1
|
Eaton AF, Danielson EC, Capen D, Merkulova M, Brown D. Dmxl1 Is an Essential Mammalian Gene that Is Required for V-ATPase Assembly and Function In Vivo. FUNCTION 2024; 5:zqae025. [PMID: 38984989 PMCID: PMC11237898 DOI: 10.1093/function/zqae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
The proton pumping V-ATPase drives essential biological processes, such as acidification of intracellular organelles. Critically, the V-ATPase domains, V1 and VO, must assemble to produce a functional holoenzyme. V-ATPase dysfunction results in cancer, neurodegeneration, and diabetes, as well as systemic acidosis caused by reduced activity of proton-secreting kidney intercalated cells (ICs). However, little is known about the molecular regulation of V-ATPase in mammals. We identified a novel interactor of the mammalian V-ATPase, Drosophila melanogaster X chromosomal gene-like 1 (Dmxl1), aka Rabconnectin-3A. The yeast homologue of Dmxl1, Rav1p, is part of a complex that catalyzes the reversible assembly of the domains. We, therefore,hypothesized that Dmxl1 is a mammalian V-ATPase assembly factor. Here, we generated kidney IC-specific Dmxl1 knockout (KO) mice, which had high urine pH, like B1 V-ATPase KO mice, suggesting impaired V-ATPase function. Western blotting showed decreased B1 expression and B1 (V1) and a4 (VO) subunits were more intracellular and less colocalized in Dmxl1 KO ICs. In parallel, subcellular fractionation revealed less V1 associated B1 in the membrane fraction of KO cells relative to the cytosol. Furthermore, a proximity ligation assay performed using probes against B1 and a4 V-ATPase subunits also revealed decreased association. We propose that loss of Dmxl1 reduces V-ATPase holoenzyme assembly, thereby inhibiting proton pumping function. Dmxl1 may recruit the V1 domain to the membrane and facilitate assembly with the VO domain and in its absence V1 may be targeted for degradation. We conclude that Dmxl1 is a bona fide mammalian V-ATPase assembly factor.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth C Danielson
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Capen
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Loffing J, Pech V, Loffing-Cueni D, Abood DC, Kim YH, Chen C, Pham TD, Verlander JW, Wall SM. Pendrin abundance, subcellular distribution, and function are unaffected by either αENaC gene ablation or by increasing ENaC channel activity. Pflugers Arch 2023; 475:607-620. [PMID: 36977894 PMCID: PMC10105674 DOI: 10.1007/s00424-023-02797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
The intercalated cell Cl-/HCO3- exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function. The purpose of this study was therefore to determine if αENaC is expressed at the protein level in pendrin-positive intercalated cells and to determine if αENaC gene ablation or constitutively upregulating ENaC activity changes pendrin abundance, subcellular distribution, and/or function. We observed diffuse, cytoplasmic αENaC label in pendrin-positive intercalated cells from both mice and rats, with much lower label intensity in pendrin-negative, type A intercalated cells. However, while αENaC gene ablation within principal and intercalated cells of the CCD reduced Cl- absorption, it did not change pendrin abundance or subcellular distribution in aldosterone-treated mice. Further experiments used a mouse model of Liddle's syndrome to explore the effect of increasing ENaC channel activity on pendrin abundance and function. The Liddle's variant did not increase either total or apical plasma membrane pendrin abundance in aldosterone-treated or in NaCl-restricted mice. Similarly, while the Liddle's mutation increased total Cl- absorption in CCDs from aldosterone-treated mice, it did not significantly affect the change in Cl- absorption seen with pendrin gene ablation. We conclude that in rats and mice, αENaC localizes to pendrin-positive ICs where its physiological role remains to be determined. While pendrin modulates ENaC abundance, subcellular distribution, and function, ENaC does not have a similar effect on pendrin.
Collapse
Affiliation(s)
- Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
| | - Vladimir Pech
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Delaney C Abood
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young Hee Kim
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Chao Chen
- The Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Truyen D Pham
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jill W Verlander
- The Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Susan M Wall
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
4
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
5
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Martin ER, Barbieri A, Ford RC, Robinson RC. In vivo crystals reveal critical features of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and the PDZ2 domain of Na +/H + exchange cofactor NHERF1. J Biol Chem 2020; 295:4464-4476. [PMID: 32014995 DOI: 10.1074/jbc.ra119.012015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Crystallization of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under extremely nonphysiological protein, salt, and H+ concentrations. Here, we describe the development of a robust Inka1-Box (iBox)-PAK4cat system that spontaneously crystallizes in several mammalian cell types. The semi-quantitative assay described here allows the measurement of in vivo protein-protein interactions using a novel GFP-linked reporter system that produces fluorescent readouts from protein crystals. We combined this assay with in vitro X-ray crystallography and molecular dynamics studies to characterize the molecular determinants of the interaction between the PDZ2 domain of Na+/H+ exchange regulatory cofactor NHE-RF1 (NHERF1) and cystic fibrosis transmembrane conductance regulator (CFTR), a protein complex pertinent to the genetic disease cystic fibrosis. These experiments revealed the crystal structure of the extended PDZ domain of NHERF1 and indicated, contrary to what has been previously reported, that residue selection at positions -1 and -3 of the PDZ-binding motif influences the affinity and specificity of the NHERF1 PDZ2-CFTR interaction. Our results suggest that this system could be utilized to screen additional protein-protein interactions, provided they can be accommodated within the spacious iBox-PAK4cat lattice.
Collapse
Affiliation(s)
- Eleanor R Martin
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore
| | - Alessandro Barbieri
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom.,Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Biopolis 138671, Singapore
| | - Robert C Ford
- School of Biological Sciences, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore .,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Battistone MA, Spallanzani RG, Mendelsohn AC, Capen D, Nair AV, Brown D, Breton S. Novel role of proton-secreting epithelial cells in sperm maturation and mucosal immunity. J Cell Sci 2019; 133:jcs.233239. [PMID: 31636115 DOI: 10.1242/jcs.233239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial cells are immune sensors and mediators that constitute the first line of defense against infections. Using the epididymis, a model for studying tubular organs, we uncovered a novel and unexpected role for professional proton-secreting 'clear cells' in sperm maturation and immune defense. The epididymal epithelium participates in the maturation of spermatozoa via the establishment of an acidic milieu and transfer of proteins to sperm cells, a poorly characterized process. We show that proton-secreting clear cells express mRNA transcripts and proteins that are acquired by maturing sperm, and that they establish close interactions with luminal spermatozoa via newly described 'nanotubes'. Mechanistic studies show that injection of bacterial antigens in vivo induces chemokine expression in clear cells, followed by macrophage recruitment into the organ. Injection of an inflammatory intermediate mediator (IFN-γ) increased Cxcl10 expression in clear cells, revealing their participation as sensors and mediators of inflammation. The functional diversity adopted by clear cells might represent a generalized phenomenon by which similar epithelial cells decode signals, communicate with neighbors and mediate mucosal immunity, depending on their precise location within an organ.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra C Mendelsohn
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Diane Capen
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology and Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
8
|
Battistone MA, Merkulova M, Park Y, Peralta MA, Gombar F, Brown D, Breton S. Unravelling purinergic regulation in the epididymis: activation of V-ATPase-dependent acidification by luminal ATP and adenosine. J Physiol 2019; 597:1957-1973. [PMID: 30746715 PMCID: PMC6441927 DOI: 10.1113/jp277565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In the epididymis, elaborate communication networks between epithelial cells are important with respect to establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa, which is essential for male fertility. Proton secretion by epididymal clear cells is achieved via the proton pumping V-ATPase located in their apical membrane. In the present study, we dissect the molecular mechanisms by which clear cells respond to luminal ATP and adenosine to modulate their acidifying activity via the adenosine receptor ADORA2B and the pH-sensitive ATP receptor P2X4. We demonstrate that the hydrolysis of ATP to produce adenosine by ectonucleotidases plays a key role in V-ATPase-dependent proton secretion, and is part of a feedback loop that ensures acidification of the luminal compartment These results help us better understand how professional proton-secreting cells respond to extracellular cues to modulate their functions, and how they communicate with neighbouring cells. ABSTRACT Cell-cell cross-talk is crucial for the dynamic function of epithelia, although how epithelial cells detect and respond to variations in extracellular stimuli to modulate their environment remains incompletely understood. In the present study, we used the epididymis as a model system to investigate epithelial cell regulation by luminal factors. In the epididymis, elaborate communication networks between the different epithelial cell types are important for establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa. In particular, clear cells (CCs) secrete protons into the lumen via the proton pumping V-ATPase located in their apical membrane, a process that is activated by luminal alkalinization. However, how CCs detect luminal pH variations to modulate their function remains uncharacterized. Purinergic regulation of epithelial transport is modulated by extracellular pH in other tissues. In the present study, functional analysis of the mouse cauda epididymis perfused in vivo showed that luminal ATP and adenosine modulate the acidifying activity of CCs via the purinergic ADORA2B and P2X4 receptors, and that luminal adenosine content is itself regulated by luminal pH. Altogether, our observations illustrate mechanisms by which CCs are activated by pH sensitive P2X4 receptor and ectonucleotidases, providing a feedback mechanism for the maintenance of luminal pH. These novel mechanisms by which professional proton-secreting cells respond to extracellular cues to modulate their functions, as well as how they communicate with neighbouring cells, might be translatable to other acidifying epithelia.
Collapse
Affiliation(s)
- Maria A. Battistone
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria Merkulova
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Yoo‐Jin Park
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria A. Peralta
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Flavia Gombar
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Dennis Brown
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Sylvie Breton
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
9
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Park YJ, Battistone MA, Kim B, Breton S. Relative contribution of clear cells and principal cells to luminal pH in the mouse epididymis. Biol Reprod 2018; 96:366-375. [PMID: 28203710 DOI: 10.1095/biolreprod.116.144857] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022] Open
Abstract
While spermatozoa undergo epididymal maturation, they remain quiescent thanks to the establishment of a low luminal pH. This study is aimed at determining how epithelial cells lining the epididymal lumen work together to maintain and regulate this acidic milieu. In particular, we examined the relative contribution of clear cells (CCs) and principal cells (PCs) to this process. Functional analysis in the mouse cauda epididymidis (Cd) perfused in vivo showed that the pH of a control solution remained constant at pH 6.6 after perfusion through the Cd lumen. In contrast, the pH of both an acidic (pH 5.8) and alkaline (pH 7.8) perfusate was progressively restored toward the control acidic pH. Pharmacological studies indicated the contribution of cystic fibrosis transmembrane regulator, previously shown to be present in the apical membrane of PCs, to the recovery from an acidic pH of 5.8. In addition, we found that CCs and PCs equally contribute to the recovery from an alkaline of 7.8, via the H+ pumping vacuolar ATPase (V-ATPase) located in CCs, and the Na+/H+ exchanger type 3 (NHE3) located in PCs. Immunofluorescence labeling showed apical membrane accumulation of the V-ATPase in CCs at pH 7.8, and its internalization at pH 5.8 compared to pH 6.6. Immunofluorescence showed expression of NHE3, but absence of NHE2, in PCs located in the Cd. RT-PCR and western blotting showed expression of NHE3 in all epididymal regions. Luminal 8-(4-chlorophenylthio)adenosine 3΄,5΄-cyclic monophosphate (cpt-cAMP) partially inhibited luminal pH recovery from pH 7.8. However, cpt-cAMP induced an increase in V-ATPase apical membrane accumulation at this pH. Cell fractionation studies showed the apical accumulation of NHE3 from intracellular vesicles at pH 7.8 versus 6.6, and prevention of this effect by cpt-cAMP. These results indicate the participation of both CCs and PCs in the regulation of luminal pH in the epididymis. Our study also shows the dual role of PCs in HCO3− and H+ secretion, and that this switch from base to acid secretion depends on the luminal environment. Characterization of the respective roles of CCs and PCs in the regulation of the optimal luminal condition for epididymal sperm maturation should provide new frameworks for the evaluation and treatment of male infertility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Laboratory Medicine,College of Medicine,The Catholic University of Korea,Seoul,Republic of Korea
| | - Maria Agustina Battistone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Bongki Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea.,Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| | - Sylvie Breton
- Lesieur, R&D Center ESPCI ParisTech - CNRS, Coudekerque-Branche, France
| |
Collapse
|
11
|
Trepiccione F, Soukaseum C, Baudrie V, Kumai Y, Teulon J, Villoutreix B, Cornière N, Wangemann P, Griffith AJ, Byung Choi Y, Hadchouel J, Chambrey R, Eladari D. Acute genetic ablation of pendrin lowers blood pressure in mice. Nephrol Dial Transplant 2018; 32:1137-1145. [PMID: 28064162 DOI: 10.1093/ndt/gfw393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/02/2016] [Indexed: 11/14/2022] Open
Abstract
Background Pendrin, the chloride/bicarbonate exchanger of β-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. Methods Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. Results We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. Conclusion By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.
Collapse
Affiliation(s)
- Francesco Trepiccione
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Christelle Soukaseum
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Veronique Baudrie
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Yusuke Kumai
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Jacques Teulon
- CNRS ERL 8228, INSERM UMRS 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Bruno Villoutreix
- INSERM U973, MTi-Bioinformatics; University Paris Diderot, Paris, France
| | - Nicolas Cornière
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yoon Byung Choi
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juliette Hadchouel
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| |
Collapse
|
12
|
Bourgeois S, Bounoure L, Mouro-Chanteloup I, Colin Y, Brown D, Wagner CA. The ammonia transporter RhCG modulates urinary acidification by interacting with the vacuolar proton-ATPases in renal intercalated cells. Kidney Int 2018; 93:390-402. [PMID: 29054531 PMCID: PMC6166241 DOI: 10.1016/j.kint.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Bounoure
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Yves Colin
- UMR_S1134, INSERM, Université Paris Diderot, INTS, Labex GR-Ex, Paris, France
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Holliday LS. Vacuolar H +-ATPases (V-ATPases) as therapeutic targets: a brief review and recent developments. ACTA ACUST UNITED AC 2017; 1. [PMID: 30957075 DOI: 10.21037/biotarget.2017.12.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are multi-subunit enzymes that play housekeeping roles in eukaryotic cells by acidifying lysosomes, late endosomes, Golgi, and other membrane-bounded compartments. Beyond that, V-ATPases have specialized functions in certain cell types linked to diseases including osteoporosis and cancer. Efforts to identify strategies to develop inhibitors selective for V-ATPases that are involved in disease progression have been ongoing for more than two decades, but so far have not yielded a therapeutic agent that has been translated to the clinic. Recent basic science studies have identified unexpected roles for V-ATPases in nutrient and energy sensing, and renin/angiotensin signaling, which offer additional incentives for considering V-ATPases as therapeutic targets. This article briefly reviews efforts to utilize inhibitors of V-ATPases as drugs. Primary focus is on recent "rational" efforts to identify small molecule inhibitors of the V-ATPases that are selectively expressed in osteoclasts and cancer cells. Enoxacin and bis-enoxacin are two molecules that emerged from these efforts. These molecules block a binding interaction between V-ATPases and microfilaments that occurs in osteoclasts, but not most other cell types, which relates to the specialized function of V-ATPases in bone resorption. Enoxacin and bis-enoxacin have proven useful in the treatment of bone diseases and cancer in animal models and display therapeutic effects that are different, and perhaps better, than current drugs. These results provide evidence that agents targeting subsets of V-ATPases may prove useful in the clinic.
Collapse
Affiliation(s)
- L Shannon Holliday
- Departments of Orthodontics and Anatomy & Cell Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
14
|
Battistone MA, Nair AV, Barton CR, Liberman RN, Peralta MA, Capen DE, Brown D, Breton S. Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 2017; 29:545-556. [PMID: 29222395 DOI: 10.1681/asn.2017060643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claire R Barton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel N Liberman
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Peralta
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Merkulova M, Păunescu TG, Azroyan A, Marshansky V, Breton S, Brown D. Mapping the H(+) (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci Rep 2015; 5:14827. [PMID: 26442671 PMCID: PMC4595830 DOI: 10.1038/srep14827] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology.
Collapse
Affiliation(s)
- Maria Merkulova
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Teodor G Păunescu
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Anie Azroyan
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Vladimir Marshansky
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvie Breton
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology &Division of Nephrology, Richard B. Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Păunescu TG, Shum WWC, Huynh C, Lechner L, Goetze B, Brown D, Breton S. High-resolution helium ion microscopy of epididymal epithelial cells and their interaction with spermatozoa. Mol Hum Reprod 2014; 20:929-37. [PMID: 25015675 PMCID: PMC4172170 DOI: 10.1093/molehr/gau052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 01/19/2023] Open
Abstract
We examined the rat and mouse epididymis using helium ion microscopy (HIM), a novel imaging technology that uses a scanning beam of He(+) ions to produce nanometer resolution images of uncoated biological samples. Various tissue fixation, sectioning and dehydration methods were evaluated for their ability to preserve tissue architecture. The cauda epididymidis was luminally perfused in vivo to remove most spermatozoa and the apical surface of the epithelial lining was exposed. Fixed epididymis samples were then subjected to critical point drying (CPD) and HIM. Apical stereocilia in principal cells and smaller apical membrane extensions in clear cells were clearly distinguishable in both rat and mouse epididymis using this technology. After perfusion with an activating solution containing CPT-cAMP, a permeant analog of cAMP, clear cells exhibited an increase in the number and size of membrane ruffles or microplicae. In contrast, principal cells did not exhibit detectable structural modifications. High-resolution HIM imaging clearly showed the ultrastructure of residual sperm cells, including the presence of concentric rings on the midpiece, and of cytoplasmic droplets in some spermatozoa. Close epithelium-sperm interactions were also detected. We found a number of sperm cells whose heads were anchored within the epididymal epithelium. In certain cases, the surface of the sperm cytoplasmic droplet was covered with vesicle-like structures whose size is consistent with that of epididymosomes. In conclusion, we describe here the first application of HIM technology to the study of the structure and morphology of the rodent epididymis. HIM technology represents a major imaging breakthrough that can be successfully applied to study the epididymis and spermatozoa, with the goal of advancing our understanding of their structure and function.
Collapse
Affiliation(s)
- Teodor G Păunescu
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA
| | - Winnie W C Shum
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA Present address: School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | | | | | - Dennis Brown
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA
| | - Sylvie Breton
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA
| |
Collapse
|
17
|
Vacuolar H+-ATPase: An Essential Multitasking Enzyme in Physiology and Pathophysiology. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/675430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vacuolar H+-ATPases (V-ATPases) are large multisubunit proton pumps that are required for housekeeping acidification of membrane-bound compartments in eukaryotic cells. Mammalian V-ATPases are composed of 13 different subunits. Their housekeeping functions include acidifying endosomes, lysosomes, phagosomes, compartments for uncoupling receptors and ligands, autophagosomes, and elements of the Golgi apparatus. Specialized cells, including osteoclasts, intercalated cells in the kidney and pancreatic beta cells, contain both the housekeeping V-ATPases and an additional subset of V-ATPases, which plays a cell type specific role. The specialized V-ATPases are typically marked by the inclusion of cell type specific isoforms of one or more of the subunits. Three human diseases caused by mutations of isoforms of subunits have been identified. Cancer cells utilize V-ATPases in unusual ways; characterization of V-ATPases may lead to new therapeutic modalities for the treatment of cancer. Two accessory proteins to the V-ATPase have been identified that regulate the proton pump. One is the (pro)renin receptor and data is emerging that indicates that V-ATPase may be intimately linked to renin/angiotensin signaling both systemically and locally. In summary, V-ATPases play vital housekeeping roles in eukaryotic cells. Specialized versions of the pump are required by specific organ systems and are involved in diseases.
Collapse
|
18
|
Müller C, Maeso I, Wittbrodt J, Martínez-Morales JR. The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates. Sci Rep 2013; 3:3217. [PMID: 24225653 PMCID: PMC3827601 DOI: 10.1038/srep03217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023] Open
Abstract
Vacuolar-type H+ ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.
Collapse
Affiliation(s)
- Claudia Müller
- 1] Centre for Organismal Studies, COS, University of Heidelberg, Heidelberg, Germany [2]
| | | | | | | |
Collapse
|
19
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
20
|
Păunescu TG, Lu HAJ, Russo LM, Pastor-Soler NM, McKee M, McLaughlin MM, Bartlett BE, Breton S, Brown D. Vasopressin induces apical expression of caveolin in rat kidney collecting duct principal cells. Am J Physiol Renal Physiol 2013; 305:F1783-95. [PMID: 24133120 DOI: 10.1152/ajprenal.00622.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin (Cav)1 is expressed in the basolateral membrane domain of renal collecting duct (CD) principal cells (PCs), where it is associated with caveolae. To reveal any potential involvement of Cav1 in vasopressin signaling, we used specific monoclonal and polyclonal antibodies to examine its localization in CD PCs of Brattleboro (BB) rats treated with vasopressin (DDAVP). Compared with controls, immunofluorescence revealed a time-dependent increase in Cav1 expression in the apical membrane domain of PCs, where it overlapped with aquaporin-2 (AQP2). After 24 h of DDAVP treatment, Cav1 was visible as an increased number of small apical spots. The staining gradually became more extensive, and, after 2 wk of DDAVP, it occupied the majority of the apical membrane domain of many PCs. Cav1 also assumed an apical localization in PCs of DDAVP-treated Sprague-Dawley and Long-Evans rats. Similarly, Cav2 appeared at the apical pole of PCs after DDAVP treatment of BB, Sprague-Dawley, and Long-Evans rats. Immunogold electron microscopy confirmed bipolar Cav1 membrane expression in DDAVP-treated BB rats, whereas caveolae were only detected on the basolateral membrane. Immunoblot analysis of BB rat whole kidney homogenates revealed no significant increase in Cav1 levels in DDAVP-treated rats, suggesting that DDAVP induces Cav1 relocalization or modifies its targeting. We conclude that Cav1 and Cav2 trafficking and membrane localization are dramatically altered by the action of DDAVP. Importantly, the absence of apical caveolae indicates that while Cavs may have an as yet undetermined role in vasopressin-regulated signaling processes, this is probably unrelated to AQP2 internalization by caveolae.
Collapse
Affiliation(s)
- Teodor G Păunescu
- Program in Membrane Biology/Division of Nephrology, Massachusetts General Hospital, Simches Research Center, 185 Cambridge St., CPZN8150, Boston, MA 02114.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Büsst CJ, Jayat M, Cornière N, Hassan H, Aronson PS, Hennings JC, Hübner CA, Nelson RD, Chambrey R, Eladari D. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 2013; 24:1104-13. [PMID: 23766534 DOI: 10.1681/asn.2012080787] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inherited and acquired disorders that enhance the activity of transporters mediating renal tubular Na(+) reabsorption are well established causes of hypertension. It is unclear, however, whether primary activation of an Na(+)-independent chloride transporter in the kidney can also play a pathogenic role in this disease. Here, mice overexpressing the chloride transporter pendrin in intercalated cells of the distal nephron (Tg(B1-hPDS) mice) displayed increased renal absorption of chloride. Compared with normal mice, these transgenic mice exhibited a delayed increase in urinary NaCl and ultimately, developed hypertension when exposed to a high-salt diet. Administering the same sodium intake as NaHCO3 instead of NaCl did not significantly alter BP, indicating that the hypertension in the transgenic mice was chloride-sensitive. Moreover, excessive chloride absorption by pendrin drove parallel absorption of sodium through the epithelial sodium channel ENaC and the sodium-driven chloride/bicarbonate exchanger (Ndcbe), despite an appropriate downregulation of these sodium transporters in response to the expanded vascular volume and hypertension. In summary, chloride transport in the distal nephron can play a primary role in driving NaCl transport in this part of the kidney, and a primary abnormality in renal chloride transport can provoke arterial hypertension. Thus, we conclude that the chloride/bicarbonate exchanger pendrin plays a major role in controlling net NaCl absorption, thereby influencing BP under conditions of high salt intake.
Collapse
Affiliation(s)
- Thibaut Jacques
- Faculté de Médecine, Université Paris-Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baumann O, Bauer A. Development of apical membrane organization and V-ATPase regulation in blowfly salivary glands. J Exp Biol 2013; 216:1225-34. [DOI: 10.1242/jeb.077420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SUMMARY
Secretory cells in blowfly salivary gland are specialized via morphological and physiological attributes in order to serve their main function, i.e. the transport of solutes at a high rate in response to a hormonal stimulus, namely serotonin (5-HT). This study examines the way that 5-HT-insensitive precursor cells differentiate into morphologically complex 5-HT-responsive secretory cells. By means of immunofluorescence microscopy, immunoblotting and measurements of the transepithelial potential changes, we show the following. (1) The apical membrane of the secretory cells becomes organized into an elaborate system of canaliculi and is folded into pleats during the last pupal day and the first day of adulthood. (2) The structural reorganization of the apical membrane is accompanied by an enrichment of actin filaments and phosphorylated ERM protein (phospho-moesin) at this membrane domain and by the deployment of the membrane-integral part of vacuolar-type H+-ATPase (V-ATPase). These findings suggest a role for phospho-moesin, a linker between actin filaments and membrane components, in apical membrane morphogenesis. (3) The assembly and activation of V-ATPase can be induced immediately after eclosion by way of 8-CPT-cAMP, a membrane-permeant cAMP analogue. (4) 5-HT, however, produces the assembly and activation of V-ATPase only in flies aged for at least 2 h after eclosion, indicating that, at eclosion, the 5-HT receptor/adenylyl cyclase/cAMP signalling pathway is inoperative upstream of cAMP. (5) 5-HT activates both the Ca2+ signalling pathway and the cAMP signalling cascade in fully differentiated secretory cells. However, the functionality of these signalling cascades does not seem to be established in a tightly coordinated manner during cell differentation.
Collapse
Affiliation(s)
- Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| | - Alexandra Bauer
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| |
Collapse
|
23
|
Vedovelli L, Rothermel JT, Finberg KE, Wagner CA, Azroyan A, Hill E, Breton S, Brown D, Paunescu TG. Altered V-ATPase expression in renal intercalated cells isolated from B1 subunit-deficient mice by fluorescence-activated cell sorting. Am J Physiol Renal Physiol 2012; 304:F522-32. [PMID: 23269648 DOI: 10.1152/ajprenal.00394.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1(-/-)) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1(-/-) and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915-F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1(-/-) mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1(+/+) mice) with Atp6v1b1(-/-) mice to generate novel EGFP-B1(-/-) mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1(+/+) and EGFP-B1(-/-) mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1(-/-) mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.
Collapse
Affiliation(s)
- Luca Vedovelli
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Toro EJ, Ostrov DA, Wronski TJ, Holliday LS. Rational identification of enoxacin as a novel V-ATPase-directed osteoclast inhibitor. Curr Protein Pept Sci 2012; 13:180-91. [PMID: 22044158 PMCID: PMC3409362 DOI: 10.2174/138920312800493151] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022]
Abstract
Binding between vacuolar H+-ATPases (V-ATPases) and microfilaments is mediated by an actin binding domain in the B-subunit. Both isoforms of mammalian B-subunit bind microfilaments with high affinity. A similar actin-binding activity has been demonstrated in the B-subunit of yeast. A conserved “profilin-like” domain in the B-subunit mediates this actin-binding activity, named due to its sequence and structural similarity to an actin-binding surface of the canonical actin binding protein profilin. Subtle mutations in the “profilin-like” domain eliminate actin binding activity without disrupting the ability of the altered protein to associate with the other subunits of V-ATPase to form a functional proton pump. Analysis of these mutated B-subunits suggests that the actin-binding activity is not required for the “housekeeping” functions of V-ATPases, but is important for certain specialized roles. In osteoclasts, the actin-binding activity is required for transport of V-ATPases to the plasma membrane, a prerequisite for bone resorption. A virtual screen led to the identification of enoxacin as a small molecule that bound to the actin-binding surface of the B2-subunit and competitively inhibited B2-subunit and actin interaction. Enoxacin disrupted osteoclastic bone resorption in vitro, but did not affect osteoblast formation or mineralization. Recently, enoxacin was identified as an inhibitor of the virulence of Candidaalbicans and more importantly of cancer growth and metastasis. Efforts are underway to determine the mechanisms by which enoxacin and other small molecule inhibitors of B2 and microfilament binding interaction selectively block bone resorption, the virulence of Candida, cancer growth, and metastasis.
Collapse
Affiliation(s)
- Edgardo J Toro
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
25
|
Hennings JC, Picard N, Huebner AK, Stauber T, Maier H, Brown D, Jentsch TJ, Vargas-Poussou R, Eladari D, Hübner CA. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol Med 2012; 4:1057-71. [PMID: 22933323 PMCID: PMC3491836 DOI: 10.1002/emmm.201201527] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 11/09/2022] Open
Abstract
The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms.
Collapse
|
26
|
Mamonova T, Kurnikova M, Friedman PA. Structural basis for NHERF1 PDZ domain binding. Biochemistry 2012; 51:3110-20. [PMID: 22429102 DOI: 10.1021/bi201213w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Na(+)/H(+) exchange regulatory factor-1 (NHERF1) is a scaffolding protein that possesses two tandem PDZ domains and a carboxy-terminal ezrin-binding domain (EBD). The parathyroid hormone receptor (PTHR), type II sodium-dependent phosphate cotransporter (Npt2a), and β2-adrenergic receptor (β2-AR), through their respective carboxy-terminal PDZ-recognition motifs, individually interact with NHERF1 forming a complex with one of the PDZ domains. In the basal state, NHERF1 adopts a self-inhibited conformation, in which its carboxy-terminal PDZ ligand interacts with PDZ2. We applied molecular dynamics (MD) simulations to uncover the structural and biochemical basis for the binding selectivity of NHERF1 PDZ domains. PDZ1 uniquely forms several contacts not present in PDZ2 that further stabilize PDZ1 interactions with target ligands. The binding free energy (ΔG) of PDZ1 and PDZ2 with the carboxy-terminal, five-amino acid residues that form the PDZ-recognition motif of PTHR, Npt2a, and β2-AR was calculated and compared with the calculated ΔG for the self-association of NHERF1. The results suggest that the interaction of the PTHR, β2-adrenergic, and Npt2a involves competition between NHERF1 PDZ domains and the target proteins. The binding of PDZ2 with PTHR may also compete with the self-inhibited conformation of NHERF1, thereby contributing to the stabilization of an active NHERF1 conformation.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
27
|
Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J Biol Chem 2012; 287:19008-17. [PMID: 22371505 DOI: 10.1074/jbc.m111.281873] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) is a membrane-bound multisubunit enzyme complex composed of at least 14 different subunits. The complex regulates the physiological processes of a cell by controlling the acidic environment, which is necessary for certain activities and the interaction with the actin cytoskeleton through its B and C subunits in both humans and yeast. Arabidopsis V-ATPase has three B subunits (AtVAB1, AtVAB2, and AtVAB3), which share 97.27% sequence identity and have two potential actin-binding sites, indicating that these AtVABs may have crucial functions in actin cytoskeleton remodeling and plant cell development. However, their biochemical functions are poorly understood. In this study, we demonstrated that AtVABs bind to and co-localize with F-actin, bundle F-actin to form higher order structures, and stabilize actin filaments in vitro. In addition, the AtVABs also show different degrees of activities in capping the barbed ends but no nucleating activities, and these activities were not regulated by calcium. The functional similarity and differences of the AtVABs implied that they may play cooperative and distinct roles in Arabidopsis cells.
Collapse
Affiliation(s)
- Binyun Ma
- School of life Sciences, Lanzhou University, Lanzhou 730070, China
| | | | | | | | | | | |
Collapse
|
28
|
Shum WWC, Ruan YC, Da Silva N, Breton S. Establishment of cell-cell cross talk in the epididymis: control of luminal acidification. ACTA ACUST UNITED AC 2011; 32:576-86. [PMID: 21441423 DOI: 10.2164/jandrol.111.012971] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Male infertility is often caused by sperm that have low motility and interact poorly with the oocyte. Spermatozoa acquire these crucial functions in the epididymis. A low luminal bicarbonate (HCO(3)(-)) concentration and low pH keep sperm quiescent during their maturation and storage in this organ. This review describes how epididymal epithelial cells work in a concerted manner, together with spermatozoa, to establish and maintain this acidic luminal environment. Clear cells express the proton-pumping ATPase (V-ATPase) in their apical membrane and actively secrete protons. HCO(3)(-) induces V-ATPase accumulation in apical microvilli in clear cells via HCO(3)(-)-sensitive adenylyl cyclase-dependent cAMP production. HCO(3)(-) is secreted from principal cells following basolateral stimulation, to transiently "prime" spermatozoa before ejaculation. Luminal ATP and adenosine also induce V-ATPase apical accumulation in clear cells via activation of P2 and P1 receptors, respectively. ATP is released into the lumen from sperm and principal cells and is then metabolized into adenosine by local nucleotidases. In addition, the V-ATPase is regulated by luminal angiotensin II via activation of basal cells, which can extend narrow body projections that cross the tight junction barrier. Basal cells then secrete nitric oxide, which diffuses out to stimulate proton secretion in clear cells via activation of the cGMP pathway. Thus, an elaborate communication network is present between principal cells and clear cells, and between basal cells and clear cells, to control luminal acidification. Monitoring and decoding these "intercellular conversations" will help define pathophysiologic mechanisms underlying male infertility.
Collapse
Affiliation(s)
- Winnie W C Shum
- Program in Membrane Biology, MGH Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
29
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
30
|
Shum WW, Da Silva N, Belleannée C, McKee M, Brown D, Breton S. Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 2011; 301:C31-43. [PMID: 21411727 DOI: 10.1152/ajpcell.00198.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminal acidification in the epididymis is critical for sperm maturation and storage. Clear cells express the vacuolar H(+)-ATPase (V-ATPase) in their apical membrane and are major contributors to proton secretion. We showed that this process is regulated via recycling of V-ATPase-containing vesicles. We now report that RhoA and its effector ROCKII are enriched in rat epididymal clear cells. In addition, cortical F-actin was detected beneath the apical membrane and along the lateral membrane of "resting" clear cells using a pan-actin antibody or phalloidin-TRITC. In vivo luminal perfusion of the cauda epididymal tubule with the ROCK inhibitors Y27632 (10-30 μM) and HA1077 (30 μM) or with the cell-permeable Rho inhibitor Clostridium botulinum C3 transferase (3.75 μg/ml) induced the apical membrane accumulation of V-ATPase and extension of V-ATPase-labeled microvilli in clear cells. However, these newly formed microvilli were devoid of ROCKII. In addition, Y27632 (30 μM) or HA1077 (30 μM) decreased the ratio of F-actin to G-actin detected by Western blot analysis in epididymal epithelial cells, and Y27632 also decreased the ratio of F-actin to G-actin in clear cells isolated by fluorescence activated cell sorting from B1-enhanced green fluorescence protein (EGFP) transgenic mice. These results provide evidence that depolymerization of the cortical actin cytoskeleton via inhibition of RhoA or its effector ROCKII favors the recruitment of V-ATPase from the cytosolic compartment into the apical membrane in clear cells. In addition, our data suggest that the RhoA-ROCKII pathway is not locally involved in the elongation of apical microvilli. We propose that inhibition of RhoA-ROCKII might be part of the intracellular signaling cascade that is triggered upon agonist-induced apical membrane V-ATPase accumulation.
Collapse
Affiliation(s)
- Winnie Waichi Shum
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sakai H, Moriura Y, Notomi T, Kawawaki J, Ohnishi K, Kuno M. Phospholipase C-dependent Ca2+-sensing pathways leading to endocytosis and inhibition of the plasma membrane vacuolar H+-ATPase in osteoclasts. Am J Physiol Cell Physiol 2010; 299:C570-8. [DOI: 10.1152/ajpcell.00486.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In osteoclasts, elevation of extracellular Ca2+ is an endogenous signal that inhibits bone resorption. We recently found that an elevation of extracellular Ca2+ decreased proton extrusion through the plasma membrane vacuolar H+-ATPase (V-ATPase) rapidly. In this study we investigated mechanisms underlying this early Ca2+-sensing response, particularly in reference to the activity of the plasma membrane V-ATPase and to membrane retrieval. Whole cell clamp recordings allowed us to measure the V-ATPase currents and the cell capacitance ( Cm) simultaneously. Cm is a measure of cell surface. Extracellular Ca2+ (2.5–40 mM) decreased Cm and the V-ATPase current simultaneously. The decreased Cm, together with the enhanced uptake of a lipophilic dye (FM1–43), indicated that Ca2+ facilitated endocytosis. The endocytosis was blocked by dynamin inhibitors (dynasore and dynamin-inhibitory peptide), by small interfering RNA (siRNA) targeting for dynanmin-2 and also by bafilomycin A1, a blocker of V-ATPases. The extracellular Ca2+-induced endocytosis and inhibition of the V-ATPase current were diminished by a phospholipase C inhibitor (U73122) and siRNA targeting for phospholipase C γ2 subunit. Holding the cytosolic Ca2+ at either high (0.5–5 μM) or low levels or inhibiting calmodulin by an inhibitor (W7) or an antibody (anti-CaM) decreased the stimulated endocytosis and the inhibition of the V-ATPase current. These data suggest that extracellular Ca2+ facilitated dynamin- and V-ATPase-dependent endocytosis in association with an inhibition of the plasma membrane V-ATPase. Phospholipase C, cytosolic Ca2+, and calmodulin were involved in the signaling pathways. Membrane retrieval and the plasma membrane V-ATPase activity may cooperate during the early phase of Ca2+-sensing response in osteoclasts.
Collapse
Affiliation(s)
| | | | | | - Junko Kawawaki
- Central Laboratory, Graduate School of Medicine, Osaka City University, Japan
| | | | | |
Collapse
|
32
|
Da Silva N, Pisitkun T, Belleannée C, Miller LR, Nelson R, Knepper MA, Brown D, Breton S. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am J Physiol Cell Physiol 2010; 298:C1326-42. [PMID: 20181927 DOI: 10.1152/ajpcell.00552.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proton-transporting cells are located in several tissues where they acidify the extracellular environment. These cells express the vacuolar H(+)-ATPase (V-ATPase) B1 subunit (ATP6V1B1) in their plasma membrane. We provide here a comprehensive catalog of the proteins that are expressed in these cells, after their isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-enhanced green fluorescent protein (EGFP) mice. In these mice, type A and B intercalated cells and connecting segment cells of the kidney, and narrow and clear cells of the epididymis, which all express ATP6V1B1, also express EGFP, while all other cell types are negative. The proteome of renal and epididymal EGFP-positive (EGFP(+)) cells was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared with their respective EGFP-negative (EGFP(-)) cell populations. A total of 2,297 and 1,564 proteins were detected in EGFP(+) cells from the kidney and epididymis, respectively. Out of these proteins, 202 and 178 were enriched by a factor greater than 1.5 in EGFP(+) cells compared with EGFP(-) cells, in the kidney and epididymis respectively, and included subunits of the V-ATPase (B1, a4, and A). In addition, several proteins involved in intracellular trafficking, signaling, and cytoskeletal dynamics were identified. A novel common protein that was enriched in renal and epididymal EGFP(+) cells is the progesterone receptor, which might be a potential candidate for the regulation of V-ATPase-dependent proton transport. These proteomic databases provide a framework for comprehensive future analysis of the common and distinct functions of V-ATPase-B1-expressing cells in the kidney and epididymis.
Collapse
|
33
|
Xia Y, Babitt JL, Bouley R, Zhang Y, Da Silva N, Chen S, Zhuang Z, Samad TA, Brenner GJ, Anderson JL, Hong CC, Schneyer AL, Brown D, Lin HY. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells. J Am Soc Nephrol 2010; 21:666-77. [PMID: 20167703 DOI: 10.1681/asn.2009050511] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.
Collapse
Affiliation(s)
- Yin Xia
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Belleannée C, Da Silva N, Shum WWC, Brown D, Breton S. Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells. Am J Physiol Cell Physiol 2010; 298:C817-30. [PMID: 20071692 DOI: 10.1152/ajpcell.00460.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extracellular purinergic agonists regulate a broad range of physiological functions via P1 and P2 receptors. Using the epididymis as a model system in which luminal acidification is essential for sperm maturation and storage, we show here that extracellular ATP and its hydrolysis product adenosine trigger the apical accumulation of vacuolar H(+)-ATPase (V-ATPase) in acidifying clear cells. We demonstrate that the epididymis can hydrolyze luminal ATP into other purinergic agonists such as ADP via the activity of nucleotidases located in the epididymal fluid and in the apical membrane of epithelial cells. Alkaline phosphatase activity and abundant ecto-5'-nucleotidase protein were detected in the apical pole of principal cells. In addition, we show that nine nucleotidase genes (Nt5e, Alpl, Alpp, Enpp1, 2, and 3, and Entpd 2, 4, and 5), seven ATP P2 receptor genes (P2X1, P2X2, P2X3, P2X4, P2X6, P2Y2, P2Y5), and three adenosine P1 receptor genes (A1, A2B, and A3) are expressed in epithelial cells isolated by laser cut microdissection (LCM). The calcium chelator BAPTA-AM abolished the apical V-ATPase accumulation induced by ATP, supporting the contribution of P2X or P2Y in this response. The PKA inhibitor myristoylated protein kinase inhibitor (mPKI) inhibited adenosine-dependent V-ATPase apical accumulation, indicating the participation of the P1 A2B receptor. Altogether, these results suggest that the activation of P1 and P2 purinergic receptors by ATP and adenosine might play a significant role in luminal acidification in the epididymis, a process that is crucial for the establishment of male fertility.
Collapse
Affiliation(s)
- Clémence Belleannée
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
35
|
Păunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, Breton S, Brown D. cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 2010; 298:F643-54. [PMID: 20053793 DOI: 10.1152/ajprenal.00584.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing the length and number of apical microvilli. We show here that the cell-permeant cAMP analog CPT-cAMP, infused in vivo, results in an almost twofold increase in apical V-ATPase accumulation in AE1-positive A-IC within 15 min and that these cells develop an extensive array of apical microvilli compared with controls. In contrast, no significant change in V-ATPase distribution could be detected by immunocytochemistry in B-intercalated cells at the acute time point examined. To show a direct effect of cAMP on A-IC, we prepared cell suspensions from the medulla of transgenic mice expressing EGFP in IC (driven by the B1-subunit promoter of the V-ATPase) and exposed them to cAMP analogs in vitro. Three-dimensional reconstructions of confocal images revealed that cAMP induced a time-dependent growth of apical microvilli, starting within minutes after addition. This effect was blocked by the PKA inhibitor myristoylated PKI. These morphological changes were paralleled by increased cAMP-mediated proton extrusion (pHi recovery) by A-IC in outer medullary collecting ducts measured using the ratiometric probe BCECF. These results, and our prior data showing that the bicarbonate-stimulated soluble adenylyl cyclase (sAC) is highly expressed in kidney intercalated cells, support the idea that cAMP generated either by sAC, or by activation of other signaling pathways, is part of the signal transduction mechanism involved in acid-base sensing and V-ATPase membrane trafficking in kidney intercalated cells.
Collapse
Affiliation(s)
- Teodor G Păunescu
- MGH Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang A, Yang ST. Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 2009; 104:766-73. [PMID: 19530125 DOI: 10.1002/bit.22437] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Propionibacterium acidipropionici, a Gram-positive, anaerobic bacterium, has been the most used species for propionic acid production from sugars. In this study, the metabolically engineered mutant ACK-Tet, which has its acetate kinase gene knocked out from the chromosome, was immobilized and adapted in a fibrous bed bioreactor (FBB) to increase its acid tolerance and ability to produce propionic acid at a high final concentration in fed-batch fermentation. After about 3 months adaptation in the FBB, the propionic acid concentration in the fermentation broth reached approximately 100 g/L, which was much higher than the highest concentration of approximately 71 g/L previously attained with the wild-type in the FBB. To understand the mechanism and factors contributing to the enhanced acid tolerance, adapted mutant cells were harvested from the FBB and characterized for their morphology, growth inhibition by propionic acid, protein expression profiles as observed in SDS-PAGE, and H+-ATPase activity, which is related to the proton pumping and cell's ability to control its intracellular pH gradient. The adapted mutant obtained from the FBB showed significantly reduced growth sensitivity to propionic acid inhibition, increased H+-ATPase expression and activity, and significantly elongated rod morphology.
Collapse
Affiliation(s)
- An Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
37
|
Shum WWC, Da Silva N, Brown D, Breton S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. ACTA ACUST UNITED AC 2009; 212:1753-61. [PMID: 19448084 DOI: 10.1242/jeb.027284] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the epididymis, spermatozoa acquire their ability to become motile and to fertilize an egg. A luminal acidic pH and a low bicarbonate concentration help keep spermatozoa in a quiescent state during their maturation and storage in this organ. Net proton secretion is crucial to maintain the acidity of the luminal fluid in the epididymis. A sub-population of epithelial cells, the clear cells, express high levels of the proton-pumping V-ATPase in their apical membrane and are important contributors to luminal acidification. This review describes selected aspects of V-ATPase regulation in clear cells. The assembly of a particular set of V-ATPase subunit isoforms governs the targeting of the pump to the apical plasma membrane. Regulation of V-ATPase-dependent proton secretion occurs via recycling mechanisms. The bicarbonate-activated adenylyl cyclase is involved in the non-hormonal regulation of V-ATPase recycling, following activation of bicarbonate secretion by principal cells. The V-ATPase is also regulated in a paracrine manner by luminal angiotensin II by activation of the angiotensin II type 2 receptor (AGTR2), which is located in basal cells. Basal cells have the remarkable property of extending long and slender cytoplasmic projections that cross the tight junction barrier to monitor the luminal environment. Clear cells are activated by a nitric oxide signal that originates from basal cells. Thus, a complex interplay between the different cell types present in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage.
Collapse
Affiliation(s)
- Winnie W C Shum
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
38
|
Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. ACTA ACUST UNITED AC 2009; 212:1762-72. [PMID: 19448085 DOI: 10.1242/jeb.028803] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton-pumping V-ATPase is a complex, multi-subunit enzyme that is highly expressed in the plasma membranes of some epithelial cells in the kidney, including collecting duct intercalated cells. It is also located on the limiting membranes of intracellular organelles in the degradative and secretory pathways of all cells. Different isoforms of some V-ATPase subunits are involved in the targeting of the proton pump to its various intracellular locations, where it functions in transporting protons out of the cell across the plasma membrane or acidifying intracellular compartments. The former process plays a critical role in proton secretion by the kidney and regulates systemic acid-base status whereas the latter process is central to intracellular vesicle trafficking, membrane recycling and the degradative pathway in cells. We will focus our discussion on two cell types in the kidney: (1) intercalated cells, in which proton secretion is controlled by shuttling V-ATPase complexes back and forth between the plasma membrane and highly-specialized intracellular vesicles, and (2) proximal tubule cells, in which the endocytotic pathway that retrieves proteins from the glomerular ultrafiltrate requires V-ATPase-dependent acidification of post-endocytotic vesicles. The regulation of both of these activities depends upon the ability of cells to monitor the pH and/or bicarbonate content of their extracellular environment and intracellular compartments. Recent information about these pH-sensing mechanisms, which include the role of the V-ATPase itself as a pH sensor and the soluble adenylyl cyclase as a bicarbonate sensor, will be addressed in this review.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
39
|
Long-term regulation of vacuolar H(+)-ATPase by angiotensin II in proximal tubule cells. Pflugers Arch 2009; 458:969-79. [PMID: 19396617 DOI: 10.1007/s00424-009-0668-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/03/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.
Collapse
|
40
|
Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch 2009; 458:137-56. [DOI: 10.1007/s00424-009-0657-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
41
|
Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 2009; 10:275-84. [PMID: 19170982 PMCID: PMC2896909 DOI: 10.1111/j.1600-0854.2008.00867.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
42
|
Hallows KR, Alzamora R, Li H, Gong F, Smolak C, Neumann D, Pastor-Soler NM. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 2009; 296:C672-81. [PMID: 19211918 DOI: 10.1152/ajpcell.00004.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Dept. of Medicine, Scaife A915, 3550 Terrace St., Pittsburgh, PA 15263, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Nikali K, Vanegas JJ, Burley MW, Martinez J, Lopez LM, Bedoya G, Wrong OM, Povey S, Unwin RJ, Ruiz-Linares A. Extensive founder effect for distal renal tubular acidosis (dRTA) with sensorineural deafness in an isolated South American population. Am J Med Genet A 2008; 146A:2709-12. [PMID: 18798332 DOI: 10.1002/ajmg.a.32495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kaisu Nikali
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Belleannée C, Da Silva N, Shum WWC, Marsolais M, Laprade R, Brown D, Breton S. Segmental expression of the bradykinin type 2 receptor in rat efferent ducts and epididymis and its role in the regulation of aquaporin 9. Biol Reprod 2008; 80:134-43. [PMID: 18829705 DOI: 10.1095/biolreprod.108.070797] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Water and solute transport in the efferent ducts and epididymis are important for the establishment of the appropriate luminal environment for sperm maturation and storage. Aquaporin 9 (AQP9) is the main water channel in the epididymis, but its regulation is still poorly understood. Components of the kinin-kallikrein system (KKS), leading to the production of bradykinin (BK), are highly expressed in the lumen of the male reproductive tract. We report here that the epididymal luminal fluid contains a significant amount of BK (2 nM). RT-PCR performed on epididymal epithelial cells isolated by laser capture microdissection (LCM) showed abundant BK type 2 receptor (Bdkrb2) mRNA expression but no type 1 receptor (Bdkrb1). Double-immunofluorescence staining for BDKRB2 and the anion exchanger AE2 (a marker of efferent duct ciliated cells) or the V-ATPase E subunit, official symbol ATP6V1E1 (a marker of epididymal clear cells), showed that BDKRB2 is expressed in the apical pole of nonciliated cells (efferent ducts) and principal cells (epididymis). Triple labeling for BDKRB2, AQP9, and ATP6V1E1 showed that BDKRB2 and AQP9 colocalize in the apical stereocilia of principal cells in the cauda epididymidis. While uniform Bdkrb2 mRNA expression was detected in the efferent ducts and along the epididymal tubule, marked variations were detected at the protein level. BDKRB2 was highest in the efferent ducts and cauda epididymidis, intermediate in the distal initial segment, moderate in the corpus, and undetectable in the proximal initial segment and the caput. Functional assays on tubules isolated from the distal initial segments showed that BK significantly increased AQP9-dependent glycerol apical membrane permeability. This effect was inhibited by BAPTA-AM, demonstrating the participation of calcium in this process. This study, therefore, identifies BK as an important regulator of AQP9.
Collapse
Affiliation(s)
- C Belleannée
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Jefferies KC, Cipriano DJ, Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 2008; 476:33-42. [PMID: 18406336 PMCID: PMC2543942 DOI: 10.1016/j.abb.2008.03.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 02/07/2023]
Abstract
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V(1)) responsible for hydrolysis of ATP and an integral domain (V(0)) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V(1) and V(0) domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
| |
Collapse
|
46
|
Paunescu TG, Jones AC, Tyszkowski R, Brown D. V-ATPase expression in the mouse olfactory epithelium. Am J Physiol Cell Physiol 2008; 295:C923-30. [PMID: 18667600 DOI: 10.1152/ajpcell.00237.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vacuolar proton-pumping ATPase (V-ATPase) is responsible for the acidification of intracellular organelles and for the pH regulation of extracellular compartments. Because of the potential role of the latter process in olfaction, we examined the expression of V-ATPase in mouse olfactory epithelial (OE) cells. We report that V-ATPase is present in this epithelium, where we detected subunits ATP6V1A (the 70-kDa "A" subunit) and ATP6V1E1 (the ubiquitous 31-kDa "E" subunit isoform) in epithelial cells, nerve fiber cells, and Bowman's glands by immunocytochemistry. We also located both isoforms of the 56-kDa B subunit, ATP6V1B1 ("B1," typically expressed in epithelia specialized in regulated transepithelial proton transport) and ATP6V1B2 ("B2") in the OE. B1 localizes to the microvilli of the apical plasma membrane of sustentacular cells and to the lateral membrane in a subset of olfactory sensory cells, which also express carbonic anhydrase type IV, whereas B2 expression is stronger in the subapical domain of sustentacular cells. V-ATPase expression in mouse OE was further confirmed by immunoblotting. These findings suggest that V-ATPase may be involved in proton secretion in the OE and, as such, may be important for the pH homeostasis of the neuroepithelial mucous layer and/or for signal transduction in CO(2) detection.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
47
|
Shibazaki S, Yu Z, Nishio S, Tian X, Thomson RB, Mitobe M, Louvi A, Velazquez H, Ishibe S, Cantley LG, Igarashi P, Somlo S. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum Mol Genet 2008; 17:1505-16. [PMID: 18263604 PMCID: PMC2902289 DOI: 10.1093/hmg/ddn039] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 02/01/2008] [Indexed: 12/21/2022] Open
Abstract
Polycystic kidney disease (ADPKD) results from failure of the kidney to properly maintain three-dimensional structure after loss of either polycystin-1 or -2. Mice with kidney selective inactivation of Pkd1 during embryogenesis develop profound renal cystic disease and die from renal failure within 3 weeks of birth. In this model, cysts form exclusively from cells in which Cre recombinase is active, but the apparent pace of cyst expansion varies by segment and cell type. Intercalated cells do not participate in cyst expansion despite the presence of cilia up to at least postnatal day 21. Cystic segments show a persistent increase in proliferation as determined by bromodeoxyuridine (BrdU) incorporation; however, the absolute proliferative index is dependent on the underlying proliferative potential of kidney tubule cells. Components of the extracellular regulated kinase (MAPK/ERK) pathway from Ras through MEK1/2 and ERK1/2 to the effector P90(RSK) are activated in both perinatal Pkd1 and adult Pkd2 ortholgous gene disease models. The pattern of MAPK/ERK activation is focal and does not correlate with the pattern of active proliferation identified by BrdU uptake. The possibility of a causal relationship between ERK1/2 activation and cyst cell proliferation was assessed in vivo in the acute perinatal Pkd1 model of ADPKD using MEK1/2 inhibitor U0126. U0126 treatment had no effect on progression of cyst formation in this model at doses sufficient to reduce phospho-ERK1/2 in cystic kidneys. Cysts in ADPKD exhibit both increased proliferation and activation of MAPK/ERK, but cyst growth is not prevented by inhibition of ERK1/2 activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peter Igarashi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefan Somlo
- Department of Internal Medicine
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Fuster D, Zhang J, Xie XS, Moe O. The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int 2008; 73:1151-8. [DOI: 10.1038/ki.2008.96] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Abstract
V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.
Collapse
|
50
|
Pietrement C, Da Silva N, Silberstein C, James M, Marsolais M, Van Hoek A, Brown D, Pastor-Soler N, Ameen N, Laprade R, Ramesh V, Breton S. Role of NHERF1, cystic fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. J Biol Chem 2007; 283:2986-96. [PMID: 18055461 DOI: 10.1074/jbc.m704678200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Water and solute transport across the plasma membrane of cells is a crucial biological function that is mediated mainly by aquaporins and aquaglyceroporins. The regulation of these membrane proteins is still incompletely understood. Using the male reproductive tract as a model system in which water and glycerol transport are critical for the establishment of fertility, we now report a novel pathway for the regulation of aquaporin 9 (AQP9) permeability. AQP9 is the major aquaglyceroporin of the epididymis, liver, and peripheral leukocytes, and its COOH-terminal portion contains a putative PDZ binding motif (SVIM). Here we show that NHERF1, cystic fibrosis transmembrane conductance regulator (CFTR), and AQP9 co-localize in the apical membrane of principal cells of the epididymis and the vas deferens, and that both NHERF1 and CFTR co-immunoprecipitate with AQP9. Overlay assays revealed that AQP9 binds to both the PDZ1 and PDZ2 domains of NHERF1, with an apparently higher affinity for PDZ1 versus PDZ2. Pull-down assays showed that the AQP9 COOH-terminal SVIM motif is essential for interaction with NHERF1. Functional assays on isolated tubules perfused in vitro showed a high permeability of the apical membrane to glycerol, which is inhibited by the AQP9 inhibitor, phloretin, and is markedly activated by cAMP. The CFTR inhibitors DPC, GlyH-101 and CFTRinh-172 all significantly reduced the cAMP-activated glycerol-induced cell swelling. We propose that CFTR is an important regulator of AQP9 and that the interaction between AQP9, NHERF1, and CFTR may facilitate the activation of AQP9 by cAMP.
Collapse
Affiliation(s)
- Christine Pietrement
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|