1
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Chang SY, Ko Y, Kim MJ. Regulatory mechanisms of kaempferol on iNOS expression in RINm5F β-cells under exposure to interleukin-1β. Heliyon 2023; 9:e14818. [PMID: 37025778 PMCID: PMC10070653 DOI: 10.1016/j.heliyon.2023.e14818] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Proinflammatory cytokines and NO play crucial roles in islet β-cells dysfunction. Though anti-inflammatory effects of kaempferol were revealed in several studies, the detailed mechanisms remain unclear. This study explored protective actions of kaempferol in interleukin-1β-treated RINm5F β-cells. Kaempferol significantly inhibited NO generation, iNOS protein, and iNOS mRNA level. Promoter study, EMSA, and κB-dependent reporter assay showed that kaempferol inhibited NF-κB-mediated iNOS gene transcription. Also, we found that kaempferol accelerated iNOS mRNA instability in iNOS 3'-UTR construct and actinomycin D chase studies. Additionally, kaempferol reduced iNOS protein stability in cycloheximide chase study and it inhibited NOS enzyme activity. Kaempferol inhibited ROS generation and preserved cell viability, and it improved insulin release. These findings suggest that kaempferol appears to be helpful in protecting islet β-cells, thereby supports kaempferol as a supplementary therapeutic candidate in inhibiting the incidence and progression of diabetes mellitus.
Collapse
|
3
|
Gather F, Ihrig-Biedert I, Kohlhas P, Krutenko T, Peitz M, Brüstle O, Pautz A, Kleinert H. A specific, non-immune system-related isoform of the human inducible nitric oxide synthase is expressed during differentiation of human stem cells into various cell types. Cell Commun Signal 2022; 20:47. [PMID: 35392923 PMCID: PMC8991583 DOI: 10.1186/s12964-022-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Freiburg, Germany
| | - Irmgard Ihrig-Biedert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Kohlhas
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Cell Programming Core Facility, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Amini MR, Sheikhhossein F, Alvani M, Shoura SMS, Sohrabnavi A, Heidarian E, Hekmatdoost A. Anti-hypertensive Effects of Artichoke Supplementation in Adults: A Systematic Review and Dose-response Meta-analysis of Randomized Controlled Trials. Clin Nutr Res 2022; 11:214-227. [PMID: 35949557 PMCID: PMC9348915 DOI: 10.7762/cnr.2022.11.3.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Mohsen Alvani
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | | | - Asma Sohrabnavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Ehsan Heidarian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
5
|
Schmidtke L, Meineck M, Saurin S, Otten S, Gather F, Schrick K, Käfer R, Roth W, Kleinert H, Weinmann-Menke J, Pautz A. Knockout of the KH-Type Splicing Regulatory Protein Drives Glomerulonephritis in MRL-Fas lpr Mice. Cells 2021; 10:3167. [PMID: 34831390 PMCID: PMC8624031 DOI: 10.3390/cells10113167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
KH-type splicing regulatory protein (KSRP) is an RNA-binding protein that promotes mRNA decay and thereby negatively regulates cytokine expression at the post-transcriptional level. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated cytokine expression causing multiple organ manifestations; MRL-Faslpr mice are an established mouse model to study lupus disease pathogenesis. To investigate the impact of KSRP on lupus disease progression, we generated KSRP-deficient MRL-Faslpr mice (MRL-Faslpr/KSRP-/- mice). In line with the predicted role of KSRP as a negative regulator of cytokine expression, lupus nephritis was augmented in MRL-Faslpr/KSRP-/- mice. Increased infiltration of immune cells, especially of IFN-γ producing T cells and macrophages, driven by enhanced expression of T cell-attracting chemokines and adhesion molecules, seems to be responsible for worsened kidney morphology. Reduced expression of the anti-inflammatory interleukin-1 receptor antagonist may be another reason for severe inflammation. The increase of FoxP3+ T cells detected in the kidney seems unable to dampen the massive kidney inflammation. Interestingly, lymphadenopathy was reduced in MRL-Faslpr/KSRP-/- mice. Altogether, KSRP appears to have a complex role in immune regulation; however, it is clearly able to ameliorate lupus nephritis.
Collapse
Affiliation(s)
- Lisa Schmidtke
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Myriam Meineck
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Sabrina Saurin
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Svenja Otten
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Fabian Gather
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Katharina Schrick
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Julia Weinmann-Menke
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| |
Collapse
|
6
|
S-adenosylmethionine upregulates the angiotensin receptor-binding protein ATRAP via the methylation of HuR in NAFLD. Cell Death Dis 2021; 12:306. [PMID: 33753727 PMCID: PMC7985363 DOI: 10.1038/s41419-021-03591-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged globally and is associated with inflammatory signaling. The underlying mechanisms remain poorly delineated, although NAFLD has attracted considerable attention and been extensively investigated. Recent publications have determined that angiotensin II (Ang II) plays an important role in stimulating NAFLD progression by causing lipid metabolism disorder and insulin resistance through its main receptor, Ang II type 1 receptor (AT1R). Herein, we explored the effect of supplementary S-adenosylmethionine (SAM), which is the main biological methyl donor in mammalian cells, in regulating AT1R-associated protein (ATRAP), which is the negative regulator of AT1R. We found that SAM was depleted in NAFLD and that SAM supplementation ameliorated steatosis. In addition, in both high-fat diet-fed C57BL/6 rats and L02 cells treated with oleic acid (OA), ATRAP expression was downregulated at lower SAM concentrations. Mechanistically, we found that the subcellular localization of human antigen R (HuR) was determined by the SAM concentration due to protein methylation modification. Moreover, HuR was demonstrated to directly bind ATRAP mRNA and control its nucleocytoplasmic shuttling. Thus, SAM was suggested to upregulate ATRAP protein expression by maintaining the export of its mRNA from the nucleus. Taken together, our findings suggest that SAM can positively regulate ATRAP in NAFLD and may have various potential benefits for the treatment of NAFLD.
Collapse
|
7
|
Singh AK, Awasthi D, Dubey M, Nagarkoti S, Chandra T, Barthwal MK, Tripathi AK, Dikshit M. Expression of inducible NOS is indispensable for the antiproliferative and proapoptotic effect of imatinib in BCR-ABL positive cells. J Leukoc Biol 2021; 110:853-866. [PMID: 33527482 DOI: 10.1002/jlb.1a0820-514r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by constitutive BCR-ABL kinase activity, an aggressive proliferation of immature cells, and reduced differentiation. Targeting tyrosine kinase activity of BCR-ABL with imatinib is an effective therapy for the newly diagnosed CML patients; however, 20%-30% of the patients initially treated with imatinib eventually experience treatment failure. Therefore, early identification of these patients is of high clinical relevance. In the present study, we by undertaking a direct comparison of inducible NOS (iNOS) status in neutrophils from healthy volunteers, newly diagnosed, imatinib responder, and resistant CML patients as well as by conducting in vitro studies in K562 cells demonstrated that inhibition of BCR-ABL by imatinib or siRNA significantly enhanced NO generation and iNOS expression. Indeed, patients exhibiting treatment failure or imatinib resistance were less likely to induce NO generation/iNOS expression. Our findings further demonstrated that imatinib mediated antiproliferative and proapoptotic effect in BCR-ABL+ cells associated with enhanced iNOS expression, and it was significantly prevented in the presence of L-NAME, 1400W, or iNOS siRNA. Overexpression of iNOS in K562 cells expectedly enhanced imatinib sensitivity on cytostasis and apoptosis, even at lower concentration (0.1 μM) of imatinib. Mechanistically, imatinib or BCR-ABL siRNA following deglutathionylation of NF-κB, enhanced its binding to iNOS promoter and induced iNOS transcription. Deglutathionylation of procaspase-3 however associated with increased caspase-3 activity and cell apoptosis. Taken together, results obtained suggest that monitoring NO/iNOS level could be useful to identify patients likely to be responsive or resistant to imatinib and can be used to personalized alternative therapy.
Collapse
Affiliation(s)
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Anil Kumar Tripathi
- Department of Clinical Hematology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
8
|
Gather F, Schmitz K, Koch K, Vogt LM, Pautz A, Kleinert H. Regulation of human inducible nitric oxide synthase expression by an upstream open reading frame. Nitric Oxide 2019; 88:50-60. [PMID: 31004763 DOI: 10.1016/j.niox.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Katja Schmitz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Kathrin Koch
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Lea-Marie Vogt
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| |
Collapse
|
9
|
Wang J, Hjelmeland AB, Nabors LB, King PH. Anti-cancer effects of the HuR inhibitor, MS-444, in malignant glioma cells. Cancer Biol Ther 2019; 20:979-988. [PMID: 30991885 DOI: 10.1080/15384047.2019.1591673] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma is a highly malignant and typically fatal tumor of the central nervous system. The tumor is characterized by marked cellular and molecular heterogeneity, including a subpopulation of brain tumor initiating cells (BTICs) that are highly resistant to radiation and chemotherapy. We previously reported that the RNA-binding protein HuR is: (1) overexpressed in glioblastoma, (2) necessary for tumor growth in vivo, and (3) a positive regulator of tumor-promoting genes in glioblastoma. These findings provide strong evidence that HuR might be a viable therapeutic target in glioblastoma. In this report, we investigated the effects of MS-444, a small molecule inhibitor of HuR, in xenograft-derived human glioblastoma cells and BTICs. We found that MS-444 treatment of glioblastoma cells resulted in loss of viability and induction of apoptosis, with evidence implicating death receptor 5. BTICs were particularly sensitive to MS-444. At sub-lethal doses, MS-444 attenuated invasion of glioblastoma cells and BTICs in a transwell model. At the molecular level, MS-444 treatment led to an attenuation of mRNAs in different tumor promoting pathways including angiogenesis, immune evasion and suppression of apoptosis. Although cytoplasmic HuR was reduced with MS-444 treatment, the attenuation of mRNAs could not be explained by RNA destabilization. In summary, this report provides proof of concept that small molecule inhibition of HuR could be a viable approach for treatment of glioblastoma.
Collapse
Affiliation(s)
- Jiping Wang
- a Departments of Neurology , University of Alabama , Birmingham , AL
| | - Anita B Hjelmeland
- b Cell, Developmental, and Integrative Biology , University of Alabama , Birmingham , AL
| | - L Burt Nabors
- a Departments of Neurology , University of Alabama , Birmingham , AL
| | - Peter H King
- a Departments of Neurology , University of Alabama , Birmingham , AL.,b Cell, Developmental, and Integrative Biology , University of Alabama , Birmingham , AL.,c Birmingham Veterans Affairs Medical Center , Birmingham , AL
| |
Collapse
|
10
|
Kielbik M, Szulc-Kielbik I, Klink M. The Potential Role of iNOS in Ovarian Cancer Progression and Chemoresistance. Int J Mol Sci 2019; 20:E1751. [PMID: 30970628 PMCID: PMC6479373 DOI: 10.3390/ijms20071751] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS), the enzyme responsible for nitric oxide (NO) production, is not present in most cells under normal conditions. The expression of its mRNA, as well as its protein synthesis and full enzymatic activity, undergoes multilevel regulation including transcriptional and posttranscriptional mechanisms, the availability of iNOS substrate and cofactors and oxygen tension. However, in various malignant diseases, such as ovarian cancer, the intracellular mechanisms controlling iNOS are dysregulated, resulting in the permanent induction of iNOS expression and activation. The present review summarizes the multistaged processes occurring in normal cells that promote NO synthesis and focuses on factors regulating iNOS expression in ovarian cancer. The possible involvement of iNOS in the chemoresistance of ovarian cancer and its potential as a prognostic/predictive factor in the course of disease development are also reviewed. According to the available yet limited data, it is difficult to draw unequivocal conclusions on the pros and cons of iNOS in ovarian cancer. Most clinical data support the hypothesis that high levels of iNOS expression in ovarian tumors are associated with a greater risk of disease relapse and patient death. However, in vitro studies with various ovarian cancer cell lines indicate a correlation between a high level of iNOS expression and sensitivity to cisplatin.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
11
|
Astakhova AA, Chistyakov DV, Sergeeva MG, Reiser G. Regulation of the ARE-binding proteins, TTP (tristetraprolin) and HuR (human antigen R), in inflammatory response in astrocytes. Neurochem Int 2018; 118:82-90. [DOI: 10.1016/j.neuint.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023]
|
12
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
13
|
Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. Results Probl Cell Differ 2017; 62:181-207. [PMID: 28455710 DOI: 10.1007/978-3-319-54090-0_8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Käfer R, Schrick K, Schmidtke L, Montermann E, Hobernik D, Bros M, Chen CY, Kleinert H, Pautz A. Inactivation of the KSRP gene modifies collagen antibody induced arthritis. Mol Immunol 2017; 87:207-216. [DOI: 10.1016/j.molimm.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022]
|
15
|
Matsye P, Zheng L, Si Y, Kim S, Luo W, Crossman DK, Bratcher PE, King PH. HuR promotes the molecular signature and phenotype of activated microglia: Implications for amyotrophic lateral sclerosis and other neurodegenerative diseases. Glia 2017; 65:945-963. [PMID: 28300326 DOI: 10.1002/glia.23137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
In neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), chronic activation of microglia contributes to disease progression. Activated microglia produce cytokines, chemokines, and other factors that normally serve to clear infection or damaged tissue either directly or through the recruitment of other immune cells. The molecular program driving this phenotype is classically linked to the transcription factor NF-κB and characterized by the upregulation of proinflammatory factors such as IL-1β, TNF-α, and IL-6. Here, we investigated the role of HuR, an RNA-binding protein that regulates gene expression through posttranscriptional pathways, on the molecular and cellular phenotypes of activated microglia. We performed RNA sequencing of HuR-silenced microglia and found significant attenuation of lipopolysaccharide-induced IL-1β and TNF-α inflammatory pathways and other factors that promote microglial migration and invasion. RNA kinetics and luciferase reporter studies suggested that the attenuation was related to altered promoter activity rather than a change in RNA stability. HuR-silenced microglia showed reduced migration, invasion, and chemotactic properties but maintained viability. MMP-12, a target exquisitely sensitive to HuR knockdown, participates in the migration/invasion phenotype. HuR is abundantly detected in the cytoplasmic compartment of activated microglia from ALS spinal cords consistent with its increased activity. Microglia from ALS-associated mutant SOD1 mice demonstrated higher migration/invasion properties which can be blocked with HuR inhibition. These findings underscore an important role for HuR in sculpting the molecular signature and phenotype of activated microglia, and as a possible therapeutic target in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Prachi Matsye
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Lei Zheng
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Soojin Kim
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David K Crossman
- Department of Genetics, University of Alabama, Birmingham, Alabama
| | - Preston E Bratcher
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, Colorado
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Department of Genetics, University of Alabama, Birmingham, Alabama.,Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, Colorado.,Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| |
Collapse
|
16
|
Hoppstädter J, Hachenthal N, Valbuena-Perez JV, Lampe S, Astanina K, Kunze MM, Bruscoli S, Riccardi C, Schmid T, Diesel B, Kiemer AK. Induction of Glucocorticoid-induced Leucine Zipper (GILZ) Contributes to Anti-inflammatory Effects of the Natural Product Curcumin in Macrophages. J Biol Chem 2016; 291:22949-22960. [PMID: 27629417 DOI: 10.1074/jbc.m116.733253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
GILZ (glucocorticoid-induced leucine zipper) is inducible by glucocorticoids and plays a key role in their mode of action. GILZ attenuates inflammation mainly by inhibition of NF-κB and mitogen-activated protein kinase activation but does not seem to be involved in the severe side effects observed after glucocorticoid treatment. Therefore, GILZ might be a promising target for new therapeutic approaches. The present work focuses on the natural product curcumin, which has previously been reported to inhibit NF-κB. GILZ was inducible by curcumin in macrophage cell lines, primary human monocyte-derived macrophages, and murine bone marrow-derived macrophages. The up-regulation of GILZ was neither associated with glucocorticoid receptor activation nor with transcriptional induction or mRNA or protein stabilization but was a result of enhanced translation. Because the GILZ 3'-UTR contains AU-rich elements (AREs), we analyzed the role of the mRNA-binding protein HuR, which has been shown to promote the translation of ARE-containing mRNAs. Our results suggest that curcumin treatment induces HuR expression. An RNA immunoprecipitation assay confirmed that HuR can bind GILZ mRNA. In accordance, HuR overexpression led to increased GILZ protein levels but had no effect on GILZ mRNA expression. Our data employing siRNA in LPS-activated RAW264.7 macrophages show that curcumin facilitates its anti-inflammatory action by induction of GILZ in macrophages. Experiments with LPS-activated bone marrow-derived macrophages from wild-type and GILZ knock-out mice demonstrated that curcumin inhibits the activity of inflammatory regulators, such as NF-κB or ERK, and subsequent TNF-α production via GILZ. In summary, our data indicate that HuR-dependent GILZ induction contributes to the anti-inflammatory properties of curcumin.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- From the Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Nina Hachenthal
- From the Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| | | | - Sebastian Lampe
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany, and
| | - Ksenia Astanina
- From the Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Michael M Kunze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany, and
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany, and
| | - Britta Diesel
- From the Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Alexandra K Kiemer
- From the Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66041 Saarbrücken, Germany,
| |
Collapse
|
17
|
Shin JS, Choi HE, Seo S, Choi JH, Baek NI, Lee KT. Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages. J Pharmacol Exp Ther 2016; 358:3-13. [PMID: 27189969 DOI: 10.1124/jpet.115.231043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022] Open
Abstract
Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR.
Collapse
Affiliation(s)
- Ji-Sun Shin
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Hye-Eun Choi
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - SeungHwan Seo
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Jung-Hye Choi
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Nam-In Baek
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| |
Collapse
|
18
|
Barani R, Motalleb G, Maghsoudi H. Evaluation of iNOS Expression in Esophageal Cancer Patients. Gastrointest Tumors 2016; 3:44-58. [PMID: 27722156 DOI: 10.1159/000443976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Esophageal cancer is a public health concern around the world; this cancer is the sixth leading cause of death of cancer in the world with about 386,000 deaths per year. Its risk factors include environmental factors such as tobacco smoke, gastroesophageal reflux and genetic changes. iNOS is stated by the effect of various inflammatory factors and is thus called inducible NOS. Investigating iNOS expression is a powerful tool for understanding effective molecular parameters at tissue and cellular responses to external factors. In this research work, iNOS expression in patients with esophageal cancer was studied in Iran. MATERIALS AND METHODS 15 formalin-fixed and paraffin-embedded (FFPE) esophageal cancer tissue samples and 15 normal FFPE samples were collected from various medical centers (Zabol, Zahedan, Kashan) to measure iNOS expression by real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR). All PCR reactions were conducted by three replicates for iNOS and internal control (β-actin) by 2-ΔΔCT (Livak) method. Differences were measured in target gene expression in patients and control group using the t test. All statistical analyses were done using the SPSS software. RESULTS The results showed that there was no significant difference between iNOS expression in the case and control groups (p > 0.05); however, there was an increase in iNOS expression in the case group. On the other hand, there was a significant difference between iNOS expression in males and females in the two groups of healthy subjects and patients, and it was higher in women than in men. CONCLUSION Further studies need to be conducted with larger sample sizes and in other populations to validate these findings.
Collapse
Affiliation(s)
- Romina Barani
- Department of Biotechnology, Faculty of Science, Payame Noor University, Tehran
| | | | - Hossein Maghsoudi
- Department of Biotechnology, Faculty of Science, Payame Noor University, Tehran
| |
Collapse
|
19
|
HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity. PLoS One 2015; 10:e0130189. [PMID: 26066624 PMCID: PMC4465743 DOI: 10.1371/journal.pone.0130189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/17/2015] [Indexed: 12/21/2022] Open
Abstract
Background The potential role of the human immunodeficiency virus-1 (HIV-1) accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines) and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef) treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3), thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT)-1, STAT-2 and STAT-3 through the production of proinflammatory factors. Methodology/Principal Findings We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS) with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ) release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells. Conclusions These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.
Collapse
|
20
|
Panganiban RP, Vonakis BM, Ishmael FT, Stellato C. Coordinated post-transcriptional regulation of the chemokine system: messages from CCL2. J Interferon Cytokine Res 2015; 34:255-66. [PMID: 24697203 DOI: 10.1089/jir.2013.0149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular cross-talk between epithelium and immune cells in the airway mucosa is a key regulator of homeostatic immune surveillance and is crucially involved in the development of chronic lung inflammatory diseases. The patterns of gene expression that follow the sensitization process occurring in allergic asthma and chronic rhinosinusitis and those present in the neutrophilic response of other chronic inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD) are tightly regulated in their specificity. Studies exploring the global transcript profiles associated with determinants of post-transcriptional gene regulation (PTR) such as RNA-binding proteins (RBP) and microRNAs identified several of these factors as being crucially involved in controlling the expression of chemokines upon airway epithelial cell stimulation with cytokines prototypic of Th1- or Th2-driven responses. These studies also uncovered the participation of these pathways to glucocorticoids' inhibitory effect on the epithelial chemokine network. Unmasking the molecular mechanisms of chemokine PTR may likely uncover novel therapeutic strategies for the blockade of proinflammatory pathways that are pathogenetic for asthma, COPD, and other lung inflammatory diseases.
Collapse
Affiliation(s)
- Ronaldo P Panganiban
- 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | | | | | | |
Collapse
|
21
|
Liu AL, Li YF, Qi W, Ma XL, Yu KX, Huang B, Liao M, Li F, Pan J, Song MX. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses. Virus Genes 2015; 50:189-99. [PMID: 25557928 PMCID: PMC4381041 DOI: 10.1007/s11262-014-1151-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.
Collapse
Affiliation(s)
- Ai-ling Liu
- The Key Laboratory of Animal Resistance Biology of Shandong, College of Life Sciences, Shandong Normal University, 88, East Culture Road, Jinan, 250014 Shandong China
| | - Yu-feng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, 483, Wushan Road, Guangzhou, 510642 Guangdong China
| | - Xiu-li Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Ke-xiang Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, 483, Wushan Road, Guangzhou, 510642 Guangdong China
| | - Feng Li
- Department of Veterinary and Biomedical Sciences and Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Jie Pan
- The Key Laboratory of Animal Resistance Biology of Shandong, College of Life Sciences, Shandong Normal University, 88, East Culture Road, Jinan, 250014 Shandong China
| | - Min-xun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1, JiaoXiao Road, Jinan, 250023 Shandong China
| |
Collapse
|
22
|
O'Sullivan S, Medina C, Ledwidge M, Radomski MW, Gilmer JF. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance--NO and MMP-9 interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:603-17. [PMID: 24333402 DOI: 10.1016/j.bbamcr.2013.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) and matrix metalloproteinase 9 (MMP-9) levels are found to increase in inflammation states and in cancer, and their levels may be reciprocally modulated. Understanding interactions between NO and MMP-9 is of biological and pharmacological relevance and may prove crucial in designing new therapeutics. The reciprocal interaction between NO and MMP-9 have been studied for nearly twenty years but to our knowledge, are yet to be the subject of a review. This review provides a summary of published data regarding the complex and sometimes contradictory effects of NO on MMP-9. We also analyse molecular mechanisms modulating and mediating NO-MMP-9 interactions. Finally, a potential therapeutic relevance of these interactions is presented.
Collapse
|
23
|
Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells. Molecules 2014; 19:3654-68. [PMID: 24662080 PMCID: PMC6271736 DOI: 10.3390/molecules19033654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.
Collapse
|
24
|
De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, Marigo I, Molon B, Bronte V. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 2014; 5:69. [PMID: 24605112 PMCID: PMC3932549 DOI: 10.3389/fimmu.2014.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022] Open
Abstract
Under many inflammatory contexts, such as tumor progression, systemic and peripheral immune response is tailored by reactive nitrogen species (RNS)-dependent post-translational modifications, suggesting a biological function for these chemical alterations. RNS modify both soluble factors and receptors essential to induce and maintain a tumor-specific immune response, creating a “chemical barrier” that impairs effector T cell infiltration and functionality in tumor microenvironment and supports the escape phase of cancer. RNS generation during tumor growth mainly depends on nitric oxide production by both tumor cells and tumor-infiltrating myeloid cells that constitutively activate essential metabolic pathways of l-arginine catabolism. This review provides an overview of the potential immunological and biological role of RNS-induced modifications and addresses new approaches targeting RNS either in search of novel biomarkers or to improve anti-cancer treatment.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Sara Sandri
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Giovanna Ferrarini
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Irene Pagliarello
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Silvia Sartoris
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Stefano Ugel
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Ilaria Marigo
- Istituto Oncologico Veneto, Istituto Di Ricovero e Cura a Carattere Scientifico , Padua , Italy
| | - Barbara Molon
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| |
Collapse
|
25
|
Zhu X, Yao L, Yang X, Sun H, Guo A, Li A, Yang H. Spatiotemporal expression of KHSRP modulates Schwann cells and neuronal differentiation after sciatic nerve injury. Int J Biochem Cell Biol 2013; 48:1-10. [PMID: 24368152 DOI: 10.1016/j.biocel.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/01/2013] [Accepted: 12/14/2013] [Indexed: 01/02/2023]
Abstract
K-homology splicing regulator protein (KHSRP), a multifunctional RNA-binding protein, was originally thought to primarily control mRNA decay. KHSRP was shown to be involved in p38MAPK, NF-κB and the JAK2-STAT-1a pathways. Besides, KHSRP regulated neuronal localization of beta-actin and microtubule-associated protein 2 (MAP2) mRNAs, respectively. However, the expression and roles of KHSRP in peripheral system lesions and repair are still unknown. In our study, we found that KHSRP levels were relatively higher in the crushed sciatic nerves, significantly reached a highest level at day 5. Spatially, we observed that KHSRP had a major colocalization with Schwann cells (SCs) and neurons. KHSRP was connected with promyelinating SCs marker. KHSRP promoted the decay of beta-catenin (β-catenin) mRNA which was inactivated by PI3K-AKT signaling. We doubted that KHSRP might participate in Schwann cells differentiation by regulation of β-catenin mRNA decay. In vitro, in cyclic adenosine monophosphate (cAMP)-induced Schwann cells differentiation system, we detected the increased KHSRP in cytoplasm and decreased β-catenin at protein and mRNA level. In differentiation model of rat pheochromocytoma cells (PC12) induced by nerve growth factor (NGF) and primary dorsal root ganglion (DRG) cell culture, KHSRP also acted on neuronal differentiation. Specially, KHSRP-specific siRNA-transfected cells did not show morphological change, which was similar to β-catenin overexpressed SCs. During SC/neuron co-cultures, KHSRP was transported to cytoplasm and involved in SCs myelination. In conclusion, we speculated that KHSRP was involved in SCs and neuronal differentiation by inducing β-catenin mRNA decay.
Collapse
Affiliation(s)
- Xiaojian Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China; Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong 226001, People's Republic of China
| | - Li Yao
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Xiaojing Yang
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Huiqing Sun
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Aisong Guo
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Aihong Li
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Casper I, Nowag S, Koch K, Hubrich T, Bollmann F, Henke J, Schmitz K, Kleinert H, Pautz A. Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP). Nitric Oxide 2013; 33:6-17. [DOI: 10.1016/j.niox.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
|
27
|
Bollmann F, Fechir K, Nowag S, Koch K, Art J, Kleinert H, Pautz A. Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport. Nitric Oxide 2013; 30:49-59. [PMID: 23471078 DOI: 10.1016/j.niox.2013.02.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/15/2013] [Accepted: 02/25/2013] [Indexed: 12/31/2022]
Abstract
Human inducible nitric oxide synthase (iNOS) is regulated on the expressional level mostly by post-transcriptional mechanisms modulating the mRNA stability. Another important step in the control of eukaryotic gene expression is the nucleocytoplasmic mRNA transport. Most cellular mRNAs are exported via the TAP/Nxt complex of proteins. However, some mRNAs are transported by a different mechanism involving the nuclear export receptor CRM1. Treatment of DLD-1 cells with the CRM1 inhibitor leptomycin B (LMB) or anti-CRM1 siRNAs reduced cytokine-induced iNOS expression. We could demonstrate that the iNOS mRNA is exported from the nucleus in a CRM1-dependent manner. Since CRM1 itself does not possess any RNA binding affinity, an adapter protein is needed to mediate CRM1-dependent mRNA export. Western blot experiments showed that the eukaryotic translation initiation factor eIF4E is retained in the nucleus after LMB treatment. Blockade of eIF4E by ribavirin or overexpression of the promyelocytic leukemia protein (PML) decreased iNOS expression due to reduced iNOS mRNA export from the nucleus. Transfection experiments provide evidence that the 3'-untranslated region of the iNOS mRNA is involved in eIF4E-mediated iNOS mRNA transport. In summary, CRM1 and eIF4E seem to play an important role in the nucleocytoplasmic export of human iNOS mRNA.
Collapse
Affiliation(s)
- Franziska Bollmann
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D 55101 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Schmidt N, Art J, Forsch I, Werner A, Erkel G, Jung M, Horke S, Kleinert H, Pautz A. The anti-inflammatory fungal compound (S)-curvularin reduces proinflammatory gene expression in an in vivo model of rheumatoid arthritis. J Pharmacol Exp Ther 2012; 343:106-14. [PMID: 22767531 DOI: 10.1124/jpet.112.192047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In previous studies, we identified the fungal macrocyclic lactone (S)-curvularin (SC) as an anti-inflammatory agent using a screening system detecting inhibitors of the Janus kinase/signal transducer and activator of transcription pathway. The objective of the present study was to investigate whether SC is able to decrease proinflammatory gene expression in an in vivo model of a chronic inflammatory disease. Therefore, the effects of SC and dexamethasone were compared in the model of collagen-induced arthritis (CIA) in mice. Total genomic microarray analyses were performed to identify SC target genes. In addition, in human C28/I2 chondrocytes and MonoMac6 monocytes, the effect of SC on proinflammatory gene expression was tested at the mRNA and protein level. In the CIA model, SC markedly reduced the expression of a number of proinflammatory cytokines and chemokines involved in the pathogenesis of CIA as well as human rheumatoid arthritis (RA). In almost all cases, the effects of SC were comparable with those of dexamethasone. In microarray analyses, we identified additional new therapeutic targets of SC. Some of them, such as S100A8, myeloperoxidase, or cathelicidin, an antimicrobial peptide, are known to be implicated in pathophysiological processes in RA. Similar anti-inflammatory effects of SC were also observed in human C28/I2 chondrocyte cells, which are resistant to glucocorticoid treatment. These data indicate that SC and glucocorticoid effects are mediated via independent signal transduction pathways. In summary, we demonstrate that SC is a new effective anti-inflammatory compound that may serve as a lead compound for the development of new drugs for the therapy of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nadine Schmidt
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou R, Gong AY, Eischeid AN, Chen XM. miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog 2012; 8:e1002702. [PMID: 22615562 PMCID: PMC3355088 DOI: 10.1371/journal.ppat.1002702] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/01/2012] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidium is a protozoan parasite that infects the gastrointestinal epithelium and causes a diarrheal disease. Toll-like receptor (TLR)- and NF-κB-mediated immune responses from epithelial cells, such as production of antimicrobial peptides and generation of reactive nitrogen species, are important components of the host's defense against cryptosporidial infection. Here we report data demonstrating a role for miR-27b in the regulation of TLR4/NF-κB-mediated epithelial anti-Cryptosporidium parvum responses. We found that C. parvum infection induced nitric oxide (NO) production in host epithelial cells in a TLR4/NF-κB-dependent manner, with the involvement of the stabilization of inducible NO synthase (iNOS) mRNA. C. parvum infection of epithelial cells activated NF-κB signaling to increase transcription of the miR-27b gene. Meanwhile, downregulation of KH-type splicing regulatory protein (KSRP) was detected in epithelial cells following C. parvum infection. Importantly, miR-27b targeted the 3′-untranslated region of KSRP, resulting in translational suppression. C. parvum infection decreased KSRP expression through upregulating miR-27b. Functional manipulation of KSRP or miR-27b caused reciprocal alterations in iNOS mRNA stability in infected cells. Forced expression of KSRP and inhibition of miR-27b resulted in an increased burden of C. parvum infection. Downregulation of KSRP through upregulating miR-27b was also detected in epithelial cells following LPS stimulation. These data suggest that miR-27b targets KSRP and modulates iNOS mRNA stability following C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level. Accumulating data indicate that miRNAs are an essential part of the complex regulatory networks that control various cellular processes, including host antimicrobial immune responses. Toll-like receptors (TLRs) play an essential role in the activation of innate immunity by recognizing specific patterns of microbial components and activating downstream intracellular signaling pathways, including NF-κB. However, the role of miRNAs in the regulation of TLR/NF-κB-mediated epithelial antimicrobial defense is still unclear. Cryptosporidium is a protozoan parasite that infects the gastrointestinal epithelium in humans. Here, we show that KSRP, an RNA-binding protein and a key mediator of mRNA decay, is a target for miR-27b. Infection by Cryptosporidium parvum activates TLR4/NF-κB signaling and increases miR-27b expression, causing a suppression of KSRP in infected host epithelial cells. Functionally, downregulation of KSRP stabilizes iNOS mRNA and promotes epithelial production of nitric oxide, a molecule with antimicrobial activity. Therefore, miR-27b confers TLR4/NF-κB-mediated epithelial cell anti-Cryptosporidium parvum defense though regulating KSRP. Our study provides a new area of exploration for fine-tuning TLR/NF-κB-mediated host reactions in response to microbial challenge.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska, United States of America
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska, United States of America
| | - Alex N. Eischeid
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska, United States of America
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska, United States of America
- * E-mail: .
| |
Collapse
|
30
|
Guo Z, Shao L, Zheng L, Du Q, Li P, John B, Geller DA. miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes. Proc Natl Acad Sci U S A 2012; 109:5826-31. [PMID: 22451906 PMCID: PMC3326458 DOI: 10.1073/pnas.1118118109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human inducible nitric oxide synthase (hiNOS) gene expression is regulated by transcriptional and posttranscriptional mechanisms. The purpose of this study was to determine whether specific microRNA (miRNA) directly regulate hiNOS gene expression. Sequence analysis of the 496-bp hiNOS 3'-untranslated region (3'-UTR) revealed five putative miR-939 binding sites. The hiNOS 3'-UTR conferred significant posttranscriptional blockade of luciferase activity in human A549, HCT8, and HeLa cells. The hiNOS 3'-UTR also exerted basal and cytokine-stimulated posttranscriptional repression in an orientation-dependent manner. Functional studies demonstrated that transfection of miR-939 into primary human hepatocytes (HCs) significantly inhibited cytokine-induced NO synthesis in a dose-dependent manner that was abrogated by a specific miR-939 inhibitor. MiR-939 (but not other miRNAs) abolished cytokine-stimulated hiNOS protein in human HC, but had no effect on hiNOS mRNA levels. Site-directed mutagenesis of miR-939 bindings sites at +99 or +112 bp in the hiNOS 3'-UTR increased reporter gene expression. Furthermore, intact miR-939 binding sites at +99 or +112 positions were required for posttranscriptional suppression by miR-939. Cytokine stimulation directly increased miR-939 levels in human HC. Transfection of miR-939 inhibitor (antisense miR-939) enhanced cytokine-induced hiNOS protein and increased NO synthesis in vitro in human HC. Finally, cytokine or LPS injection in vivo in mice increased hepatic miR-939 levels. Taken together, these data identify that miR-939 directly regulates hiNOS gene expression by binding in the 3'-UTR to produce a translational blockade. These findings suggest dual regulation of iNOS gene expression where cytokines induce iNOS transcription and also increase miR-939, leading to translational inhibition in a check-and-balance system.
Collapse
Affiliation(s)
| | | | - Liang Zheng
- Computational Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | | | | | - Bino John
- Computational Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
31
|
Foster MW, Yang Z, Gooden DM, Thompson JW, Ball CH, Turner ME, Hou Y, Pi J, Moseley MA, Que LG. Proteomic characterization of the cellular response to nitrosative stress mediated by s-nitrosoglutathione reductase inhibition. J Proteome Res 2012; 11:2480-91. [PMID: 22390303 DOI: 10.1021/pr201180m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The S-nitrosoglutathione-metabolizing enzyme, GSNO reductase (GSNOR), has emerged as an important regulator of protein S-nitrosylation. GSNOR ablation is protective in models of asthma and heart failure, raising the idea that GSNOR inhibitors might hold therapeutic value. Here, we investigated the effects of a small molecule inhibitor of GSNOR (GSNORi) in mouse RAW 264.7 macrophages. We found that GSNORi increased protein S-nitrosylation in cytokine-stimulated cells, and we utilized stable isotope labeling of amino acids in cell culture (SILAC) to quantify the cellular response to this "nitrosative stress". The expression of several cytokine-inducible immunomodulators, including osteopontin, cyclooxygenase-2, and nitric oxide synthase isoform 2 (NOS2), were decreased by GSNORi. In addition, selective targets of the redox-regulated transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-including heme oxygenase 1 (HO-1) and glutamate cysteine ligase modulatory subunit-were induced by GSNORi in a NOS2- and Nrf2-dependent manner. In cytokine-stimulated cells, Nrf2 protected from GSNORi-induced glutathione depletion and cytotoxicity and HO-1 activity was required for down-regulation of NOS2. Interestingly, GSNORi also affected a marked increase in NOS2 protein stability. Collectively, these data provide the most complete description of the global effects of GSNOR inhibition and demonstrate several important mechanisms for inducible response to GSNORi-mediated nitrosative stress.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Small Molecule Synthesis Facility and Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Muscle atrophy—also known as muscle wasting—is a debilitating syndrome that slowly develops with age (sarcopenia) or rapidly appears at the late stages of deadly diseases such as cancer, AIDS, and sepsis (cachexia). Despite the prevalence and the drastic detrimental effects of these two syndromes, there are currently no widely used, effective treatment options for those suffering from muscle wasting. In an attempt to identify potential therapeutic targets, the molecular mechanisms of sarcopenia and cachexia have begun to be elucidated. Growing evidence suggests that inflammatory cytokines may play an important role in the pathology of both syndromes. As one of the key cytokines involved in both sarcopenic and cachectic muscle wasting, tumor necrosis factor α (TNFα) and its downstream effectors provide an enticing target for pharmacological intervention. However, to date, no drugs targeting the TNFα signaling pathway have been successful as a remedial option for the treatment of muscle wasting. Thus, there is a need to identify new effectors in this important pathway that might prove to be more efficacious targets. Inducible nitric oxide synthase (iNOS) has recently been shown to be an important mediator of TNFα-induced cachectic muscle loss, and studies suggest that it may also play a role in sarcopenia. In addition, investigations into the mechanism of iNOS-mediated muscle loss have begun to reveal potential therapeutic strategies. In this review, we will highlight the potential for targeting the iNOS/NO pathway in the treatment of muscle loss and discuss its functional relevance in sarcopenia and cachexia.
Collapse
|
33
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Lee JH, Kim H, Woo JH, Joe EH, Jou I. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability. J Neuroinflammation 2012; 9:34. [PMID: 22339770 PMCID: PMC3308915 DOI: 10.1186/1742-2094-9-34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/18/2012] [Indexed: 01/20/2023] Open
Abstract
Background The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. Methods To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. Results We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. Conclusion ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Korea.
| | | | | | | | | |
Collapse
|
35
|
Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland. PLoS One 2011; 6:e29402. [PMID: 22216273 PMCID: PMC3247256 DOI: 10.1371/journal.pone.0029402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway.
Collapse
|
36
|
Niu S, Shingle DL, Garbarino-Pico E, Kojima S, Gilbert M, Green CB. The circadian deadenylase Nocturnin is necessary for stabilization of the iNOS mRNA in mice. PLoS One 2011; 6:e26954. [PMID: 22073225 PMCID: PMC3206874 DOI: 10.1371/journal.pone.0026954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/06/2011] [Indexed: 01/05/2023] Open
Abstract
Nocturnin is a member of the CCR4 deadenylase family, and its expression is under circadian control with peak levels at night. Because it can remove poly(A) tails from mRNAs, it is presumed to play a role in post-transcriptional control of circadian gene expression, but its target mRNAs are not known. Here we demonstrate that Nocturnin expression is acutely induced by the endotoxin lipopolysaccharide (LPS). Mouse embryo fibroblasts (MEFs) lacking Nocturnin exhibit normal patterns of acute induction of TNFα and iNOS mRNAs during the first three hours following LPS treatment, but by 24 hours, while TNFα mRNA levels are indistinguishable from WT cells, iNOS message is significantly reduced 20-fold. Accordingly, analysis of the stability of the mRNAs showed that loss of Nocturnin causes a significant decrease in the half-life of the iNOS mRNA (t(1/2) = 3.3 hours in Nocturnin knockout MEFs vs. 12.4 hours in wild type MEFs), while having no effect on the TNFα message. Furthermore, mice lacking Nocturnin lose the normal nighttime peak of hepatic iNOS mRNA, and have improved survival following LPS injection. These data suggest that Nocturnin has a novel stabilizing activity that plays an important role in the circadian response to inflammatory signals.
Collapse
Affiliation(s)
- Shuang Niu
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Danielle L. Shingle
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Eduardo Garbarino-Pico
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shihoko Kojima
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Misty Gilbert
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carla B. Green
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
37
|
Stellato C, Gubin MM, Magee JD, Fang X, Fan J, Tartar DM, Chen J, Dahm GM, Calaluce R, Mori F, Jackson GA, Casolaro V, Franklin CL, Atasoy U. Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. THE JOURNAL OF IMMUNOLOGY 2011; 187:441-9. [PMID: 21613615 DOI: 10.4049/jimmunol.1001881] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate-rich elements (AREs) present in the 3' untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 3'UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dual specificity phosphatase 1 regulates human inducible nitric oxide synthase expression by p38 MAP kinase. Mediators Inflamm 2011; 2011:127587. [PMID: 21547253 PMCID: PMC3086212 DOI: 10.1155/2011/127587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/15/2011] [Indexed: 01/12/2023] Open
Abstract
The role of dual specificity phosphatase 1 (DUSP1) in inducible nitric oxide synthase (iNOS) expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs) was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1β) in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1(−/−) mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.
Collapse
|
39
|
Liu MC, Lin TH, Wu TS, Yu FY, Lu CC, Liu BH. Aristolochic acid I suppressed iNOS gene expression and NF-κB activation in stimulated macrophage cells. Toxicol Lett 2011; 202:93-9. [PMID: 21291967 DOI: 10.1016/j.toxlet.2011.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/15/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
Abstract
Aristolochic acid I (AAI) is a phytotoxin that has been found in various herbal remedies and linked to the development of human carcinogenesis. To investigate the playing role of AAI in the function of macrophages, lipopolysaccharide (LPS)-stimulated macrophage cells RAW264.7 were employed as a model to examine the effect of AAI on the expression of the inducible nitric oxide synthase (iNOS) gene. AAI reduced the expression of iNOS mRNA and protein, as well as the production of NO in LPS-stimulated macrophages. Treatment of transfected macrophages with AAI effectively suppressed the luciferase activities of the iNOS promoter which is activated by LPS. The results of promoter deletion and electrophoretic gel mobility shift assay (EMSA) indicated that the NF-κB binding site at nucleotides -86 to -76 was the major site that was most responsible for the inhibitory effect of AAI. Moreover, the presence of AAI substantially reduced the phosphorylation of the inhibitory κBα (IκBα) protein in LPS-stimulated cultures. AAI also down-regulated the LPS-induction of TNF-α, a NF-κB regulated gene. On the other hand, AAI did not modulate the luciferase activities of reporter construct that contained iNOS mRNA 3'-UTR. Taken together, the data herein suggest that in activated macrophages, AAI effectively down-regulated the expression of iNOS gene by interfering with the activation of NF-κB at the transcription level. The stability of iNOS mRNA was not the target of AAI inhibition.
Collapse
Affiliation(s)
- Ming-Chao Liu
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Chien-Kuo N. Road, Section 1, Taichung 40203, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Fan J, Ishmael FT, Fang X, Myers A, Cheadle C, Huang SK, Atasoy U, Gorospe M, Stellato C. Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. THE JOURNAL OF IMMUNOLOGY 2011; 186:2482-94. [PMID: 21220697 DOI: 10.4049/jimmunol.0903634] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HuR is a regulator of mRNA turnover or translation of inflammatory genes through binding to adenylate-uridylate-rich elements and related motifs present in the 3'untranslated region (UTR) of mRNAs. We postulate that HuR critically regulates the epithelial response by associating with multiple ARE-bearing, functionally related inflammatory transcripts. We aimed to identify HuR targets in the human airway epithelial cell line BEAS-2B challenged with TNF-α plus IFN-γ, a strong stimulus for inflammatory epithelial responses. Ribonucleoprotein complexes from resting and cytokine-treated cells were immunoprecipitated using anti-HuR and isotype-control Ab, and eluted mRNAs were reverse-transcribed and hybridized to an inflammatory-focused gene array. The chemokines CCL2, CCL8, CXCL1, and CXCL2 ranked highest among 27 signaling and inflammatory genes significantly enriched in the HuR RNP-IP from stimulated cells over the control immunoprecipitation. Among these, 20 displayed published HuR binding motifs. Association of HuR with the four endogenous chemokine mRNAs was validated by single-gene ribonucleoprotein-immunoprecipitation and shown to be 3'UTR-dependent by biotin pull-down assay. Cytokine treatment increased mRNA stability only for CCL2 and CCL8, and transient silencing and overexpression of HuR affected only CCL2 and CCL8 expression in primary and transformed epithelial cells. Cytokine-induced CCL2 mRNA was predominantly cytoplasmic. Conversely, CXCL1 mRNA remained mostly nuclear and unaffected, as CXCL2, by changes in HuR levels. Increase in cytoplasmic HuR and HuR target expression partially relied on the inhibition of AMP-dependent kinase, a negative regulator of HuR nucleocytoplasmic shuttling. HuR-mediated regulation in airway epithelium appears broader than previously appreciated, coordinating numerous inflammatory genes through multiple posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Jinshui Fan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Stumpo DJ, Lai WS, Blackshear PJ. Inflammation: cytokines and RNA-based regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:60-80. [PMID: 21956907 DOI: 10.1002/wrna.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outcome of an inflammatory response depends upon the coordinated regulation of a variety of both pro-inflammatory and anti-inflammatory cytokines and other proteins. Regulation of these inflammation mediators can occur at multiple levels, including transcription, mRNA translation, post-translational modifications, and mRNA degradation. Post-transcriptional regulation has been shown to play an important role in controlling the expression of these mediators, allowing for normal initiation and resolution of the inflammatory response. Many inflammatory mediators have unstable mRNAs due, in part, to the presence of AU-rich elements in their 3'-untranslated regions. Increasing numbers of RNA-binding proteins have been identified that can bind to these AU-rich elements and then regulate the stability and/or translation of the mRNA. This review summarizes current knowledge about the role of several RNA-binding proteins that act through AU-rich elements to post-transcriptionally regulate the biosynthesis of proteins involved in inflammation.
Collapse
Affiliation(s)
- Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
43
|
|
44
|
Schmidt N, Pautz A, Art J, Rauschkolb P, Jung M, Erkel G, Goldring MB, Kleinert H. Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes. Biochem Pharmacol 2009; 79:722-32. [PMID: 19854161 DOI: 10.1016/j.bcp.2009.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/18/2022]
Abstract
Chondrocytes are important for the development and maintenance of articular cartilage. However, both in osteoarthritis (OA) and rheumatoid arthritis (RA) chondrocytes are involved in the process of cartilage degradation and synthesize important immunomodulatory mediators, including nitric oxide (NO) generated by the inducible NO synthase (iNOS). To uncover the role of iNOS in the pathomechanisms of OA and RA, we analyzed the regulation of iNOS expression using immortalized human chondrocytes as a reproducible model. In C-28/I2 chondrocytes, iNOS expression was associated with the expression of the chondrocyte phenotype. Peak induction by a cytokine cocktail occurred between 6 and 8h and declined by 24h. Inhibition of p38MAPK, NF-kappaB and the JAK2-STAT-1alpha pathways resulted in a reduction of iNOS expression. In contrast to other cell types, the cytokine-mediated induction of the human iNOS promoter paralleled the induction rate of the iNOS mRNA expression in C-28/I2 chondrocytes. However, in addition post-transcriptional regulation of iNOS expression by the RNA binding protein KSRP seems to operate in these cells. As seen in other chondrocyte models, glucocorticoids were not able to inhibit cytokine-induced iNOS expression in C-28/I2 cells, due to the lack of the glucocorticoid receptor mRNA expression. In this model of glucocorticoid-resistance, the new fungal anti-inflammatory compound S-curvularin was able to inhibit cytokine-induced iNOS expression and iNOS-dependent NO-production. In summary, we demonstrate for the first time that differentiated human immortalized C-28/I2 chondrocytes are a representative cell culture model to investigate iNOS gene expression in human joint diseases.
Collapse
MESH Headings
- Anti-Inflammatory Agents/pharmacology
- Cartilage, Articular/drug effects
- Cartilage, Articular/enzymology
- Cell Line, Transformed
- Chondrocytes/drug effects
- Chondrocytes/enzymology
- Cytokines/pharmacology
- Enzyme Induction
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Interferon-Stimulated Gene Factor 3/antagonists & inhibitors
- Janus Kinase 2/antagonists & inhibitors
- NF-kappa B p50 Subunit/antagonists & inhibitors
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- RNA Processing, Post-Transcriptional/drug effects
- RNA Processing, Post-Transcriptional/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Zearalenone/analogs & derivatives
- Zearalenone/pharmacology
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Nadine Schmidt
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vuolteenaho K, Moilanen T, Knowles RG, Moilanen E. The role of nitric oxide in osteoarthritis. Scand J Rheumatol 2009; 36:247-58. [PMID: 17853003 DOI: 10.1080/03009740701483014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Elevated levels of markers of nitric oxide (NO) production are found in osteoarthritic joints suggesting that NO is involved in the pathogenesis of osteoarthritis (OA). In OA, NO mediates many of the destructive effects of interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha) in the cartilage, and inhibitors of NO synthesis have demonstrated retardation of clinical and histological signs and symptoms in experimentally induced OA and other forms of arthritis. As an important factor in cartilage, the regulation of inducible nitric oxide synthase (iNOS) expression and activity, and the effects of NO are reviewed, especially in relation to the pathogenesis of OA.
Collapse
Affiliation(s)
- K Vuolteenaho
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | | | | | | |
Collapse
|
46
|
A far-upstream Oct-1 motif regulates cytokine-induced transcription of the human inducible nitric oxide synthase gene. J Mol Biol 2009; 390:595-603. [PMID: 19467240 DOI: 10.1016/j.jmb.2009.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 11/22/2022]
Abstract
Transcriptional regulation of the human inducible nitric oxide synthase (hiNOS) gene is highly complex and requires an orchestrated flow of positive and negative transcription factors that bind to specific cis-acting upstream response elements. Very little specific information exists about the far-upstream region of the hiNOS gene. Oct-1 protein belongs to the Pit-Oct-Unc domain transcription factor family and is constitutively expressed in all dividing cells. It is essential for proliferation, differentiation, and other key cell processes. However, the role of Oct-1 in regulating hiNOS gene expression has not been reported. In this work, the octamer sequence 5'-ATGCAAAT-3' at -10.2 kb in the hiNOS promoter was identified as high-affinity Oct-1 binding by electrophoretic mobility shift assay in vitro and chromatin immunoprecipitation assay in vivo. Mutation of Oct-1 motif at -10.2 kb in the hiNOS promoter decreased cytokine-induced hiNOS promoter activity by 40%. Cytokine-induced hiNOS promoter activity was also significantly reduced by Oct-1 small interfering RNA targeting. Overexpression of Oct-1 increased cytokine-induced hiNOS protein expression in primary human hepatocytes. Furthermore, the Oct-1 motif at -10.2 kb of the hiNOS promoter conferred increased transcriptional activity to the heterologous thymidine kinase promoter irrespective of cytokine induction. Taken together, this work identifies a far-upstream functional Oct-1 enhancer motif at -10.2 kb in the hiNOS promoter that regulates cytokine-induced hiNOS gene transcription and further underscores tight control mechanisms regulating the expression of the hiNOS gene.
Collapse
|
47
|
Hämäläinen M, Korhonen R, Moilanen E. Calcineurin inhibitors down-regulate iNOS expression by destabilising mRNA. Int Immunopharmacol 2009; 9:159-67. [DOI: 10.1016/j.intimp.2008.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 07/03/2008] [Accepted: 07/16/2008] [Indexed: 01/16/2023]
|
48
|
Vázquez M, Ariz U, Varela-Rey M, Embade N, Martínez N, Fernández D, Gómez L, Lamas S, Lu SC, Martínez-Chantar ML, Mato JM. Evidence for LKB1/AMP-activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatology 2009; 49:608-17. [PMID: 19177591 PMCID: PMC2635424 DOI: 10.1002/hep.22660] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED S-adenosylmethionine (SAMe) is involved in numerous complex hepatic processes such as hepatocyte proliferation, death, inflammatory responses, and antioxidant defense. One of the most relevant actions of SAMe is the inhibition of hepatocyte proliferation during liver regeneration. In hepatocytes, SAMe regulates the levels of cytoplasmic HuR, an RNA-binding protein that increases the half-life of target messenger RNAs such as cyclin D1 and A2 via inhibition of hepatocyte growth factor (HGF)-mediated adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. Because AMPK is activated by the tumor suppressor kinase LKB1, and AMPK activates endothelial nitric oxide (NO) synthase (eNOS), and NO synthesis is of great importance for hepatocyte proliferation, we hypothesized that in hepatocytes HGF may induce the phosphorylation of LKB1, AMPK, and eNOS through a process regulated by SAMe, and that this cascade might be crucial for hepatocyte growth. We demonstrate that the proliferative response of hepatocytes involves eNOS phosphorylation via HGF-mediated LKB1 and AMPK phosphorylation, and that this process is regulated by SAMe and NO. We also show that knockdown of LKB1, AMPK, or eNOS with specific interference RNA (iRNA) inhibits HGF-mediated hepatocyte proliferation. Finally, we found that the LKB1/AMPK/eNOS cascade is activated during liver regeneration after partial hepatectomy and that this process is impaired in mice treated with SAMe before hepatectomy, in knockout mice deficient in hepatic SAMe, and in eNOS knockout mice. CONCLUSION We have identified an LKB1/AMPK/eNOS cascade regulated by HGF, SAMe, and NO that functions as a critical determinant of hepatocyte proliferation during liver regeneration after partial hepatectomy.
Collapse
Affiliation(s)
- Mercedes Vázquez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain,Contributed equally to this paper. MLMC and JMM share senior authorship
| | - Usue Ariz
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain,Contributed equally to this paper. MLMC and JMM share senior authorship
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nieves Embade
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nuria Martínez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - David Fernández
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Laura Gómez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Santiago Lamas
- Centro de Investigaciones Biológicas-CSIC 28040-Madrid, Spain
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA 90033
| | - M Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| |
Collapse
|
49
|
Yang GY, Taboada S, Liao J. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 2009; 512:119-156. [PMID: 19347276 DOI: 10.1007/978-1-60327-530-9_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) is a free radical that is involved in the inflammatory process and carcinogenesis. There are four nitric oxide synthase enzymes involved in NO production: induced nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), neural NO synthase (nNOS), and mitochondrial NOS. iNOS is an inducible and key enzyme in the inflamed tissue. Recent literatures indicate that NO as well as iNOS and eNOS can modulate cancer-related events including nitro-oxidative stress, apoptosis, cell cycle, angio-genesis, invasion, and metastasis. This chapter focuses on linking NO/iNOS/eNOS to inflammation and carcinogenesis from experimental evidence to potential targets on cancer prevention and treatment.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
50
|
Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 2008; 28:7139-55. [PMID: 18809573 DOI: 10.1128/mcb.01145-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulation of the synthesis of the endothelial-derived vasoconstrictor endothelin-1 (ET-1) is a complex process encompassing transcriptional as well as mRNA stability mechanisms. We have described recently the existence of a mechanism for the control of ET-1 expression based on the mRNA-destabilizing capacity of specific cytosolic proteins through interaction with AU-rich elements (AREs) present in the 3' untranslated region of the gene. We now identify glyceraldehyde-3'-phosphate dehydrogenase (GAPDH) as a protein which binds to the AREs and is responsible for the destabilization of the mRNA. Oxidant stress alters the binding of GAPDH to the mRNA and its capacity to modulate ET-1 expression, a phenomenon occurring through specific S glutathionylation of the catalytically active residue Cys 152. Finally, we provide data consistent with a role for GAPDH in mRNA unwinding, yielding this molecule more prone to degradation. In contrast, S-thiolated GAPDH appears unable to modify mRNA unwinding, thus facilitating enhanced stability. Taken together, these results describe a novel, redox-based mechanism regulating mRNA stability and add a new facet to the panoply of GAPDH cellular homeostatic actions.
Collapse
|