression and metabolic pathways via the control of protein acetylation. Better knowledge over how to influence acetyl-CoA levels and the acetylation process promises to be an invaluable tool to control metabolic pathways.
Collapse
Affiliation(s)
- Shufan Xing
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
36
|
Wang Y, Yi L, Wu Z, Shao J, Liu G, Fan H, Zhang W, Lu C. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLoS One 2012; 7:e33371. [PMID: 22514606 PMCID: PMC3326019 DOI: 10.1371/journal.pone.0033371] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 02/13/2012] [Indexed: 12/08/2022] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.
Collapse
Affiliation(s)
- Yang Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Li Yi
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jing Shao
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WZ); (CL)
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WZ); (CL)
| |
Collapse
|
37
|
Waluk DP, Sucharski F, Sipos L, Silberring J, Hunt MC. Reversible lysine acetylation regulates activity of human glycine N-acyltransferase-like 2 (hGLYATL2): implications for production of glycine-conjugated signaling molecules. J Biol Chem 2012; 287:16158-67. [PMID: 22408254 DOI: 10.1074/jbc.m112.347260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine acetylation is a major post-translational modification of proteins and regulates many physiological processes such as metabolism, cell migration, aging, and inflammation. Proteomic studies have identified numerous lysine-acetylated proteins in human and mouse models (Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. (2006) Mol. Cell 23, 607-618). One family of proteins identified in this study was the murine glycine N-acyltransferase (GLYAT) enzymes, which are acetylated on lysine 19. Lysine 19 is a conserved residue in human glycine N-acyltransferase-like 2 (hGLYATL2) and in several other species, showing that this residue may be important for enzyme function. Mutation of lysine 19 in recombinant hGLYATL2 to glutamine (K19Q) and arginine (K19R) resulted in a 50-80% lower production of N-oleoyl glycine and N-arachidonoylglycine, indicating that lysine 19 is important for enzyme function. LC/MS/MS confirmed that Lys-19 is not acetylated in wild-type hGLYATL2, indicating that Lys-19 requires to be deacetylated for full activity. The hGLYATL2 enzyme conjugates medium- and long-chain saturated and unsaturated acyl-CoA esters to glycine, resulting in the production of N-oleoyl glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and N-arachidonoyl glycine are structurally and functionally related to endocannabinoids and have been identified as signaling molecules that regulate functions like the perception of pain and body temperature and also have anti-inflammatory properties. In conclusion, acetylation of lysine(s) in hGLYATL2 regulates the enzyme activity, thus linking post-translational modification of proteins with the production of biological signaling molecules, the N-acyl glycines.
Collapse
Affiliation(s)
- Dominik P Waluk
- Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
38
|
Tranah GJ, Nalls MA, Katzman SM, Yokoyama JS, Lam ET, Zhao Y, Mooney S, Thomas F, Newman AB, Liu Y, Cummings SR, Harris TB, Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32:357-72. [PMID: 22785396 PMCID: PMC4156011 DOI: 10.3233/jad-2012-120466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xiong Y, Lei QY, Zhao S, Guan KL. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:285-9. [PMID: 22096030 DOI: 10.1101/sqb.2011.76.010942] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycolysis is a catabolic process of glucose hydrolysis needed for energy and biosynthetic intermediates, whereas gluconeogenesis is a glucose production process important for maintaining blood glucose levels during starvation. Although they share many enzymes, these two processes are not simply the reverse of each other and are instead reciprocally regulated. Two key enzymes that regulate irreversible steps in these two processes are pyruvate kinase (PK) and phosphoenolpyruvate carboxy kinase (PEPCK), which catalyze the last and first step of glycolysis and gluconeogenesis, respectively, and are both regulated by lysine acetylation. Acetylation at Lys305 of the PKM (muscle form of PK) decreases its activity and also targets it for chaperone-mediated autophagy and subsequent lysosome degradation. Acetylation of PEPCK, on the other hand, targets it for ubiquitylation by the HECT E3 ligase, UBR5/EDD1, and subsequent proteasomal degradation. These studies established a model in which acetylation regulates metabolic enzymes via different mechanisms and also revealed cross talk between acetylation and ubiquitination. Given that most metabolic enzymes are acetylated, we propose that acetylation is a major posttranslational modifier that regulates cellular metabolism.
Collapse
Affiliation(s)
- Y Xiong
- Molecular and Cell Biology Laboratory, Institute of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai 20032, China.
| | | | | | | |
Collapse
|
40
|
|
41
|
Albaugh BN, Arnold KM, Lee S, Denu JM. Autoacetylation of the histone acetyltransferase Rtt109. J Biol Chem 2011; 286:24694-701. [PMID: 21606491 DOI: 10.1074/jbc.m111.251579] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear. Here, we examined the mechanism of Lys-290 acetylation and found that Rtt109 catalyzes intramolecular autoacetylation of Lys-290 ∼200-times slower than H3 acetylation. Deacetylated Rtt109 was prepared by reacting with a sirtuin protein deacetylase, producing an enzyme with negligible HAT activity. Autoacetylation of Rtt109 restored full HAT activity, indicating that autoacetylation is necessary for HAT activity and is a fully reversible process. To dissect the mechanism of activation, biochemical, and kinetic analyses were performed with Lys-290 variants of the Rtt109-Vps75 complex. We found that autoacetylation of Lys-290 increases the binding affinity for acetyl-CoA and enhances the rate of acetyl-transfer onto histone substrates. This study represents the first detailed investigation of a HAT enzyme regulated by single-site intramolecular autoacetylation.
Collapse
Affiliation(s)
- Brittany N Albaugh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | | | | | | |
Collapse
|
42
|
Finkemeier I, Laxa M, Miguet L, Howden AJM, Sweetlove LJ. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1779-90. [PMID: 21311031 PMCID: PMC3091095 DOI: 10.1104/pp.110.171595] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Acetylation of the ε-amino group of lysine (Lys) is a reversible posttranslational modification recently discovered to be widespread, occurring on proteins outside the nucleus, in most subcellular locations in mammalian cells. Almost nothing is known about this modification in plants beyond the well-studied acetylation of histone proteins in the nucleus. Here, we report that Lys acetylation in plants also occurs on organellar and cytosolic proteins. We identified 91 Lys-acetylated sites on 74 proteins of diverse functional classes. Furthermore, our study suggests that Lys acetylation may be an important posttranslational modification in the chloroplast, since four Calvin cycle enzymes were acetylated. The plastid-encoded large subunit of Rubisco stands out because of the large number of acetylated sites occurring at important Lys residues that are involved in Rubisco tertiary structure formation and catalytic function. Using the human recombinant deacetylase sirtuin 3, it was demonstrated that Lys deacetylation significantly affects Rubisco activity as well as the activities of other central metabolic enzymes, such as the Calvin cycle enzyme phosphoglycerate kinase, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase, and the tricarboxylic acid cycle enzyme malate dehydrogenase. Our results demonstrate that Lys acetylation also occurs on proteins outside the nucleus in Arabidopsis (Arabidopsis thaliana) and that Lys acetylation could be important in the regulation of key metabolic enzymes.
Collapse
|
43
|
Wagner GR, Payne RM. Mitochondrial acetylation and diseases of aging. J Aging Res 2011; 2011:234875. [PMID: 21437190 PMCID: PMC3062109 DOI: 10.4061/2011/234875] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/08/2011] [Indexed: 01/25/2023] Open
Abstract
In recent years, protein lysine acetylation has emerged as a prominent and conserved regulatory posttranslational modification that is abundant on numerous enzymes involved in the processes of intermediary metabolism. Well-characterized mitochondrial processes of carbon utilization are enriched in acetyl-lysine modifications. Although seminal discoveries have been made in the basic biology of mitochondrial acetylation, an understanding of how acetylation states influence enzyme function and metabolic reprogramming during pathological states remains largely unknown. This paper will examine our current understanding of eukaryotic acetate metabolism and present recent findings in the field of mitochondrial acetylation biology. The implications of mitochondrial acetylation for the aging process will be discussed, as well as its potential implications for the unique and localized metabolic states that occur during the aging-associated conditions of heart failure and cancer growth.
Collapse
Affiliation(s)
- Gregory R Wagner
- Department of Medical & Molecular Genetics, Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
44
|
Hallows WC, Yu W, Smith BC, Devries MK, Devires MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 2011; 41:139-49. [PMID: 21255725 DOI: 10.1016/j.molcel.2011.01.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/13/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation.
Collapse
Affiliation(s)
- William C Hallows
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Patel J, Pathak RR, Mujtaba S. The biology of lysine acetylation integrates transcriptional programming and metabolism. Nutr Metab (Lond) 2011; 8:12. [PMID: 21371315 PMCID: PMC3060110 DOI: 10.1186/1743-7075-8-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/03/2011] [Indexed: 11/18/2022] Open
Abstract
The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.
Collapse
Affiliation(s)
- Jigneshkumar Patel
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine New York, NY 10029 USA.
| | | | | |
Collapse
|
46
|
Smith BC, Settles B, Hallows WC, Craven MW, Denu JM. SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chem Biol 2011; 6:146-57. [PMID: 20945913 DOI: 10.1021/cb100218d] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Accumulating evidence suggests that reversible protein acetylation may be a major regulatory mechanism that rivals phosphorylation. With the recent cataloging of thousands of acetylation sites on hundreds of proteins comes the challenge of identifying the acetyltransferases and deacetylases that regulate acetylation levels. Sirtuins are a conserved family of NAD(+)-dependent protein deacetylases that are implicated in genome maintenance, metabolism, cell survival, and lifespan. SIRT3 is the dominant protein deacetylase in mitochondria, and emerging evidence suggests that SIRT3 may control major pathways by deacetylation of central metabolic enzymes. Here, to identify potential SIRT3 substrates, we have developed an unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries, machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine learning prediction of SIRT3 binding correlated with steady-state kinetic k(cat)/K(m) values for 24 acetyl-lysine peptides that possessed a broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3 substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation.
Collapse
Affiliation(s)
- Brian C. Smith
- Department of Biomolecular Chemistry, ‡Department of Computer Sciences, and §Department of Biostatistics & Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Burr Settles
- Department of Biomolecular Chemistry, ‡Department of Computer Sciences, and §Department of Biostatistics & Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - William C. Hallows
- Department of Biomolecular Chemistry, ‡Department of Computer Sciences, and §Department of Biostatistics & Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mark W. Craven
- Department of Biomolecular Chemistry, ‡Department of Computer Sciences, and §Department of Biostatistics & Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - John M. Denu
- Department of Biomolecular Chemistry, ‡Department of Computer Sciences, and §Department of Biostatistics & Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2010; 36:108-16. [PMID: 20934340 DOI: 10.1016/j.tibs.2010.09.003] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 02/09/2023]
Abstract
Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Conversely, non-nuclear NAD(+)-dependent sirtuin deacetylases can regulate cellular and organismal metabolism, possibly through direct deacetylation of metabolic enzymes. Furthermore, acetylation of metabolic enzymes is highly conserved from prokaryotes to eukaryotes. Given the frequent occurrence of metabolic dysregulation in diabetes, obesity and cancer, enzymes modulating acetylation could provide attractive targets for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
| | | |
Collapse
|
48
|
Nakagawa T, Guarente L. Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging (Albany NY) 2009; 1:578-81. [PMID: 20157539 PMCID: PMC2806029 DOI: 10.18632/aging.100062] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/27/2009] [Indexed: 04/27/2023]
Abstract
Mammalian sirtuins have diverse roles in aging, metabolism and disease. Recently we reported a new function for SIRT5 in urea cycle regulation. Our study uncovered that SIRT5 localized to mitochondria matrix and deacetylates carbamoyl phosphate synthetase 1 (CPS1), an enzyme which is the first and rate-limiting step of urea cycle. Deacetylation of CPS1 by SIRT5 resulted in activation of CPS1 enzymatic activity. Indeed, SIRT5-deficient mice failed to up-regulate CPS1 activity and showed hyper ammonemia during fasting. Similar effects are also observed on high protein diet or calorie restriction. These data indicate SIRT5 also has an emerging role in the metabolic adaptation to fasting, high protein diet and calorie restriction.
Collapse
Affiliation(s)
- Takashi Nakagawa
- Paul F. Glenn Laboratory for the Science of Aging and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|